Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | /* * Copyright (C) 2013 ARM Ltd. * Copyright (C) 2013 Linaro. * * This code is based on glibc cortex strings work originally authored by Linaro * and re-licensed under GPLv2 for the Linux kernel. The original code can * be found @ * * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/ * files/head:/src/aarch64/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <linux/linkage.h> #include <asm/assembler.h> /* * compare two strings * * Parameters: * x0 - const string 1 pointer * x1 - const string 2 pointer * Returns: * x0 - an integer less than, equal to, or greater than zero * if s1 is found, respectively, to be less than, to match, * or be greater than s2. */ #define REP8_01 0x0101010101010101 #define REP8_7f 0x7f7f7f7f7f7f7f7f #define REP8_80 0x8080808080808080 /* Parameters and result. */ src1 .req x0 src2 .req x1 result .req x0 /* Internal variables. */ data1 .req x2 data1w .req w2 data2 .req x3 data2w .req w3 has_nul .req x4 diff .req x5 syndrome .req x6 tmp1 .req x7 tmp2 .req x8 tmp3 .req x9 zeroones .req x10 pos .req x11 WEAK(strcmp) eor tmp1, src1, src2 mov zeroones, #REP8_01 tst tmp1, #7 b.ne .Lmisaligned8 ands tmp1, src1, #7 b.ne .Lmutual_align /* * NUL detection works on the principle that (X - 1) & (~X) & 0x80 * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and * can be done in parallel across the entire word. */ .Lloop_aligned: ldr data1, [src1], #8 ldr data2, [src2], #8 .Lstart_realigned: sub tmp1, data1, zeroones orr tmp2, data1, #REP8_7f eor diff, data1, data2 /* Non-zero if differences found. */ bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ orr syndrome, diff, has_nul cbz syndrome, .Lloop_aligned b .Lcal_cmpresult .Lmutual_align: /* * Sources are mutually aligned, but are not currently at an * alignment boundary. Round down the addresses and then mask off * the bytes that preceed the start point. */ bic src1, src1, #7 bic src2, src2, #7 lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */ ldr data1, [src1], #8 neg tmp1, tmp1 /* Bits to alignment -64. */ ldr data2, [src2], #8 mov tmp2, #~0 /* Big-endian. Early bytes are at MSB. */ CPU_BE( lsl tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */ /* Little-endian. Early bytes are at LSB. */ CPU_LE( lsr tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */ orr data1, data1, tmp2 orr data2, data2, tmp2 b .Lstart_realigned .Lmisaligned8: /* * Get the align offset length to compare per byte first. * After this process, one string's address will be aligned. */ and tmp1, src1, #7 neg tmp1, tmp1 add tmp1, tmp1, #8 and tmp2, src2, #7 neg tmp2, tmp2 add tmp2, tmp2, #8 subs tmp3, tmp1, tmp2 csel pos, tmp1, tmp2, hi /*Choose the maximum. */ .Ltinycmp: ldrb data1w, [src1], #1 ldrb data2w, [src2], #1 subs pos, pos, #1 ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */ ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ b.eq .Ltinycmp cbnz pos, 1f /*find the null or unequal...*/ cmp data1w, #1 ccmp data1w, data2w, #0, cs b.eq .Lstart_align /*the last bytes are equal....*/ 1: sub result, data1, data2 ret .Lstart_align: ands xzr, src1, #7 b.eq .Lrecal_offset /*process more leading bytes to make str1 aligned...*/ add src1, src1, tmp3 add src2, src2, tmp3 /*load 8 bytes from aligned str1 and non-aligned str2..*/ ldr data1, [src1], #8 ldr data2, [src2], #8 sub tmp1, data1, zeroones orr tmp2, data1, #REP8_7f bic has_nul, tmp1, tmp2 eor diff, data1, data2 /* Non-zero if differences found. */ orr syndrome, diff, has_nul cbnz syndrome, .Lcal_cmpresult /*How far is the current str2 from the alignment boundary...*/ and tmp3, tmp3, #7 .Lrecal_offset: neg pos, tmp3 .Lloopcmp_proc: /* * Divide the eight bytes into two parts. First,backwards the src2 * to an alignment boundary,load eight bytes from the SRC2 alignment * boundary,then compare with the relative bytes from SRC1. * If all 8 bytes are equal,then start the second part's comparison. * Otherwise finish the comparison. * This special handle can garantee all the accesses are in the * thread/task space in avoid to overrange access. */ ldr data1, [src1,pos] ldr data2, [src2,pos] sub tmp1, data1, zeroones orr tmp2, data1, #REP8_7f bic has_nul, tmp1, tmp2 eor diff, data1, data2 /* Non-zero if differences found. */ orr syndrome, diff, has_nul cbnz syndrome, .Lcal_cmpresult /*The second part process*/ ldr data1, [src1], #8 ldr data2, [src2], #8 sub tmp1, data1, zeroones orr tmp2, data1, #REP8_7f bic has_nul, tmp1, tmp2 eor diff, data1, data2 /* Non-zero if differences found. */ orr syndrome, diff, has_nul cbz syndrome, .Lloopcmp_proc .Lcal_cmpresult: /* * reversed the byte-order as big-endian,then CLZ can find the most * significant zero bits. */ CPU_LE( rev syndrome, syndrome ) CPU_LE( rev data1, data1 ) CPU_LE( rev data2, data2 ) /* * For big-endian we cannot use the trick with the syndrome value * as carry-propagation can corrupt the upper bits if the trailing * bytes in the string contain 0x01. * However, if there is no NUL byte in the dword, we can generate * the result directly. We ca not just subtract the bytes as the * MSB might be significant. */ CPU_BE( cbnz has_nul, 1f ) CPU_BE( cmp data1, data2 ) CPU_BE( cset result, ne ) CPU_BE( cneg result, result, lo ) CPU_BE( ret ) CPU_BE( 1: ) /*Re-compute the NUL-byte detection, using a byte-reversed value. */ CPU_BE( rev tmp3, data1 ) CPU_BE( sub tmp1, tmp3, zeroones ) CPU_BE( orr tmp2, tmp3, #REP8_7f ) CPU_BE( bic has_nul, tmp1, tmp2 ) CPU_BE( rev has_nul, has_nul ) CPU_BE( orr syndrome, diff, has_nul ) clz pos, syndrome /* * The MS-non-zero bit of the syndrome marks either the first bit * that is different, or the top bit of the first zero byte. * Shifting left now will bring the critical information into the * top bits. */ lsl data1, data1, pos lsl data2, data2, pos /* * But we need to zero-extend (char is unsigned) the value and then * perform a signed 32-bit subtraction. */ lsr data1, data1, #56 sub result, data1, data2, lsr #56 ret ENDPIPROC(strcmp) EXPORT_SYMBOL_NOKASAN(strcmp) |