Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | /* * kgdb support for ARC * * Copyright (C) 2012 Synopsys, Inc. (www.synopsys.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kgdb.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <asm/disasm.h> #include <asm/cacheflush.h> static void to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *kernel_regs, struct callee_regs *cregs) { int regno; for (regno = 0; regno <= 26; regno++) gdb_regs[_R0 + regno] = get_reg(regno, kernel_regs, cregs); for (regno = 27; regno < GDB_MAX_REGS; regno++) gdb_regs[regno] = 0; gdb_regs[_FP] = kernel_regs->fp; gdb_regs[__SP] = kernel_regs->sp; gdb_regs[_BLINK] = kernel_regs->blink; gdb_regs[_RET] = kernel_regs->ret; gdb_regs[_STATUS32] = kernel_regs->status32; gdb_regs[_LP_COUNT] = kernel_regs->lp_count; gdb_regs[_LP_END] = kernel_regs->lp_end; gdb_regs[_LP_START] = kernel_regs->lp_start; gdb_regs[_BTA] = kernel_regs->bta; gdb_regs[_STOP_PC] = kernel_regs->ret; } static void from_gdb_regs(unsigned long *gdb_regs, struct pt_regs *kernel_regs, struct callee_regs *cregs) { int regno; for (regno = 0; regno <= 26; regno++) set_reg(regno, gdb_regs[regno + _R0], kernel_regs, cregs); kernel_regs->fp = gdb_regs[_FP]; kernel_regs->sp = gdb_regs[__SP]; kernel_regs->blink = gdb_regs[_BLINK]; kernel_regs->ret = gdb_regs[_RET]; kernel_regs->status32 = gdb_regs[_STATUS32]; kernel_regs->lp_count = gdb_regs[_LP_COUNT]; kernel_regs->lp_end = gdb_regs[_LP_END]; kernel_regs->lp_start = gdb_regs[_LP_START]; kernel_regs->bta = gdb_regs[_BTA]; } void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *kernel_regs) { to_gdb_regs(gdb_regs, kernel_regs, (struct callee_regs *) current->thread.callee_reg); } void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *kernel_regs) { from_gdb_regs(gdb_regs, kernel_regs, (struct callee_regs *) current->thread.callee_reg); } void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *task) { if (task) to_gdb_regs(gdb_regs, task_pt_regs(task), (struct callee_regs *) task->thread.callee_reg); } struct single_step_data_t { uint16_t opcode[2]; unsigned long address[2]; int is_branch; int armed; } single_step_data; static void undo_single_step(struct pt_regs *regs) { if (single_step_data.armed) { int i; for (i = 0; i < (single_step_data.is_branch ? 2 : 1); i++) { memcpy((void *) single_step_data.address[i], &single_step_data.opcode[i], BREAK_INSTR_SIZE); flush_icache_range(single_step_data.address[i], single_step_data.address[i] + BREAK_INSTR_SIZE); } single_step_data.armed = 0; } } static void place_trap(unsigned long address, void *save) { memcpy(save, (void *) address, BREAK_INSTR_SIZE); memcpy((void *) address, &arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); flush_icache_range(address, address + BREAK_INSTR_SIZE); } static void do_single_step(struct pt_regs *regs) { single_step_data.is_branch = disasm_next_pc((unsigned long) regs->ret, regs, (struct callee_regs *) current->thread.callee_reg, &single_step_data.address[0], &single_step_data.address[1]); place_trap(single_step_data.address[0], &single_step_data.opcode[0]); if (single_step_data.is_branch) { place_trap(single_step_data.address[1], &single_step_data.opcode[1]); } single_step_data.armed++; } int kgdb_arch_handle_exception(int e_vector, int signo, int err_code, char *remcomInBuffer, char *remcomOutBuffer, struct pt_regs *regs) { unsigned long addr; char *ptr; undo_single_step(regs); switch (remcomInBuffer[0]) { case 's': case 'c': ptr = &remcomInBuffer[1]; if (kgdb_hex2long(&ptr, &addr)) regs->ret = addr; case 'D': case 'k': atomic_set(&kgdb_cpu_doing_single_step, -1); if (remcomInBuffer[0] == 's') { do_single_step(regs); atomic_set(&kgdb_cpu_doing_single_step, smp_processor_id()); } return 0; } return -1; } int kgdb_arch_init(void) { single_step_data.armed = 0; return 0; } void kgdb_trap(struct pt_regs *regs) { /* trap_s 3 is used for breakpoints that overwrite existing * instructions, while trap_s 4 is used for compiled breakpoints. * * with trap_s 3 breakpoints the original instruction needs to be * restored and continuation needs to start at the location of the * breakpoint. * * with trap_s 4 (compiled) breakpoints, continuation needs to * start after the breakpoint. */ if (regs->ecr_param == 3) instruction_pointer(regs) -= BREAK_INSTR_SIZE; kgdb_handle_exception(1, SIGTRAP, 0, regs); } void kgdb_arch_exit(void) { } void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip) { instruction_pointer(regs) = ip; } void kgdb_call_nmi_hook(void *ignored) { /* Default implementation passes get_irq_regs() but we don't */ kgdb_nmicallback(raw_smp_processor_id(), NULL); } const struct kgdb_arch arch_kgdb_ops = { /* breakpoint instruction: TRAP_S 0x3 */ #ifdef CONFIG_CPU_BIG_ENDIAN .gdb_bpt_instr = {0x78, 0x7e}, #else .gdb_bpt_instr = {0x7e, 0x78}, #endif }; |