Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
/*
 * Copyright (C) 2010 Red Hat, Inc.
 * Copyright (c) 2016-2018 Christoph Hellwig.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/iomap.h>
#include <linux/uaccess.h>
#include <linux/gfp.h>
#include <linux/migrate.h>
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/pagevec.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/backing-dev.h>
#include <linux/buffer_head.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/dax.h>
#include <linux/sched/signal.h>

#include "internal.h"

/*
 * Execute a iomap write on a segment of the mapping that spans a
 * contiguous range of pages that have identical block mapping state.
 *
 * This avoids the need to map pages individually, do individual allocations
 * for each page and most importantly avoid the need for filesystem specific
 * locking per page. Instead, all the operations are amortised over the entire
 * range of pages. It is assumed that the filesystems will lock whatever
 * resources they require in the iomap_begin call, and release them in the
 * iomap_end call.
 */
loff_t
iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
		const struct iomap_ops *ops, void *data, iomap_actor_t actor)
{
	struct iomap iomap = { 0 };
	loff_t written = 0, ret;

	/*
	 * Need to map a range from start position for length bytes. This can
	 * span multiple pages - it is only guaranteed to return a range of a
	 * single type of pages (e.g. all into a hole, all mapped or all
	 * unwritten). Failure at this point has nothing to undo.
	 *
	 * If allocation is required for this range, reserve the space now so
	 * that the allocation is guaranteed to succeed later on. Once we copy
	 * the data into the page cache pages, then we cannot fail otherwise we
	 * expose transient stale data. If the reserve fails, we can safely
	 * back out at this point as there is nothing to undo.
	 */
	ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
	if (ret)
		return ret;
	if (WARN_ON(iomap.offset > pos))
		return -EIO;
	if (WARN_ON(iomap.length == 0))
		return -EIO;

	/*
	 * Cut down the length to the one actually provided by the filesystem,
	 * as it might not be able to give us the whole size that we requested.
	 */
	if (iomap.offset + iomap.length < pos + length)
		length = iomap.offset + iomap.length - pos;

	/*
	 * Now that we have guaranteed that the space allocation will succeed.
	 * we can do the copy-in page by page without having to worry about
	 * failures exposing transient data.
	 */
	written = actor(inode, pos, length, data, &iomap);

	/*
	 * Now the data has been copied, commit the range we've copied.  This
	 * should not fail unless the filesystem has had a fatal error.
	 */
	if (ops->iomap_end) {
		ret = ops->iomap_end(inode, pos, length,
				     written > 0 ? written : 0,
				     flags, &iomap);
	}

	return written ? written : ret;
}

static sector_t
iomap_sector(struct iomap *iomap, loff_t pos)
{
	return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
}

static struct iomap_page *
iomap_page_create(struct inode *inode, struct page *page)
{
	struct iomap_page *iop = to_iomap_page(page);

	if (iop || i_blocksize(inode) == PAGE_SIZE)
		return iop;

	iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
	atomic_set(&iop->read_count, 0);
	atomic_set(&iop->write_count, 0);
	bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);

	/*
	 * migrate_page_move_mapping() assumes that pages with private data have
	 * their count elevated by 1.
	 */
	get_page(page);
	set_page_private(page, (unsigned long)iop);
	SetPagePrivate(page);
	return iop;
}

static void
iomap_page_release(struct page *page)
{
	struct iomap_page *iop = to_iomap_page(page);

	if (!iop)
		return;
	WARN_ON_ONCE(atomic_read(&iop->read_count));
	WARN_ON_ONCE(atomic_read(&iop->write_count));
	ClearPagePrivate(page);
	set_page_private(page, 0);
	put_page(page);
	kfree(iop);
}

/*
 * Calculate the range inside the page that we actually need to read.
 */
static void
iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
{
	loff_t orig_pos = *pos;
	loff_t isize = i_size_read(inode);
	unsigned block_bits = inode->i_blkbits;
	unsigned block_size = (1 << block_bits);
	unsigned poff = offset_in_page(*pos);
	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
	unsigned first = poff >> block_bits;
	unsigned last = (poff + plen - 1) >> block_bits;

	/*
	 * If the block size is smaller than the page size we need to check the
	 * per-block uptodate status and adjust the offset and length if needed
	 * to avoid reading in already uptodate ranges.
	 */
	if (iop) {
		unsigned int i;

		/* move forward for each leading block marked uptodate */
		for (i = first; i <= last; i++) {
			if (!test_bit(i, iop->uptodate))
				break;
			*pos += block_size;
			poff += block_size;
			plen -= block_size;
			first++;
		}

		/* truncate len if we find any trailing uptodate block(s) */
		for ( ; i <= last; i++) {
			if (test_bit(i, iop->uptodate)) {
				plen -= (last - i + 1) * block_size;
				last = i - 1;
				break;
			}
		}
	}

	/*
	 * If the extent spans the block that contains the i_size we need to
	 * handle both halves separately so that we properly zero data in the
	 * page cache for blocks that are entirely outside of i_size.
	 */
	if (orig_pos <= isize && orig_pos + length > isize) {
		unsigned end = offset_in_page(isize - 1) >> block_bits;

		if (first <= end && last > end)
			plen -= (last - end) * block_size;
	}

	*offp = poff;
	*lenp = plen;
}

static void
iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
{
	struct iomap_page *iop = to_iomap_page(page);
	struct inode *inode = page->mapping->host;
	unsigned first = off >> inode->i_blkbits;
	unsigned last = (off + len - 1) >> inode->i_blkbits;
	unsigned int i;
	bool uptodate = true;

	if (iop) {
		for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
			if (i >= first && i <= last)
				set_bit(i, iop->uptodate);
			else if (!test_bit(i, iop->uptodate))
				uptodate = false;
		}
	}

	if (uptodate && !PageError(page))
		SetPageUptodate(page);
}

static void
iomap_read_finish(struct iomap_page *iop, struct page *page)
{
	if (!iop || atomic_dec_and_test(&iop->read_count))
		unlock_page(page);
}

static void
iomap_read_page_end_io(struct bio_vec *bvec, int error)
{
	struct page *page = bvec->bv_page;
	struct iomap_page *iop = to_iomap_page(page);

	if (unlikely(error)) {
		ClearPageUptodate(page);
		SetPageError(page);
	} else {
		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
	}

	iomap_read_finish(iop, page);
}

static void
iomap_read_inline_data(struct inode *inode, struct page *page,
		struct iomap *iomap)
{
	size_t size = i_size_read(inode);
	void *addr;

	if (PageUptodate(page))
		return;

	BUG_ON(page->index);
	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));

	addr = kmap_atomic(page);
	memcpy(addr, iomap->inline_data, size);
	memset(addr + size, 0, PAGE_SIZE - size);
	kunmap_atomic(addr);
	SetPageUptodate(page);
}

static void
iomap_read_end_io(struct bio *bio)
{
	int error = blk_status_to_errno(bio->bi_status);
	struct bio_vec *bvec;
	int i;

	bio_for_each_segment_all(bvec, bio, i)
		iomap_read_page_end_io(bvec, error);
	bio_put(bio);
}

struct iomap_readpage_ctx {
	struct page		*cur_page;
	bool			cur_page_in_bio;
	bool			is_readahead;
	struct bio		*bio;
	struct list_head	*pages;
};

static loff_t
iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
		struct iomap *iomap)
{
	struct iomap_readpage_ctx *ctx = data;
	struct page *page = ctx->cur_page;
	struct iomap_page *iop = iomap_page_create(inode, page);
	bool is_contig = false;
	loff_t orig_pos = pos;
	unsigned poff, plen;
	sector_t sector;

	if (iomap->type == IOMAP_INLINE) {
		WARN_ON_ONCE(pos);
		iomap_read_inline_data(inode, page, iomap);
		return PAGE_SIZE;
	}

	/* zero post-eof blocks as the page may be mapped */
	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
	if (plen == 0)
		goto done;

	if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
		zero_user(page, poff, plen);
		iomap_set_range_uptodate(page, poff, plen);
		goto done;
	}

	ctx->cur_page_in_bio = true;

	/*
	 * Try to merge into a previous segment if we can.
	 */
	sector = iomap_sector(iomap, pos);
	if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
		if (__bio_try_merge_page(ctx->bio, page, plen, poff))
			goto done;
		is_contig = true;
	}

	/*
	 * If we start a new segment we need to increase the read count, and we
	 * need to do so before submitting any previous full bio to make sure
	 * that we don't prematurely unlock the page.
	 */
	if (iop)
		atomic_inc(&iop->read_count);

	if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;

		if (ctx->bio)
			submit_bio(ctx->bio);

		if (ctx->is_readahead) /* same as readahead_gfp_mask */
			gfp |= __GFP_NORETRY | __GFP_NOWARN;
		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
		ctx->bio->bi_opf = REQ_OP_READ;
		if (ctx->is_readahead)
			ctx->bio->bi_opf |= REQ_RAHEAD;
		ctx->bio->bi_iter.bi_sector = sector;
		bio_set_dev(ctx->bio, iomap->bdev);
		ctx->bio->bi_end_io = iomap_read_end_io;
	}

	__bio_add_page(ctx->bio, page, plen, poff);
done:
	/*
	 * Move the caller beyond our range so that it keeps making progress.
	 * For that we have to include any leading non-uptodate ranges, but
	 * we can skip trailing ones as they will be handled in the next
	 * iteration.
	 */
	return pos - orig_pos + plen;
}

int
iomap_readpage(struct page *page, const struct iomap_ops *ops)
{
	struct iomap_readpage_ctx ctx = { .cur_page = page };
	struct inode *inode = page->mapping->host;
	unsigned poff;
	loff_t ret;

	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
		ret = iomap_apply(inode, page_offset(page) + poff,
				PAGE_SIZE - poff, 0, ops, &ctx,
				iomap_readpage_actor);
		if (ret <= 0) {
			WARN_ON_ONCE(ret == 0);
			SetPageError(page);
			break;
		}
	}

	if (ctx.bio) {
		submit_bio(ctx.bio);
		WARN_ON_ONCE(!ctx.cur_page_in_bio);
	} else {
		WARN_ON_ONCE(ctx.cur_page_in_bio);
		unlock_page(page);
	}

	/*
	 * Just like mpage_readpages and block_read_full_page we always
	 * return 0 and just mark the page as PageError on errors.  This
	 * should be cleaned up all through the stack eventually.
	 */
	return 0;
}
EXPORT_SYMBOL_GPL(iomap_readpage);

static struct page *
iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
		loff_t length, loff_t *done)
{
	while (!list_empty(pages)) {
		struct page *page = lru_to_page(pages);

		if (page_offset(page) >= (u64)pos + length)
			break;

		list_del(&page->lru);
		if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
				GFP_NOFS))
			return page;

		/*
		 * If we already have a page in the page cache at index we are
		 * done.  Upper layers don't care if it is uptodate after the
		 * readpages call itself as every page gets checked again once
		 * actually needed.
		 */
		*done += PAGE_SIZE;
		put_page(page);
	}

	return NULL;
}

static loff_t
iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
		void *data, struct iomap *iomap)
{
	struct iomap_readpage_ctx *ctx = data;
	loff_t done, ret;

	for (done = 0; done < length; done += ret) {
		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
			if (!ctx->cur_page_in_bio)
				unlock_page(ctx->cur_page);
			put_page(ctx->cur_page);
			ctx->cur_page = NULL;
		}
		if (!ctx->cur_page) {
			ctx->cur_page = iomap_next_page(inode, ctx->pages,
					pos, length, &done);
			if (!ctx->cur_page)
				break;
			ctx->cur_page_in_bio = false;
		}
		ret = iomap_readpage_actor(inode, pos + done, length - done,
				ctx, iomap);
	}

	return done;
}

int
iomap_readpages(struct address_space *mapping, struct list_head *pages,
		unsigned nr_pages, const struct iomap_ops *ops)
{
	struct iomap_readpage_ctx ctx = {
		.pages		= pages,
		.is_readahead	= true,
	};
	loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
	loff_t last = page_offset(list_entry(pages->next, struct page, lru));
	loff_t length = last - pos + PAGE_SIZE, ret = 0;

	while (length > 0) {
		ret = iomap_apply(mapping->host, pos, length, 0, ops,
				&ctx, iomap_readpages_actor);
		if (ret <= 0) {
			WARN_ON_ONCE(ret == 0);
			goto done;
		}
		pos += ret;
		length -= ret;
	}
	ret = 0;
done:
	if (ctx.bio)
		submit_bio(ctx.bio);
	if (ctx.cur_page) {
		if (!ctx.cur_page_in_bio)
			unlock_page(ctx.cur_page);
		put_page(ctx.cur_page);
	}

	/*
	 * Check that we didn't lose a page due to the arcance calling
	 * conventions..
	 */
	WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
	return ret;
}
EXPORT_SYMBOL_GPL(iomap_readpages);

/*
 * iomap_is_partially_uptodate checks whether blocks within a page are
 * uptodate or not.
 *
 * Returns true if all blocks which correspond to a file portion
 * we want to read within the page are uptodate.
 */
int
iomap_is_partially_uptodate(struct page *page, unsigned long from,
		unsigned long count)
{
	struct iomap_page *iop = to_iomap_page(page);
	struct inode *inode = page->mapping->host;
	unsigned len, first, last;
	unsigned i;

	/* Limit range to one page */
	len = min_t(unsigned, PAGE_SIZE - from, count);

	/* First and last blocks in range within page */
	first = from >> inode->i_blkbits;
	last = (from + len - 1) >> inode->i_blkbits;

	if (iop) {
		for (i = first; i <= last; i++)
			if (!test_bit(i, iop->uptodate))
				return 0;
		return 1;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);

int
iomap_releasepage(struct page *page, gfp_t gfp_mask)
{
	/*
	 * mm accommodates an old ext3 case where clean pages might not have had
	 * the dirty bit cleared. Thus, it can send actual dirty pages to
	 * ->releasepage() via shrink_active_list(), skip those here.
	 */
	if (PageDirty(page) || PageWriteback(page))
		return 0;
	iomap_page_release(page);
	return 1;
}
EXPORT_SYMBOL_GPL(iomap_releasepage);

void
iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
{
	/*
	 * If we are invalidating the entire page, clear the dirty state from it
	 * and release it to avoid unnecessary buildup of the LRU.
	 */
	if (offset == 0 && len == PAGE_SIZE) {
		WARN_ON_ONCE(PageWriteback(page));
		cancel_dirty_page(page);
		iomap_page_release(page);
	}
}
EXPORT_SYMBOL_GPL(iomap_invalidatepage);

#ifdef CONFIG_MIGRATION
int
iomap_migrate_page(struct address_space *mapping, struct page *newpage,
		struct page *page, enum migrate_mode mode)
{
	int ret;

	ret = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
	if (ret != MIGRATEPAGE_SUCCESS)
		return ret;

	if (page_has_private(page)) {
		ClearPagePrivate(page);
		get_page(newpage);
		set_page_private(newpage, page_private(page));
		set_page_private(page, 0);
		put_page(page);
		SetPagePrivate(newpage);
	}

	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
	return MIGRATEPAGE_SUCCESS;
}
EXPORT_SYMBOL_GPL(iomap_migrate_page);
#endif /* CONFIG_MIGRATION */

static void
iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
{
	loff_t i_size = i_size_read(inode);

	/*
	 * Only truncate newly allocated pages beyoned EOF, even if the
	 * write started inside the existing inode size.
	 */
	if (pos + len > i_size)
		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
}

static int
iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
		unsigned poff, unsigned plen, unsigned from, unsigned to,
		struct iomap *iomap)
{
	struct bio_vec bvec;
	struct bio bio;

	if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
		zero_user_segments(page, poff, from, to, poff + plen);
		iomap_set_range_uptodate(page, poff, plen);
		return 0;
	}

	bio_init(&bio, &bvec, 1);
	bio.bi_opf = REQ_OP_READ;
	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
	bio_set_dev(&bio, iomap->bdev);
	__bio_add_page(&bio, page, plen, poff);
	return submit_bio_wait(&bio);
}

static int
__iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
		struct page *page, struct iomap *iomap)
{
	struct iomap_page *iop = iomap_page_create(inode, page);
	loff_t block_size = i_blocksize(inode);
	loff_t block_start = pos & ~(block_size - 1);
	loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
	int status = 0;

	if (PageUptodate(page))
		return 0;

	do {
		iomap_adjust_read_range(inode, iop, &block_start,
				block_end - block_start, &poff, &plen);
		if (plen == 0)
			break;

		if ((from > poff && from < poff + plen) ||
		    (to > poff && to < poff + plen)) {
			status = iomap_read_page_sync(inode, block_start, page,
					poff, plen, from, to, iomap);
			if (status)
				break;
		}

	} while ((block_start += plen) < block_end);

	return status;
}

static int
iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
		struct page **pagep, struct iomap *iomap)
{
	pgoff_t index = pos >> PAGE_SHIFT;
	struct page *page;
	int status = 0;

	BUG_ON(pos + len > iomap->offset + iomap->length);

	if (fatal_signal_pending(current))
		return -EINTR;

	page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
	if (!page)
		return -ENOMEM;

	if (iomap->type == IOMAP_INLINE)
		iomap_read_inline_data(inode, page, iomap);
	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
		status = __block_write_begin_int(page, pos, len, NULL, iomap);
	else
		status = __iomap_write_begin(inode, pos, len, page, iomap);
	if (unlikely(status)) {
		unlock_page(page);
		put_page(page);
		page = NULL;

		iomap_write_failed(inode, pos, len);
	}

	*pagep = page;
	return status;
}

int
iomap_set_page_dirty(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
	int newly_dirty;

	if (unlikely(!mapping))
		return !TestSetPageDirty(page);

	/*
	 * Lock out page->mem_cgroup migration to keep PageDirty
	 * synchronized with per-memcg dirty page counters.
	 */
	lock_page_memcg(page);
	newly_dirty = !TestSetPageDirty(page);
	if (newly_dirty)
		__set_page_dirty(page, mapping, 0);
	unlock_page_memcg(page);

	if (newly_dirty)
		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
	return newly_dirty;
}
EXPORT_SYMBOL_GPL(iomap_set_page_dirty);

static int
__iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
		unsigned copied, struct page *page, struct iomap *iomap)
{
	flush_dcache_page(page);

	/*
	 * The blocks that were entirely written will now be uptodate, so we
	 * don't have to worry about a readpage reading them and overwriting a
	 * partial write.  However if we have encountered a short write and only
	 * partially written into a block, it will not be marked uptodate, so a
	 * readpage might come in and destroy our partial write.
	 *
	 * Do the simplest thing, and just treat any short write to a non
	 * uptodate page as a zero-length write, and force the caller to redo
	 * the whole thing.
	 */
	if (unlikely(copied < len && !PageUptodate(page))) {
		copied = 0;
	} else {
		iomap_set_range_uptodate(page, offset_in_page(pos), len);
		iomap_set_page_dirty(page);
	}
	return __generic_write_end(inode, pos, copied, page);
}

static int
iomap_write_end_inline(struct inode *inode, struct page *page,
		struct iomap *iomap, loff_t pos, unsigned copied)
{
	void *addr;

	WARN_ON_ONCE(!PageUptodate(page));
	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));

	addr = kmap_atomic(page);
	memcpy(iomap->inline_data + pos, addr + pos, copied);
	kunmap_atomic(addr);

	mark_inode_dirty(inode);
	__generic_write_end(inode, pos, copied, page);
	return copied;
}

static int
iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
		unsigned copied, struct page *page, struct iomap *iomap)
{
	int ret;

	if (iomap->type == IOMAP_INLINE) {
		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
	} else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
		ret = generic_write_end(NULL, inode->i_mapping, pos, len,
				copied, page, NULL);
	} else {
		ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
	}

	if (iomap->page_done)
		iomap->page_done(inode, pos, copied, page, iomap);

	if (ret < len)
		iomap_write_failed(inode, pos, len);
	return ret;
}

static loff_t
iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
		struct iomap *iomap)
{
	struct iov_iter *i = data;
	long status = 0;
	ssize_t written = 0;
	unsigned int flags = AOP_FLAG_NOFS;

	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */

		offset = offset_in_page(pos);
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
						iov_iter_count(i));
again:
		if (bytes > length)
			bytes = length;

		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

		status = iomap_write_begin(inode, pos, bytes, flags, &page,
				iomap);
		if (unlikely(status))
			break;

		if (mapping_writably_mapped(inode->i_mapping))
			flush_dcache_page(page);

		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);

		flush_dcache_page(page);

		status = iomap_write_end(inode, pos, bytes, copied, page,
				iomap);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

		iov_iter_advance(i, copied);
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;
		length -= copied;

		balance_dirty_pages_ratelimited(inode->i_mapping);
	} while (iov_iter_count(i) && length);

	return written ? written : status;
}

ssize_t
iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
		const struct iomap_ops *ops)
{
	struct inode *inode = iocb->ki_filp->f_mapping->host;
	loff_t pos = iocb->ki_pos, ret = 0, written = 0;

	while (iov_iter_count(iter)) {
		ret = iomap_apply(inode, pos, iov_iter_count(iter),
				IOMAP_WRITE, ops, iter, iomap_write_actor);
		if (ret <= 0)
			break;
		pos += ret;
		written += ret;
	}

	return written ? written : ret;
}
EXPORT_SYMBOL_GPL(iomap_file_buffered_write);

static struct page *
__iomap_read_page(struct inode *inode, loff_t offset)
{
	struct address_space *mapping = inode->i_mapping;
	struct page *page;

	page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
	if (IS_ERR(page))
		return page;
	if (!PageUptodate(page)) {
		put_page(page);
		return ERR_PTR(-EIO);
	}
	return page;
}

static loff_t
iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
		struct iomap *iomap)
{
	long status = 0;
	ssize_t written = 0;

	do {
		struct page *page, *rpage;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */

		offset = offset_in_page(pos);
		bytes = min_t(loff_t, PAGE_SIZE - offset, length);

		rpage = __iomap_read_page(inode, pos);
		if (IS_ERR(rpage))
			return PTR_ERR(rpage);

		status = iomap_write_begin(inode, pos, bytes,
					   AOP_FLAG_NOFS, &page, iomap);
		put_page(rpage);
		if (unlikely(status))
			return status;

		WARN_ON_ONCE(!PageUptodate(page));

		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
		if (unlikely(status <= 0)) {
			if (WARN_ON_ONCE(status == 0))
				return -EIO;
			return status;
		}

		cond_resched();

		pos += status;
		written += status;
		length -= status;

		balance_dirty_pages_ratelimited(inode->i_mapping);
	} while (length);

	return written;
}

int
iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
		const struct iomap_ops *ops)
{
	loff_t ret;

	while (len) {
		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
				iomap_dirty_actor);
		if (ret <= 0)
			return ret;
		pos += ret;
		len -= ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(iomap_file_dirty);

static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
		unsigned bytes, struct iomap *iomap)
{
	struct page *page;
	int status;

	status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
				   iomap);
	if (status)
		return status;

	zero_user(page, offset, bytes);
	mark_page_accessed(page);

	return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
}

static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
		struct iomap *iomap)
{
	return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
			iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
}

static loff_t
iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
		void *data, struct iomap *iomap)
{
	bool *did_zero = data;
	loff_t written = 0;
	int status;

	/* already zeroed?  we're done. */
	if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
	    	return count;

	do {
		unsigned offset, bytes;

		offset = offset_in_page(pos);
		bytes = min_t(loff_t, PAGE_SIZE - offset, count);

		if (IS_DAX(inode))
			status = iomap_dax_zero(pos, offset, bytes, iomap);
		else
			status = iomap_zero(inode, pos, offset, bytes, iomap);
		if (status < 0)
			return status;

		pos += bytes;
		count -= bytes;
		written += bytes;
		if (did_zero)
			*did_zero = true;
	} while (count > 0);

	return written;
}

int
iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
		const struct iomap_ops *ops)
{
	loff_t ret;

	while (len > 0) {
		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
				ops, did_zero, iomap_zero_range_actor);
		if (ret <= 0)
			return ret;

		pos += ret;
		len -= ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(iomap_zero_range);

int
iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
		const struct iomap_ops *ops)
{
	unsigned int blocksize = i_blocksize(inode);
	unsigned int off = pos & (blocksize - 1);

	/* Block boundary? Nothing to do */
	if (!off)
		return 0;
	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
}
EXPORT_SYMBOL_GPL(iomap_truncate_page);

static loff_t
iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
		void *data, struct iomap *iomap)
{
	struct page *page = data;
	int ret;

	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
		if (ret)
			return ret;
		block_commit_write(page, 0, length);
	} else {
		WARN_ON_ONCE(!PageUptodate(page));
		iomap_page_create(inode, page);
		set_page_dirty(page);
	}

	return length;
}

vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
{
	struct page *page = vmf->page;
	struct inode *inode = file_inode(vmf->vma->vm_file);
	unsigned long length;
	loff_t offset, size;
	ssize_t ret;

	lock_page(page);
	size = i_size_read(inode);
	if ((page->mapping != inode->i_mapping) ||
	    (page_offset(page) > size)) {
		/* We overload EFAULT to mean page got truncated */
		ret = -EFAULT;
		goto out_unlock;
	}

	/* page is wholly or partially inside EOF */
	if (((page->index + 1) << PAGE_SHIFT) > size)
		length = offset_in_page(size);
	else
		length = PAGE_SIZE;

	offset = page_offset(page);
	while (length > 0) {
		ret = iomap_apply(inode, offset, length,
				IOMAP_WRITE | IOMAP_FAULT, ops, page,
				iomap_page_mkwrite_actor);
		if (unlikely(ret <= 0))
			goto out_unlock;
		offset += ret;
		length -= ret;
	}

	wait_for_stable_page(page);
	return VM_FAULT_LOCKED;
out_unlock:
	unlock_page(page);
	return block_page_mkwrite_return(ret);
}
EXPORT_SYMBOL_GPL(iomap_page_mkwrite);

struct fiemap_ctx {
	struct fiemap_extent_info *fi;
	struct iomap prev;
};

static int iomap_to_fiemap(struct fiemap_extent_info *fi,
		struct iomap *iomap, u32 flags)
{
	switch (iomap->type) {
	case IOMAP_HOLE:
		/* skip holes */
		return 0;
	case IOMAP_DELALLOC:
		flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
		break;
	case IOMAP_MAPPED:
		break;
	case IOMAP_UNWRITTEN:
		flags |= FIEMAP_EXTENT_UNWRITTEN;
		break;
	case IOMAP_INLINE:
		flags |= FIEMAP_EXTENT_DATA_INLINE;
		break;
	}

	if (iomap->flags & IOMAP_F_MERGED)
		flags |= FIEMAP_EXTENT_MERGED;
	if (iomap->flags & IOMAP_F_SHARED)
		flags |= FIEMAP_EXTENT_SHARED;

	return fiemap_fill_next_extent(fi, iomap->offset,
			iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
			iomap->length, flags);
}

static loff_t
iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
		struct iomap *iomap)
{
	struct fiemap_ctx *ctx = data;
	loff_t ret = length;

	if (iomap->type == IOMAP_HOLE)
		return length;

	ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
	ctx->prev = *iomap;
	switch (ret) {
	case 0:		/* success */
		return length;
	case 1:		/* extent array full */
		return 0;
	default:
		return ret;
	}
}

int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
		loff_t start, loff_t len, const struct iomap_ops *ops)
{
	struct fiemap_ctx ctx;
	loff_t ret;

	memset(&ctx, 0, sizeof(ctx));
	ctx.fi = fi;
	ctx.prev.type = IOMAP_HOLE;

	ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
	if (ret)
		return ret;

	if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
		ret = filemap_write_and_wait(inode->i_mapping);
		if (ret)
			return ret;
	}

	while (len > 0) {
		ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
				iomap_fiemap_actor);
		/* inode with no (attribute) mapping will give ENOENT */
		if (ret == -ENOENT)
			break;
		if (ret < 0)
			return ret;
		if (ret == 0)
			break;

		start += ret;
		len -= ret;
	}

	if (ctx.prev.type != IOMAP_HOLE) {
		ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
		if (ret < 0)
			return ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(iomap_fiemap);

/*
 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
 * Returns true if found and updates @lastoff to the offset in file.
 */
static bool
page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
		int whence)
{
	const struct address_space_operations *ops = inode->i_mapping->a_ops;
	unsigned int bsize = i_blocksize(inode), off;
	bool seek_data = whence == SEEK_DATA;
	loff_t poff = page_offset(page);

	if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
		return false;

	if (*lastoff < poff) {
		/*
		 * Last offset smaller than the start of the page means we found
		 * a hole:
		 */
		if (whence == SEEK_HOLE)
			return true;
		*lastoff = poff;
	}

	/*
	 * Just check the page unless we can and should check block ranges:
	 */
	if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
		return PageUptodate(page) == seek_data;

	lock_page(page);
	if (unlikely(page->mapping != inode->i_mapping))
		goto out_unlock_not_found;

	for (off = 0; off < PAGE_SIZE; off += bsize) {
		if (offset_in_page(*lastoff) >= off + bsize)
			continue;
		if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
			unlock_page(page);
			return true;
		}
		*lastoff = poff + off + bsize;
	}

out_unlock_not_found:
	unlock_page(page);
	return false;
}

/*
 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
 *
 * Within unwritten extents, the page cache determines which parts are holes
 * and which are data: uptodate buffer heads count as data; everything else
 * counts as a hole.
 *
 * Returns the resulting offset on successs, and -ENOENT otherwise.
 */
static loff_t
page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
		int whence)
{
	pgoff_t index = offset >> PAGE_SHIFT;
	pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
	loff_t lastoff = offset;
	struct pagevec pvec;

	if (length <= 0)
		return -ENOENT;

	pagevec_init(&pvec);

	do {
		unsigned nr_pages, i;

		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
						end - 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			if (page_seek_hole_data(inode, page, &lastoff, whence))
				goto check_range;
			lastoff = page_offset(page) + PAGE_SIZE;
		}
		pagevec_release(&pvec);
	} while (index < end);

	/* When no page at lastoff and we are not done, we found a hole. */
	if (whence != SEEK_HOLE)
		goto not_found;

check_range:
	if (lastoff < offset + length)
		goto out;
not_found:
	lastoff = -ENOENT;
out:
	pagevec_release(&pvec);
	return lastoff;
}


static loff_t
iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
		      void *data, struct iomap *iomap)
{
	switch (iomap->type) {
	case IOMAP_UNWRITTEN:
		offset = page_cache_seek_hole_data(inode, offset, length,
						   SEEK_HOLE);
		if (offset < 0)
			return length;
		/* fall through */
	case IOMAP_HOLE:
		*(loff_t *)data = offset;
		return 0;
	default:
		return length;
	}
}

loff_t
iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
{
	loff_t size = i_size_read(inode);
	loff_t length = size - offset;
	loff_t ret;

	/* Nothing to be found before or beyond the end of the file. */
	if (offset < 0 || offset >= size)
		return -ENXIO;

	while (length > 0) {
		ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
				  &offset, iomap_seek_hole_actor);
		if (ret < 0)
			return ret;
		if (ret == 0)
			break;

		offset += ret;
		length -= ret;
	}

	return offset;
}
EXPORT_SYMBOL_GPL(iomap_seek_hole);

static loff_t
iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
		      void *data, struct iomap *iomap)
{
	switch (iomap->type) {
	case IOMAP_HOLE:
		return length;
	case IOMAP_UNWRITTEN:
		offset = page_cache_seek_hole_data(inode, offset, length,
						   SEEK_DATA);
		if (offset < 0)
			return length;
		/*FALLTHRU*/
	default:
		*(loff_t *)data = offset;
		return 0;
	}
}

loff_t
iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
{
	loff_t size = i_size_read(inode);
	loff_t length = size - offset;
	loff_t ret;

	/* Nothing to be found before or beyond the end of the file. */
	if (offset < 0 || offset >= size)
		return -ENXIO;

	while (length > 0) {
		ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
				  &offset, iomap_seek_data_actor);
		if (ret < 0)
			return ret;
		if (ret == 0)
			break;

		offset += ret;
		length -= ret;
	}

	if (length <= 0)
		return -ENXIO;
	return offset;
}
EXPORT_SYMBOL_GPL(iomap_seek_data);

/*
 * Private flags for iomap_dio, must not overlap with the public ones in
 * iomap.h:
 */
#define IOMAP_DIO_WRITE_FUA	(1 << 28)
#define IOMAP_DIO_NEED_SYNC	(1 << 29)
#define IOMAP_DIO_WRITE		(1 << 30)
#define IOMAP_DIO_DIRTY		(1 << 31)

struct iomap_dio {
	struct kiocb		*iocb;
	iomap_dio_end_io_t	*end_io;
	loff_t			i_size;
	loff_t			size;
	atomic_t		ref;
	unsigned		flags;
	int			error;
	bool			wait_for_completion;

	union {
		/* used during submission and for synchronous completion: */
		struct {
			struct iov_iter		*iter;
			struct task_struct	*waiter;
			struct request_queue	*last_queue;
			blk_qc_t		cookie;
		} submit;

		/* used for aio completion: */
		struct {
			struct work_struct	work;
		} aio;
	};
};

static ssize_t iomap_dio_complete(struct iomap_dio *dio)
{
	struct kiocb *iocb = dio->iocb;
	struct inode *inode = file_inode(iocb->ki_filp);
	loff_t offset = iocb->ki_pos;
	ssize_t ret;

	if (dio->end_io) {
		ret = dio->end_io(iocb,
				dio->error ? dio->error : dio->size,
				dio->flags);
	} else {
		ret = dio->error;
	}

	if (likely(!ret)) {
		ret = dio->size;
		/* check for short read */
		if (offset + ret > dio->i_size &&
		    !(dio->flags & IOMAP_DIO_WRITE))
			ret = dio->i_size - offset;
		iocb->ki_pos += ret;
	}

	/*
	 * Try again to invalidate clean pages which might have been cached by
	 * non-direct readahead, or faulted in by get_user_pages() if the source
	 * of the write was an mmap'ed region of the file we're writing.  Either
	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
	 * this invalidation fails, tough, the write still worked...
	 *
	 * And this page cache invalidation has to be after dio->end_io(), as
	 * some filesystems convert unwritten extents to real allocations in
	 * end_io() when necessary, otherwise a racing buffer read would cache
	 * zeros from unwritten extents.
	 */
	if (!dio->error &&
	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
		int err;
		err = invalidate_inode_pages2_range(inode->i_mapping,
				offset >> PAGE_SHIFT,
				(offset + dio->size - 1) >> PAGE_SHIFT);
		if (err)
			dio_warn_stale_pagecache(iocb->ki_filp);
	}

	/*
	 * If this is a DSYNC write, make sure we push it to stable storage now
	 * that we've written data.
	 */
	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
		ret = generic_write_sync(iocb, ret);

	inode_dio_end(file_inode(iocb->ki_filp));
	kfree(dio);

	return ret;
}

static void iomap_dio_complete_work(struct work_struct *work)
{
	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
	struct kiocb *iocb = dio->iocb;

	iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
}

/*
 * Set an error in the dio if none is set yet.  We have to use cmpxchg
 * as the submission context and the completion context(s) can race to
 * update the error.
 */
static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
{
	cmpxchg(&dio->error, 0, ret);
}

static void iomap_dio_bio_end_io(struct bio *bio)
{
	struct iomap_dio *dio = bio->bi_private;
	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);

	if (bio->bi_status)
		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));

	if (atomic_dec_and_test(&dio->ref)) {
		if (dio->wait_for_completion) {
			struct task_struct *waiter = dio->submit.waiter;
			WRITE_ONCE(dio->submit.waiter, NULL);
			blk_wake_io_task(waiter);
		} else if (dio->flags & IOMAP_DIO_WRITE) {
			struct inode *inode = file_inode(dio->iocb->ki_filp);

			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
		} else {
			iomap_dio_complete_work(&dio->aio.work);
		}
	}

	if (should_dirty) {
		bio_check_pages_dirty(bio);
	} else {
		struct bio_vec *bvec;
		int i;

		bio_for_each_segment_all(bvec, bio, i)
			put_page(bvec->bv_page);
		bio_put(bio);
	}
}

static blk_qc_t
iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
		unsigned len)
{
	struct page *page = ZERO_PAGE(0);
	int flags = REQ_SYNC | REQ_IDLE;
	struct bio *bio;

	bio = bio_alloc(GFP_KERNEL, 1);
	bio_set_dev(bio, iomap->bdev);
	bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
	bio->bi_private = dio;
	bio->bi_end_io = iomap_dio_bio_end_io;

	if (dio->iocb->ki_flags & IOCB_HIPRI)
		flags |= REQ_HIPRI;

	get_page(page);
	__bio_add_page(bio, page, len, 0);
	bio_set_op_attrs(bio, REQ_OP_WRITE, flags);

	atomic_inc(&dio->ref);
	return submit_bio(bio);
}

static loff_t
iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
		struct iomap_dio *dio, struct iomap *iomap)
{
	unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
	unsigned int fs_block_size = i_blocksize(inode), pad;
	unsigned int align = iov_iter_alignment(dio->submit.iter);
	struct iov_iter iter;
	struct bio *bio;
	bool need_zeroout = false;
	bool use_fua = false;
	int nr_pages, ret = 0;
	size_t copied = 0;

	if ((pos | length | align) & ((1 << blkbits) - 1))
		return -EINVAL;

	if (iomap->type == IOMAP_UNWRITTEN) {
		dio->flags |= IOMAP_DIO_UNWRITTEN;
		need_zeroout = true;
	}

	if (iomap->flags & IOMAP_F_SHARED)
		dio->flags |= IOMAP_DIO_COW;

	if (iomap->flags & IOMAP_F_NEW) {
		need_zeroout = true;
	} else if (iomap->type == IOMAP_MAPPED) {
		/*
		 * Use a FUA write if we need datasync semantics, this is a pure
		 * data IO that doesn't require any metadata updates (including
		 * after IO completion such as unwritten extent conversion) and
		 * the underlying device supports FUA. This allows us to avoid
		 * cache flushes on IO completion.
		 */
		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
		    (dio->flags & IOMAP_DIO_WRITE_FUA) &&
		    blk_queue_fua(bdev_get_queue(iomap->bdev)))
			use_fua = true;
	}

	/*
	 * Operate on a partial iter trimmed to the extent we were called for.
	 * We'll update the iter in the dio once we're done with this extent.
	 */
	iter = *dio->submit.iter;
	iov_iter_truncate(&iter, length);

	nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
	if (nr_pages <= 0)
		return nr_pages;

	if (need_zeroout) {
		/* zero out from the start of the block to the write offset */
		pad = pos & (fs_block_size - 1);
		if (pad)
			iomap_dio_zero(dio, iomap, pos - pad, pad);
	}

	do {
		size_t n;
		if (dio->error) {
			iov_iter_revert(dio->submit.iter, copied);
			return 0;
		}

		bio = bio_alloc(GFP_KERNEL, nr_pages);
		bio_set_dev(bio, iomap->bdev);
		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
		bio->bi_write_hint = dio->iocb->ki_hint;
		bio->bi_ioprio = dio->iocb->ki_ioprio;
		bio->bi_private = dio;
		bio->bi_end_io = iomap_dio_bio_end_io;

		ret = bio_iov_iter_get_pages(bio, &iter);
		if (unlikely(ret)) {
			/*
			 * We have to stop part way through an IO. We must fall
			 * through to the sub-block tail zeroing here, otherwise
			 * this short IO may expose stale data in the tail of
			 * the block we haven't written data to.
			 */
			bio_put(bio);
			goto zero_tail;
		}

		n = bio->bi_iter.bi_size;
		if (dio->flags & IOMAP_DIO_WRITE) {
			bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
			if (use_fua)
				bio->bi_opf |= REQ_FUA;
			else
				dio->flags &= ~IOMAP_DIO_WRITE_FUA;
			task_io_account_write(n);
		} else {
			bio->bi_opf = REQ_OP_READ;
			if (dio->flags & IOMAP_DIO_DIRTY)
				bio_set_pages_dirty(bio);
		}

		if (dio->iocb->ki_flags & IOCB_HIPRI)
			bio->bi_opf |= REQ_HIPRI;

		iov_iter_advance(dio->submit.iter, n);

		dio->size += n;
		pos += n;
		copied += n;

		nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);

		atomic_inc(&dio->ref);

		dio->submit.last_queue = bdev_get_queue(iomap->bdev);
		dio->submit.cookie = submit_bio(bio);
	} while (nr_pages);

	/*
	 * We need to zeroout the tail of a sub-block write if the extent type
	 * requires zeroing or the write extends beyond EOF. If we don't zero
	 * the block tail in the latter case, we can expose stale data via mmap
	 * reads of the EOF block.
	 */
zero_tail:
	if (need_zeroout ||
	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
		/* zero out from the end of the write to the end of the block */
		pad = pos & (fs_block_size - 1);
		if (pad)
			iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
	}
	return copied ? copied : ret;
}

static loff_t
iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
{
	length = iov_iter_zero(length, dio->submit.iter);
	dio->size += length;
	return length;
}

static loff_t
iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
		struct iomap_dio *dio, struct iomap *iomap)
{
	struct iov_iter *iter = dio->submit.iter;
	size_t copied;

	BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));

	if (dio->flags & IOMAP_DIO_WRITE) {
		loff_t size = inode->i_size;

		if (pos > size)
			memset(iomap->inline_data + size, 0, pos - size);
		copied = copy_from_iter(iomap->inline_data + pos, length, iter);
		if (copied) {
			if (pos + copied > size)
				i_size_write(inode, pos + copied);
			mark_inode_dirty(inode);
		}
	} else {
		copied = copy_to_iter(iomap->inline_data + pos, length, iter);
	}
	dio->size += copied;
	return copied;
}

static loff_t
iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
		void *data, struct iomap *iomap)
{
	struct iomap_dio *dio = data;

	switch (iomap->type) {
	case IOMAP_HOLE:
		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
			return -EIO;
		return iomap_dio_hole_actor(length, dio);
	case IOMAP_UNWRITTEN:
		if (!(dio->flags & IOMAP_DIO_WRITE))
			return iomap_dio_hole_actor(length, dio);
		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
	case IOMAP_MAPPED:
		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
	case IOMAP_INLINE:
		return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
	default:
		WARN_ON_ONCE(1);
		return -EIO;
	}
}

/*
 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
 * is being issued as AIO or not.  This allows us to optimise pure data writes
 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
 * REQ_FLUSH post write. This is slightly tricky because a single request here
 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
 * may be pure data writes. In that case, we still need to do a full data sync
 * completion.
 */
ssize_t
iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
		const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
{
	struct address_space *mapping = iocb->ki_filp->f_mapping;
	struct inode *inode = file_inode(iocb->ki_filp);
	size_t count = iov_iter_count(iter);
	loff_t pos = iocb->ki_pos, start = pos;
	loff_t end = iocb->ki_pos + count - 1, ret = 0;
	unsigned int flags = IOMAP_DIRECT;
	bool wait_for_completion = is_sync_kiocb(iocb);
	struct blk_plug plug;
	struct iomap_dio *dio;

	lockdep_assert_held(&inode->i_rwsem);

	if (!count)
		return 0;

	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
	if (!dio)
		return -ENOMEM;

	dio->iocb = iocb;
	atomic_set(&dio->ref, 1);
	dio->size = 0;
	dio->i_size = i_size_read(inode);
	dio->end_io = end_io;
	dio->error = 0;
	dio->flags = 0;

	dio->submit.iter = iter;
	dio->submit.waiter = current;
	dio->submit.cookie = BLK_QC_T_NONE;
	dio->submit.last_queue = NULL;

	if (iov_iter_rw(iter) == READ) {
		if (pos >= dio->i_size)
			goto out_free_dio;

		if (iter_is_iovec(iter) && iov_iter_rw(iter) == READ)
			dio->flags |= IOMAP_DIO_DIRTY;
	} else {
		flags |= IOMAP_WRITE;
		dio->flags |= IOMAP_DIO_WRITE;

		/* for data sync or sync, we need sync completion processing */
		if (iocb->ki_flags & IOCB_DSYNC)
			dio->flags |= IOMAP_DIO_NEED_SYNC;

		/*
		 * For datasync only writes, we optimistically try using FUA for
		 * this IO.  Any non-FUA write that occurs will clear this flag,
		 * hence we know before completion whether a cache flush is
		 * necessary.
		 */
		if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
			dio->flags |= IOMAP_DIO_WRITE_FUA;
	}

	if (iocb->ki_flags & IOCB_NOWAIT) {
		if (filemap_range_has_page(mapping, start, end)) {
			ret = -EAGAIN;
			goto out_free_dio;
		}
		flags |= IOMAP_NOWAIT;
	}

	ret = filemap_write_and_wait_range(mapping, start, end);
	if (ret)
		goto out_free_dio;

	/*
	 * Try to invalidate cache pages for the range we're direct
	 * writing.  If this invalidation fails, tough, the write will
	 * still work, but racing two incompatible write paths is a
	 * pretty crazy thing to do, so we don't support it 100%.
	 */
	ret = invalidate_inode_pages2_range(mapping,
			start >> PAGE_SHIFT, end >> PAGE_SHIFT);
	if (ret)
		dio_warn_stale_pagecache(iocb->ki_filp);
	ret = 0;

	if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
	    !inode->i_sb->s_dio_done_wq) {
		ret = sb_init_dio_done_wq(inode->i_sb);
		if (ret < 0)
			goto out_free_dio;
	}

	inode_dio_begin(inode);

	blk_start_plug(&plug);
	do {
		ret = iomap_apply(inode, pos, count, flags, ops, dio,
				iomap_dio_actor);
		if (ret <= 0) {
			/* magic error code to fall back to buffered I/O */
			if (ret == -ENOTBLK) {
				wait_for_completion = true;
				ret = 0;
			}
			break;
		}
		pos += ret;

		if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
			break;
	} while ((count = iov_iter_count(iter)) > 0);
	blk_finish_plug(&plug);

	if (ret < 0)
		iomap_dio_set_error(dio, ret);

	/*
	 * If all the writes we issued were FUA, we don't need to flush the
	 * cache on IO completion. Clear the sync flag for this case.
	 */
	if (dio->flags & IOMAP_DIO_WRITE_FUA)
		dio->flags &= ~IOMAP_DIO_NEED_SYNC;

	/*
	 * We are about to drop our additional submission reference, which
	 * might be the last reference to the dio.  There are three three
	 * different ways we can progress here:
	 *
	 *  (a) If this is the last reference we will always complete and free
	 *	the dio ourselves.
	 *  (b) If this is not the last reference, and we serve an asynchronous
	 *	iocb, we must never touch the dio after the decrement, the
	 *	I/O completion handler will complete and free it.
	 *  (c) If this is not the last reference, but we serve a synchronous
	 *	iocb, the I/O completion handler will wake us up on the drop
	 *	of the final reference, and we will complete and free it here
	 *	after we got woken by the I/O completion handler.
	 */
	dio->wait_for_completion = wait_for_completion;
	if (!atomic_dec_and_test(&dio->ref)) {
		if (!wait_for_completion)
			return -EIOCBQUEUED;

		for (;;) {
			set_current_state(TASK_UNINTERRUPTIBLE);
			if (!READ_ONCE(dio->submit.waiter))
				break;

			if (!(iocb->ki_flags & IOCB_HIPRI) ||
			    !dio->submit.last_queue ||
			    !blk_poll(dio->submit.last_queue,
					 dio->submit.cookie, true))
				io_schedule();
		}
		__set_current_state(TASK_RUNNING);
	}

	return iomap_dio_complete(dio);

out_free_dio:
	kfree(dio);
	return ret;
}
EXPORT_SYMBOL_GPL(iomap_dio_rw);

/* Swapfile activation */

#ifdef CONFIG_SWAP
struct iomap_swapfile_info {
	struct iomap iomap;		/* accumulated iomap */
	struct swap_info_struct *sis;
	uint64_t lowest_ppage;		/* lowest physical addr seen (pages) */
	uint64_t highest_ppage;		/* highest physical addr seen (pages) */
	unsigned long nr_pages;		/* number of pages collected */
	int nr_extents;			/* extent count */
};

/*
 * Collect physical extents for this swap file.  Physical extents reported to
 * the swap code must be trimmed to align to a page boundary.  The logical
 * offset within the file is irrelevant since the swapfile code maps logical
 * page numbers of the swap device to the physical page-aligned extents.
 */
static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
{
	struct iomap *iomap = &isi->iomap;
	unsigned long nr_pages;
	uint64_t first_ppage;
	uint64_t first_ppage_reported;
	uint64_t next_ppage;
	int error;

	/*
	 * Round the start up and the end down so that the physical
	 * extent aligns to a page boundary.
	 */
	first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
	next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
			PAGE_SHIFT;

	/* Skip too-short physical extents. */
	if (first_ppage >= next_ppage)
		return 0;
	nr_pages = next_ppage - first_ppage;

	/*
	 * Calculate how much swap space we're adding; the first page contains
	 * the swap header and doesn't count.  The mm still wants that first
	 * page fed to add_swap_extent, however.
	 */
	first_ppage_reported = first_ppage;
	if (iomap->offset == 0)
		first_ppage_reported++;
	if (isi->lowest_ppage > first_ppage_reported)
		isi->lowest_ppage = first_ppage_reported;
	if (isi->highest_ppage < (next_ppage - 1))
		isi->highest_ppage = next_ppage - 1;

	/* Add extent, set up for the next call. */
	error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
	if (error < 0)
		return error;
	isi->nr_extents += error;
	isi->nr_pages += nr_pages;
	return 0;
}

/*
 * Accumulate iomaps for this swap file.  We have to accumulate iomaps because
 * swap only cares about contiguous page-aligned physical extents and makes no
 * distinction between written and unwritten extents.
 */
static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
		loff_t count, void *data, struct iomap *iomap)
{
	struct iomap_swapfile_info *isi = data;
	int error;

	switch (iomap->type) {
	case IOMAP_MAPPED:
	case IOMAP_UNWRITTEN:
		/* Only real or unwritten extents. */
		break;
	case IOMAP_INLINE:
		/* No inline data. */
		pr_err("swapon: file is inline\n");
		return -EINVAL;
	default:
		pr_err("swapon: file has unallocated extents\n");
		return -EINVAL;
	}

	/* No uncommitted metadata or shared blocks. */
	if (iomap->flags & IOMAP_F_DIRTY) {
		pr_err("swapon: file is not committed\n");
		return -EINVAL;
	}
	if (iomap->flags & IOMAP_F_SHARED) {
		pr_err("swapon: file has shared extents\n");
		return -EINVAL;
	}

	/* Only one bdev per swap file. */
	if (iomap->bdev != isi->sis->bdev) {
		pr_err("swapon: file is on multiple devices\n");
		return -EINVAL;
	}

	if (isi->iomap.length == 0) {
		/* No accumulated extent, so just store it. */
		memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
	} else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
		/* Append this to the accumulated extent. */
		isi->iomap.length += iomap->length;
	} else {
		/* Otherwise, add the retained iomap and store this one. */
		error = iomap_swapfile_add_extent(isi);
		if (error)
			return error;
		memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
	}
	return count;
}

/*
 * Iterate a swap file's iomaps to construct physical extents that can be
 * passed to the swapfile subsystem.
 */
int iomap_swapfile_activate(struct swap_info_struct *sis,
		struct file *swap_file, sector_t *pagespan,
		const struct iomap_ops *ops)
{
	struct iomap_swapfile_info isi = {
		.sis = sis,
		.lowest_ppage = (sector_t)-1ULL,
	};
	struct address_space *mapping = swap_file->f_mapping;
	struct inode *inode = mapping->host;
	loff_t pos = 0;
	loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
	loff_t ret;

	/*
	 * Persist all file mapping metadata so that we won't have any
	 * IOMAP_F_DIRTY iomaps.
	 */
	ret = vfs_fsync(swap_file, 1);
	if (ret)
		return ret;

	while (len > 0) {
		ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
				ops, &isi, iomap_swapfile_activate_actor);
		if (ret <= 0)
			return ret;

		pos += ret;
		len -= ret;
	}

	if (isi.iomap.length) {
		ret = iomap_swapfile_add_extent(&isi);
		if (ret)
			return ret;
	}

	*pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
	sis->max = isi.nr_pages;
	sis->pages = isi.nr_pages - 1;
	sis->highest_bit = isi.nr_pages - 1;
	return isi.nr_extents;
}
EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
#endif /* CONFIG_SWAP */

static loff_t
iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
		void *data, struct iomap *iomap)
{
	sector_t *bno = data, addr;

	if (iomap->type == IOMAP_MAPPED) {
		addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
		if (addr > INT_MAX)
			WARN(1, "would truncate bmap result\n");
		else
			*bno = addr;
	}
	return 0;
}

/* legacy ->bmap interface.  0 is the error return (!) */
sector_t
iomap_bmap(struct address_space *mapping, sector_t bno,
		const struct iomap_ops *ops)
{
	struct inode *inode = mapping->host;
	loff_t pos = bno << inode->i_blkbits;
	unsigned blocksize = i_blocksize(inode);

	if (filemap_write_and_wait(mapping))
		return 0;

	bno = 0;
	iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
	return bno;
}
EXPORT_SYMBOL_GPL(iomap_bmap);