Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 | /* * Cryptographic API. * * Glue code for the SHA1 Secure Hash Algorithm assembler implementation using * Supplemental SSE3 instructions. * * This file is based on sha1_generic.c * * Copyright (c) Alan Smithee. * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> * Copyright (c) Jean-Francois Dive <jef@linuxbe.org> * Copyright (c) Mathias Krause <minipli@googlemail.com> * Copyright (c) Chandramouli Narayanan <mouli@linux.intel.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <crypto/internal/hash.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/cryptohash.h> #include <linux/types.h> #include <crypto/sha.h> #include <crypto/sha1_base.h> #include <asm/fpu/api.h> typedef void (sha1_transform_fn)(u32 *digest, const char *data, unsigned int rounds); static int sha1_update(struct shash_desc *desc, const u8 *data, unsigned int len, sha1_transform_fn *sha1_xform) { struct sha1_state *sctx = shash_desc_ctx(desc); if (!irq_fpu_usable() || (sctx->count % SHA1_BLOCK_SIZE) + len < SHA1_BLOCK_SIZE) return crypto_sha1_update(desc, data, len); /* make sure casting to sha1_block_fn() is safe */ BUILD_BUG_ON(offsetof(struct sha1_state, state) != 0); kernel_fpu_begin(); sha1_base_do_update(desc, data, len, (sha1_block_fn *)sha1_xform); kernel_fpu_end(); return 0; } static int sha1_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out, sha1_transform_fn *sha1_xform) { if (!irq_fpu_usable()) return crypto_sha1_finup(desc, data, len, out); kernel_fpu_begin(); if (len) sha1_base_do_update(desc, data, len, (sha1_block_fn *)sha1_xform); sha1_base_do_finalize(desc, (sha1_block_fn *)sha1_xform); kernel_fpu_end(); return sha1_base_finish(desc, out); } asmlinkage void sha1_transform_ssse3(u32 *digest, const char *data, unsigned int rounds); static int sha1_ssse3_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, (sha1_transform_fn *) sha1_transform_ssse3); } static int sha1_ssse3_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, (sha1_transform_fn *) sha1_transform_ssse3); } /* Add padding and return the message digest. */ static int sha1_ssse3_final(struct shash_desc *desc, u8 *out) { return sha1_ssse3_finup(desc, NULL, 0, out); } static struct shash_alg sha1_ssse3_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_ssse3_update, .final = sha1_ssse3_final, .finup = sha1_ssse3_finup, .descsize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-ssse3", .cra_priority = 150, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int register_sha1_ssse3(void) { if (boot_cpu_has(X86_FEATURE_SSSE3)) return crypto_register_shash(&sha1_ssse3_alg); return 0; } static void unregister_sha1_ssse3(void) { if (boot_cpu_has(X86_FEATURE_SSSE3)) crypto_unregister_shash(&sha1_ssse3_alg); } #ifdef CONFIG_AS_AVX asmlinkage void sha1_transform_avx(u32 *digest, const char *data, unsigned int rounds); static int sha1_avx_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, (sha1_transform_fn *) sha1_transform_avx); } static int sha1_avx_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, (sha1_transform_fn *) sha1_transform_avx); } static int sha1_avx_final(struct shash_desc *desc, u8 *out) { return sha1_avx_finup(desc, NULL, 0, out); } static struct shash_alg sha1_avx_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_avx_update, .final = sha1_avx_final, .finup = sha1_avx_finup, .descsize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-avx", .cra_priority = 160, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static bool avx_usable(void) { if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) { if (boot_cpu_has(X86_FEATURE_AVX)) pr_info("AVX detected but unusable.\n"); return false; } return true; } static int register_sha1_avx(void) { if (avx_usable()) return crypto_register_shash(&sha1_avx_alg); return 0; } static void unregister_sha1_avx(void) { if (avx_usable()) crypto_unregister_shash(&sha1_avx_alg); } #else /* CONFIG_AS_AVX */ static inline int register_sha1_avx(void) { return 0; } static inline void unregister_sha1_avx(void) { } #endif /* CONFIG_AS_AVX */ #if defined(CONFIG_AS_AVX2) && (CONFIG_AS_AVX) #define SHA1_AVX2_BLOCK_OPTSIZE 4 /* optimal 4*64 bytes of SHA1 blocks */ asmlinkage void sha1_transform_avx2(u32 *digest, const char *data, unsigned int rounds); static bool avx2_usable(void) { if (avx_usable() && boot_cpu_has(X86_FEATURE_AVX2) && boot_cpu_has(X86_FEATURE_BMI1) && boot_cpu_has(X86_FEATURE_BMI2)) return true; return false; } static void sha1_apply_transform_avx2(u32 *digest, const char *data, unsigned int rounds) { /* Select the optimal transform based on data block size */ if (rounds >= SHA1_AVX2_BLOCK_OPTSIZE) sha1_transform_avx2(digest, data, rounds); else sha1_transform_avx(digest, data, rounds); } static int sha1_avx2_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, (sha1_transform_fn *) sha1_apply_transform_avx2); } static int sha1_avx2_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, (sha1_transform_fn *) sha1_apply_transform_avx2); } static int sha1_avx2_final(struct shash_desc *desc, u8 *out) { return sha1_avx2_finup(desc, NULL, 0, out); } static struct shash_alg sha1_avx2_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_avx2_update, .final = sha1_avx2_final, .finup = sha1_avx2_finup, .descsize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-avx2", .cra_priority = 170, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int register_sha1_avx2(void) { if (avx2_usable()) return crypto_register_shash(&sha1_avx2_alg); return 0; } static void unregister_sha1_avx2(void) { if (avx2_usable()) crypto_unregister_shash(&sha1_avx2_alg); } #else static inline int register_sha1_avx2(void) { return 0; } static inline void unregister_sha1_avx2(void) { } #endif #ifdef CONFIG_AS_SHA1_NI asmlinkage void sha1_ni_transform(u32 *digest, const char *data, unsigned int rounds); static int sha1_ni_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, (sha1_transform_fn *) sha1_ni_transform); } static int sha1_ni_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, (sha1_transform_fn *) sha1_ni_transform); } static int sha1_ni_final(struct shash_desc *desc, u8 *out) { return sha1_ni_finup(desc, NULL, 0, out); } static struct shash_alg sha1_ni_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_ni_update, .final = sha1_ni_final, .finup = sha1_ni_finup, .descsize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-ni", .cra_priority = 250, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int register_sha1_ni(void) { if (boot_cpu_has(X86_FEATURE_SHA_NI)) return crypto_register_shash(&sha1_ni_alg); return 0; } static void unregister_sha1_ni(void) { if (boot_cpu_has(X86_FEATURE_SHA_NI)) crypto_unregister_shash(&sha1_ni_alg); } #else static inline int register_sha1_ni(void) { return 0; } static inline void unregister_sha1_ni(void) { } #endif static int __init sha1_ssse3_mod_init(void) { if (register_sha1_ssse3()) goto fail; if (register_sha1_avx()) { unregister_sha1_ssse3(); goto fail; } if (register_sha1_avx2()) { unregister_sha1_avx(); unregister_sha1_ssse3(); goto fail; } if (register_sha1_ni()) { unregister_sha1_avx2(); unregister_sha1_avx(); unregister_sha1_ssse3(); goto fail; } return 0; fail: return -ENODEV; } static void __exit sha1_ssse3_mod_fini(void) { unregister_sha1_ni(); unregister_sha1_avx2(); unregister_sha1_avx(); unregister_sha1_ssse3(); } module_init(sha1_ssse3_mod_init); module_exit(sha1_ssse3_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, Supplemental SSE3 accelerated"); MODULE_ALIAS_CRYPTO("sha1"); MODULE_ALIAS_CRYPTO("sha1-ssse3"); MODULE_ALIAS_CRYPTO("sha1-avx"); MODULE_ALIAS_CRYPTO("sha1-avx2"); #ifdef CONFIG_AS_SHA1_NI MODULE_ALIAS_CRYPTO("sha1-ni"); #endif |