Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | /**************************************************************************** Copyright Echo Digital Audio Corporation (c) 1998 - 2004 All rights reserved www.echoaudio.com This file is part of Echo Digital Audio's generic driver library. Echo Digital Audio's generic driver library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ************************************************************************* Translation from C++ and adaptation for use in ALSA-Driver were made by Giuliano Pochini <pochini@shiny.it> ****************************************************************************/ /****************************************************************************** MIDI lowlevel code ******************************************************************************/ /* Start and stop Midi input */ static int enable_midi_input(struct echoaudio *chip, char enable) { dev_dbg(chip->card->dev, "enable_midi_input(%d)\n", enable); if (wait_handshake(chip)) return -EIO; if (enable) { chip->mtc_state = MIDI_IN_STATE_NORMAL; chip->comm_page->flags |= cpu_to_le32(DSP_FLAG_MIDI_INPUT); } else chip->comm_page->flags &= ~cpu_to_le32(DSP_FLAG_MIDI_INPUT); clear_handshake(chip); return send_vector(chip, DSP_VC_UPDATE_FLAGS); } /* Send a buffer full of MIDI data to the DSP Returns how many actually written or < 0 on error */ static int write_midi(struct echoaudio *chip, u8 *data, int bytes) { if (snd_BUG_ON(bytes <= 0 || bytes >= MIDI_OUT_BUFFER_SIZE)) return -EINVAL; if (wait_handshake(chip)) return -EIO; /* HF4 indicates that it is safe to write MIDI output data */ if (! (get_dsp_register(chip, CHI32_STATUS_REG) & CHI32_STATUS_REG_HF4)) return 0; chip->comm_page->midi_output[0] = bytes; memcpy(&chip->comm_page->midi_output[1], data, bytes); chip->comm_page->midi_out_free_count = 0; clear_handshake(chip); send_vector(chip, DSP_VC_MIDI_WRITE); dev_dbg(chip->card->dev, "write_midi: %d\n", bytes); return bytes; } /* Run the state machine for MIDI input data MIDI time code sync isn't supported by this code right now, but you still need this state machine to parse the incoming MIDI data stream. Every time the DSP sees a 0xF1 byte come in, it adds the DSP sample position to the MIDI data stream. The DSP sample position is represented as a 32 bit unsigned value, with the high 16 bits first, followed by the low 16 bits. Since these aren't real MIDI bytes, the following logic is needed to skip them. */ static inline int mtc_process_data(struct echoaudio *chip, short midi_byte) { switch (chip->mtc_state) { case MIDI_IN_STATE_NORMAL: if (midi_byte == 0xF1) chip->mtc_state = MIDI_IN_STATE_TS_HIGH; break; case MIDI_IN_STATE_TS_HIGH: chip->mtc_state = MIDI_IN_STATE_TS_LOW; return MIDI_IN_SKIP_DATA; break; case MIDI_IN_STATE_TS_LOW: chip->mtc_state = MIDI_IN_STATE_F1_DATA; return MIDI_IN_SKIP_DATA; break; case MIDI_IN_STATE_F1_DATA: chip->mtc_state = MIDI_IN_STATE_NORMAL; break; } return 0; } /* This function is called from the IRQ handler and it reads the midi data from the DSP's buffer. It returns the number of bytes received. */ static int midi_service_irq(struct echoaudio *chip) { short int count, midi_byte, i, received; /* The count is at index 0, followed by actual data */ count = le16_to_cpu(chip->comm_page->midi_input[0]); if (snd_BUG_ON(count >= MIDI_IN_BUFFER_SIZE)) return 0; /* Get the MIDI data from the comm page */ i = 1; received = 0; for (i = 1; i <= count; i++) { /* Get the MIDI byte */ midi_byte = le16_to_cpu(chip->comm_page->midi_input[i]); /* Parse the incoming MIDI stream. The incoming MIDI data consists of MIDI bytes and timestamps for the MIDI time code 0xF1 bytes. mtc_process_data() is a little state machine that parses the stream. If you get MIDI_IN_SKIP_DATA back, then this is a timestamp byte, not a MIDI byte, so don't store it in the MIDI input buffer. */ if (mtc_process_data(chip, midi_byte) == MIDI_IN_SKIP_DATA) continue; chip->midi_buffer[received++] = (u8)midi_byte; } return received; } /****************************************************************************** MIDI interface ******************************************************************************/ static int snd_echo_midi_input_open(struct snd_rawmidi_substream *substream) { struct echoaudio *chip = substream->rmidi->private_data; chip->midi_in = substream; return 0; } static void snd_echo_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) { struct echoaudio *chip = substream->rmidi->private_data; if (up != chip->midi_input_enabled) { spin_lock_irq(&chip->lock); enable_midi_input(chip, up); spin_unlock_irq(&chip->lock); chip->midi_input_enabled = up; } } static int snd_echo_midi_input_close(struct snd_rawmidi_substream *substream) { struct echoaudio *chip = substream->rmidi->private_data; chip->midi_in = NULL; return 0; } static int snd_echo_midi_output_open(struct snd_rawmidi_substream *substream) { struct echoaudio *chip = substream->rmidi->private_data; chip->tinuse = 0; chip->midi_full = 0; chip->midi_out = substream; return 0; } static void snd_echo_midi_output_write(unsigned long data) { struct echoaudio *chip = (struct echoaudio *)data; unsigned long flags; int bytes, sent, time; unsigned char buf[MIDI_OUT_BUFFER_SIZE - 1]; /* No interrupts are involved: we have to check at regular intervals if the card's output buffer has room for new data. */ sent = bytes = 0; spin_lock_irqsave(&chip->lock, flags); chip->midi_full = 0; if (!snd_rawmidi_transmit_empty(chip->midi_out)) { bytes = snd_rawmidi_transmit_peek(chip->midi_out, buf, MIDI_OUT_BUFFER_SIZE - 1); dev_dbg(chip->card->dev, "Try to send %d bytes...\n", bytes); sent = write_midi(chip, buf, bytes); if (sent < 0) { dev_err(chip->card->dev, "write_midi() error %d\n", sent); /* retry later */ sent = 9000; chip->midi_full = 1; } else if (sent > 0) { dev_dbg(chip->card->dev, "%d bytes sent\n", sent); snd_rawmidi_transmit_ack(chip->midi_out, sent); } else { /* Buffer is full. DSP's internal buffer is 64 (128 ?) bytes long. Let's wait until half of them are sent */ dev_dbg(chip->card->dev, "Full\n"); sent = 32; chip->midi_full = 1; } } /* We restart the timer only if there is some data left to send */ if (!snd_rawmidi_transmit_empty(chip->midi_out) && chip->tinuse) { /* The timer will expire slightly after the data has been sent */ time = (sent << 3) / 25 + 1; /* 8/25=0.32ms to send a byte */ mod_timer(&chip->timer, jiffies + (time * HZ + 999) / 1000); dev_dbg(chip->card->dev, "Timer armed(%d)\n", ((time * HZ + 999) / 1000)); } spin_unlock_irqrestore(&chip->lock, flags); } static void snd_echo_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) { struct echoaudio *chip = substream->rmidi->private_data; dev_dbg(chip->card->dev, "snd_echo_midi_output_trigger(%d)\n", up); spin_lock_irq(&chip->lock); if (up) { if (!chip->tinuse) { setup_timer(&chip->timer, snd_echo_midi_output_write, (unsigned long)chip); chip->tinuse = 1; } } else { if (chip->tinuse) { chip->tinuse = 0; spin_unlock_irq(&chip->lock); del_timer_sync(&chip->timer); dev_dbg(chip->card->dev, "Timer removed\n"); return; } } spin_unlock_irq(&chip->lock); if (up && !chip->midi_full) snd_echo_midi_output_write((unsigned long)chip); } static int snd_echo_midi_output_close(struct snd_rawmidi_substream *substream) { struct echoaudio *chip = substream->rmidi->private_data; chip->midi_out = NULL; return 0; } static struct snd_rawmidi_ops snd_echo_midi_input = { .open = snd_echo_midi_input_open, .close = snd_echo_midi_input_close, .trigger = snd_echo_midi_input_trigger, }; static struct snd_rawmidi_ops snd_echo_midi_output = { .open = snd_echo_midi_output_open, .close = snd_echo_midi_output_close, .trigger = snd_echo_midi_output_trigger, }; /* <--snd_echo_probe() */ static int snd_echo_midi_create(struct snd_card *card, struct echoaudio *chip) { int err; if ((err = snd_rawmidi_new(card, card->shortname, 0, 1, 1, &chip->rmidi)) < 0) return err; strcpy(chip->rmidi->name, card->shortname); chip->rmidi->private_data = chip; snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_echo_midi_input); snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_echo_midi_output); chip->rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX; return 0; } |