Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | /* * Encryption policy functions for per-file encryption support. * * Copyright (C) 2015, Google, Inc. * Copyright (C) 2015, Motorola Mobility. * * Written by Michael Halcrow, 2015. * Modified by Jaegeuk Kim, 2015. */ #include <linux/random.h> #include <linux/string.h> #include <linux/fscrypto.h> #include <linux/mount.h> static int inode_has_encryption_context(struct inode *inode) { if (!inode->i_sb->s_cop->get_context) return 0; return (inode->i_sb->s_cop->get_context(inode, NULL, 0L) > 0); } /* * check whether the policy is consistent with the encryption context * for the inode */ static int is_encryption_context_consistent_with_policy(struct inode *inode, const struct fscrypt_policy *policy) { struct fscrypt_context ctx; int res; if (!inode->i_sb->s_cop->get_context) return 0; res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); if (res != sizeof(ctx)) return 0; return (memcmp(ctx.master_key_descriptor, policy->master_key_descriptor, FS_KEY_DESCRIPTOR_SIZE) == 0 && (ctx.flags == policy->flags) && (ctx.contents_encryption_mode == policy->contents_encryption_mode) && (ctx.filenames_encryption_mode == policy->filenames_encryption_mode)); } static int create_encryption_context_from_policy(struct inode *inode, const struct fscrypt_policy *policy) { struct fscrypt_context ctx; int res; if (!inode->i_sb->s_cop->set_context) return -EOPNOTSUPP; if (inode->i_sb->s_cop->prepare_context) { res = inode->i_sb->s_cop->prepare_context(inode); if (res) return res; } ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1; memcpy(ctx.master_key_descriptor, policy->master_key_descriptor, FS_KEY_DESCRIPTOR_SIZE); if (!fscrypt_valid_contents_enc_mode( policy->contents_encryption_mode)) { printk(KERN_WARNING "%s: Invalid contents encryption mode %d\n", __func__, policy->contents_encryption_mode); return -EINVAL; } if (!fscrypt_valid_filenames_enc_mode( policy->filenames_encryption_mode)) { printk(KERN_WARNING "%s: Invalid filenames encryption mode %d\n", __func__, policy->filenames_encryption_mode); return -EINVAL; } if (policy->flags & ~FS_POLICY_FLAGS_VALID) return -EINVAL; ctx.contents_encryption_mode = policy->contents_encryption_mode; ctx.filenames_encryption_mode = policy->filenames_encryption_mode; ctx.flags = policy->flags; BUILD_BUG_ON(sizeof(ctx.nonce) != FS_KEY_DERIVATION_NONCE_SIZE); get_random_bytes(ctx.nonce, FS_KEY_DERIVATION_NONCE_SIZE); return inode->i_sb->s_cop->set_context(inode, &ctx, sizeof(ctx), NULL); } int fscrypt_process_policy(struct file *filp, const struct fscrypt_policy *policy) { struct inode *inode = file_inode(filp); int ret; if (!inode_owner_or_capable(inode)) return -EACCES; if (policy->version != 0) return -EINVAL; ret = mnt_want_write_file(filp); if (ret) return ret; inode_lock(inode); if (!inode_has_encryption_context(inode)) { if (!S_ISDIR(inode->i_mode)) ret = -ENOTDIR; else if (IS_DEADDIR(inode)) ret = -ENOENT; else if (!inode->i_sb->s_cop->empty_dir) ret = -EOPNOTSUPP; else if (!inode->i_sb->s_cop->empty_dir(inode)) ret = -ENOTEMPTY; else ret = create_encryption_context_from_policy(inode, policy); } else if (!is_encryption_context_consistent_with_policy(inode, policy)) { printk(KERN_WARNING "%s: Policy inconsistent with encryption context\n", __func__); ret = -EINVAL; } inode_unlock(inode); mnt_drop_write_file(filp); return ret; } EXPORT_SYMBOL(fscrypt_process_policy); int fscrypt_get_policy(struct inode *inode, struct fscrypt_policy *policy) { struct fscrypt_context ctx; int res; if (!inode->i_sb->s_cop->get_context || !inode->i_sb->s_cop->is_encrypted(inode)) return -ENODATA; res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); if (res != sizeof(ctx)) return -ENODATA; if (ctx.format != FS_ENCRYPTION_CONTEXT_FORMAT_V1) return -EINVAL; policy->version = 0; policy->contents_encryption_mode = ctx.contents_encryption_mode; policy->filenames_encryption_mode = ctx.filenames_encryption_mode; policy->flags = ctx.flags; memcpy(&policy->master_key_descriptor, ctx.master_key_descriptor, FS_KEY_DESCRIPTOR_SIZE); return 0; } EXPORT_SYMBOL(fscrypt_get_policy); /** * fscrypt_has_permitted_context() - is a file's encryption policy permitted * within its directory? * * @parent: inode for parent directory * @child: inode for file being looked up, opened, or linked into @parent * * Filesystems must call this before permitting access to an inode in a * situation where the parent directory is encrypted (either before allowing * ->lookup() to succeed, or for a regular file before allowing it to be opened) * and before any operation that involves linking an inode into an encrypted * directory, including link, rename, and cross rename. It enforces the * constraint that within a given encrypted directory tree, all files use the * same encryption policy. The pre-access check is needed to detect potentially * malicious offline violations of this constraint, while the link and rename * checks are needed to prevent online violations of this constraint. * * Return: 1 if permitted, 0 if forbidden. If forbidden, the caller must fail * the filesystem operation with EPERM. */ int fscrypt_has_permitted_context(struct inode *parent, struct inode *child) { const struct fscrypt_operations *cops = parent->i_sb->s_cop; const struct fscrypt_info *parent_ci, *child_ci; struct fscrypt_context parent_ctx, child_ctx; int res; /* No restrictions on file types which are never encrypted */ if (!S_ISREG(child->i_mode) && !S_ISDIR(child->i_mode) && !S_ISLNK(child->i_mode)) return 1; /* No restrictions if the parent directory is unencrypted */ if (!cops->is_encrypted(parent)) return 1; /* Encrypted directories must not contain unencrypted files */ if (!cops->is_encrypted(child)) return 0; /* * Both parent and child are encrypted, so verify they use the same * encryption policy. Compare the fscrypt_info structs if the keys are * available, otherwise retrieve and compare the fscrypt_contexts. * * Note that the fscrypt_context retrieval will be required frequently * when accessing an encrypted directory tree without the key. * Performance-wise this is not a big deal because we already don't * really optimize for file access without the key (to the extent that * such access is even possible), given that any attempted access * already causes a fscrypt_context retrieval and keyring search. * * In any case, if an unexpected error occurs, fall back to "forbidden". */ res = fscrypt_get_encryption_info(parent); if (res) return 0; res = fscrypt_get_encryption_info(child); if (res) return 0; parent_ci = parent->i_crypt_info; child_ci = child->i_crypt_info; if (parent_ci && child_ci) { return memcmp(parent_ci->ci_master_key, child_ci->ci_master_key, FS_KEY_DESCRIPTOR_SIZE) == 0 && (parent_ci->ci_data_mode == child_ci->ci_data_mode) && (parent_ci->ci_filename_mode == child_ci->ci_filename_mode) && (parent_ci->ci_flags == child_ci->ci_flags); } res = cops->get_context(parent, &parent_ctx, sizeof(parent_ctx)); if (res != sizeof(parent_ctx)) return 0; res = cops->get_context(child, &child_ctx, sizeof(child_ctx)); if (res != sizeof(child_ctx)) return 0; return memcmp(parent_ctx.master_key_descriptor, child_ctx.master_key_descriptor, FS_KEY_DESCRIPTOR_SIZE) == 0 && (parent_ctx.contents_encryption_mode == child_ctx.contents_encryption_mode) && (parent_ctx.filenames_encryption_mode == child_ctx.filenames_encryption_mode) && (parent_ctx.flags == child_ctx.flags); } EXPORT_SYMBOL(fscrypt_has_permitted_context); /** * fscrypt_inherit_context() - Sets a child context from its parent * @parent: Parent inode from which the context is inherited. * @child: Child inode that inherits the context from @parent. * @fs_data: private data given by FS. * @preload: preload child i_crypt_info * * Return: Zero on success, non-zero otherwise */ int fscrypt_inherit_context(struct inode *parent, struct inode *child, void *fs_data, bool preload) { struct fscrypt_context ctx; struct fscrypt_info *ci; int res; if (!parent->i_sb->s_cop->set_context) return -EOPNOTSUPP; res = fscrypt_get_encryption_info(parent); if (res < 0) return res; ci = parent->i_crypt_info; if (ci == NULL) return -ENOKEY; ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1; if (fscrypt_dummy_context_enabled(parent)) { ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS; ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS; ctx.flags = 0; memset(ctx.master_key_descriptor, 0x42, FS_KEY_DESCRIPTOR_SIZE); res = 0; } else { ctx.contents_encryption_mode = ci->ci_data_mode; ctx.filenames_encryption_mode = ci->ci_filename_mode; ctx.flags = ci->ci_flags; memcpy(ctx.master_key_descriptor, ci->ci_master_key, FS_KEY_DESCRIPTOR_SIZE); } get_random_bytes(ctx.nonce, FS_KEY_DERIVATION_NONCE_SIZE); res = parent->i_sb->s_cop->set_context(child, &ctx, sizeof(ctx), fs_data); if (res) return res; return preload ? fscrypt_get_encryption_info(child): 0; } EXPORT_SYMBOL(fscrypt_inherit_context); |