Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 | /* * Generic process-grouping system. * * Based originally on the cpuset system, extracted by Paul Menage * Copyright (C) 2006 Google, Inc * * Notifications support * Copyright (C) 2009 Nokia Corporation * Author: Kirill A. Shutemov * * Copyright notices from the original cpuset code: * -------------------------------------------------- * Copyright (C) 2003 BULL SA. * Copyright (C) 2004-2006 Silicon Graphics, Inc. * * Portions derived from Patrick Mochel's sysfs code. * sysfs is Copyright (c) 2001-3 Patrick Mochel * * 2003-10-10 Written by Simon Derr. * 2003-10-22 Updates by Stephen Hemminger. * 2004 May-July Rework by Paul Jackson. * --------------------------------------------------- * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/cgroup.h> #include <linux/cred.h> #include <linux/ctype.h> #include <linux/errno.h> #include <linux/init_task.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/magic.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/mount.h> #include <linux/pagemap.h> #include <linux/proc_fs.h> #include <linux/rcupdate.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/percpu-rwsem.h> #include <linux/string.h> #include <linux/sort.h> #include <linux/kmod.h> #include <linux/delayacct.h> #include <linux/cgroupstats.h> #include <linux/hashtable.h> #include <linux/pid_namespace.h> #include <linux/idr.h> #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ #include <linux/kthread.h> #include <linux/delay.h> #include <linux/atomic.h> #include <linux/cpuset.h> #include <linux/proc_ns.h> #include <linux/nsproxy.h> #include <linux/file.h> #include <net/sock.h> #define CREATE_TRACE_POINTS #include <trace/events/cgroup.h> /* * pidlists linger the following amount before being destroyed. The goal * is avoiding frequent destruction in the middle of consecutive read calls * Expiring in the middle is a performance problem not a correctness one. * 1 sec should be enough. */ #define CGROUP_PIDLIST_DESTROY_DELAY HZ #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ MAX_CFTYPE_NAME + 2) /* * cgroup_mutex is the master lock. Any modification to cgroup or its * hierarchy must be performed while holding it. * * css_set_lock protects task->cgroups pointer, the list of css_set * objects, and the chain of tasks off each css_set. * * These locks are exported if CONFIG_PROVE_RCU so that accessors in * cgroup.h can use them for lockdep annotations. */ #ifdef CONFIG_PROVE_RCU DEFINE_MUTEX(cgroup_mutex); DEFINE_SPINLOCK(css_set_lock); EXPORT_SYMBOL_GPL(cgroup_mutex); EXPORT_SYMBOL_GPL(css_set_lock); #else static DEFINE_MUTEX(cgroup_mutex); static DEFINE_SPINLOCK(css_set_lock); #endif /* * Protects cgroup_idr and css_idr so that IDs can be released without * grabbing cgroup_mutex. */ static DEFINE_SPINLOCK(cgroup_idr_lock); /* * Protects cgroup_file->kn for !self csses. It synchronizes notifications * against file removal/re-creation across css hiding. */ static DEFINE_SPINLOCK(cgroup_file_kn_lock); /* * Protects cgroup_subsys->release_agent_path. Modifying it also requires * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. */ static DEFINE_SPINLOCK(release_agent_path_lock); struct percpu_rw_semaphore cgroup_threadgroup_rwsem; #define cgroup_assert_mutex_or_rcu_locked() \ RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ !lockdep_is_held(&cgroup_mutex), \ "cgroup_mutex or RCU read lock required"); /* * cgroup destruction makes heavy use of work items and there can be a lot * of concurrent destructions. Use a separate workqueue so that cgroup * destruction work items don't end up filling up max_active of system_wq * which may lead to deadlock. */ static struct workqueue_struct *cgroup_destroy_wq; /* * pidlist destructions need to be flushed on cgroup destruction. Use a * separate workqueue as flush domain. */ static struct workqueue_struct *cgroup_pidlist_destroy_wq; /* generate an array of cgroup subsystem pointers */ #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, static struct cgroup_subsys *cgroup_subsys[] = { #include <linux/cgroup_subsys.h> }; #undef SUBSYS /* array of cgroup subsystem names */ #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, static const char *cgroup_subsys_name[] = { #include <linux/cgroup_subsys.h> }; #undef SUBSYS /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ #define SUBSYS(_x) \ DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); #include <linux/cgroup_subsys.h> #undef SUBSYS #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, static struct static_key_true *cgroup_subsys_enabled_key[] = { #include <linux/cgroup_subsys.h> }; #undef SUBSYS #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, static struct static_key_true *cgroup_subsys_on_dfl_key[] = { #include <linux/cgroup_subsys.h> }; #undef SUBSYS /* * The default hierarchy, reserved for the subsystems that are otherwise * unattached - it never has more than a single cgroup, and all tasks are * part of that cgroup. */ struct cgroup_root cgrp_dfl_root; EXPORT_SYMBOL_GPL(cgrp_dfl_root); /* * The default hierarchy always exists but is hidden until mounted for the * first time. This is for backward compatibility. */ static bool cgrp_dfl_visible; /* Controllers blocked by the commandline in v1 */ static u16 cgroup_no_v1_mask; /* some controllers are not supported in the default hierarchy */ static u16 cgrp_dfl_inhibit_ss_mask; /* some controllers are implicitly enabled on the default hierarchy */ static unsigned long cgrp_dfl_implicit_ss_mask; /* The list of hierarchy roots */ static LIST_HEAD(cgroup_roots); static int cgroup_root_count; /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ static DEFINE_IDR(cgroup_hierarchy_idr); /* * Assign a monotonically increasing serial number to csses. It guarantees * cgroups with bigger numbers are newer than those with smaller numbers. * Also, as csses are always appended to the parent's ->children list, it * guarantees that sibling csses are always sorted in the ascending serial * number order on the list. Protected by cgroup_mutex. */ static u64 css_serial_nr_next = 1; /* * These bitmask flags indicate whether tasks in the fork and exit paths have * fork/exit handlers to call. This avoids us having to do extra work in the * fork/exit path to check which subsystems have fork/exit callbacks. */ static u16 have_fork_callback __read_mostly; static u16 have_exit_callback __read_mostly; static u16 have_free_callback __read_mostly; /* cgroup namespace for init task */ struct cgroup_namespace init_cgroup_ns = { .count = { .counter = 2, }, .user_ns = &init_user_ns, .ns.ops = &cgroupns_operations, .ns.inum = PROC_CGROUP_INIT_INO, .root_cset = &init_css_set, }; /* Ditto for the can_fork callback. */ static u16 have_canfork_callback __read_mostly; static struct file_system_type cgroup2_fs_type; static struct cftype cgroup_dfl_base_files[]; static struct cftype cgroup_legacy_base_files[]; static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask); static void cgroup_lock_and_drain_offline(struct cgroup *cgrp); static int cgroup_apply_control(struct cgroup *cgrp); static void cgroup_finalize_control(struct cgroup *cgrp, int ret); static void css_task_iter_advance(struct css_task_iter *it); static int cgroup_destroy_locked(struct cgroup *cgrp); static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, struct cgroup_subsys *ss); static void css_release(struct percpu_ref *ref); static void kill_css(struct cgroup_subsys_state *css); static int cgroup_addrm_files(struct cgroup_subsys_state *css, struct cgroup *cgrp, struct cftype cfts[], bool is_add); /** * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID * @ssid: subsys ID of interest * * cgroup_subsys_enabled() can only be used with literal subsys names which * is fine for individual subsystems but unsuitable for cgroup core. This * is slower static_key_enabled() based test indexed by @ssid. */ static bool cgroup_ssid_enabled(int ssid) { if (CGROUP_SUBSYS_COUNT == 0) return false; return static_key_enabled(cgroup_subsys_enabled_key[ssid]); } static bool cgroup_ssid_no_v1(int ssid) { return cgroup_no_v1_mask & (1 << ssid); } /** * cgroup_on_dfl - test whether a cgroup is on the default hierarchy * @cgrp: the cgroup of interest * * The default hierarchy is the v2 interface of cgroup and this function * can be used to test whether a cgroup is on the default hierarchy for * cases where a subsystem should behave differnetly depending on the * interface version. * * The set of behaviors which change on the default hierarchy are still * being determined and the mount option is prefixed with __DEVEL__. * * List of changed behaviors: * * - Mount options "noprefix", "xattr", "clone_children", "release_agent" * and "name" are disallowed. * * - When mounting an existing superblock, mount options should match. * * - Remount is disallowed. * * - rename(2) is disallowed. * * - "tasks" is removed. Everything should be at process granularity. Use * "cgroup.procs" instead. * * - "cgroup.procs" is not sorted. pids will be unique unless they got * recycled inbetween reads. * * - "release_agent" and "notify_on_release" are removed. Replacement * notification mechanism will be implemented. * * - "cgroup.clone_children" is removed. * * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup * and its descendants contain no task; otherwise, 1. The file also * generates kernfs notification which can be monitored through poll and * [di]notify when the value of the file changes. * * - cpuset: tasks will be kept in empty cpusets when hotplug happens and * take masks of ancestors with non-empty cpus/mems, instead of being * moved to an ancestor. * * - cpuset: a task can be moved into an empty cpuset, and again it takes * masks of ancestors. * * - memcg: use_hierarchy is on by default and the cgroup file for the flag * is not created. * * - blkcg: blk-throttle becomes properly hierarchical. * * - debug: disallowed on the default hierarchy. */ static bool cgroup_on_dfl(const struct cgroup *cgrp) { return cgrp->root == &cgrp_dfl_root; } /* IDR wrappers which synchronize using cgroup_idr_lock */ static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) { int ret; idr_preload(gfp_mask); spin_lock_bh(&cgroup_idr_lock); ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); spin_unlock_bh(&cgroup_idr_lock); idr_preload_end(); return ret; } static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) { void *ret; spin_lock_bh(&cgroup_idr_lock); ret = idr_replace(idr, ptr, id); spin_unlock_bh(&cgroup_idr_lock); return ret; } static void cgroup_idr_remove(struct idr *idr, int id) { spin_lock_bh(&cgroup_idr_lock); idr_remove(idr, id); spin_unlock_bh(&cgroup_idr_lock); } static struct cgroup *cgroup_parent(struct cgroup *cgrp) { struct cgroup_subsys_state *parent_css = cgrp->self.parent; if (parent_css) return container_of(parent_css, struct cgroup, self); return NULL; } /* subsystems visibly enabled on a cgroup */ static u16 cgroup_control(struct cgroup *cgrp) { struct cgroup *parent = cgroup_parent(cgrp); u16 root_ss_mask = cgrp->root->subsys_mask; if (parent) return parent->subtree_control; if (cgroup_on_dfl(cgrp)) root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | cgrp_dfl_implicit_ss_mask); return root_ss_mask; } /* subsystems enabled on a cgroup */ static u16 cgroup_ss_mask(struct cgroup *cgrp) { struct cgroup *parent = cgroup_parent(cgrp); if (parent) return parent->subtree_ss_mask; return cgrp->root->subsys_mask; } /** * cgroup_css - obtain a cgroup's css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest (%NULL returns @cgrp->self) * * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This * function must be called either under cgroup_mutex or rcu_read_lock() and * the caller is responsible for pinning the returned css if it wants to * keep accessing it outside the said locks. This function may return * %NULL if @cgrp doesn't have @subsys_id enabled. */ static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { if (ss) return rcu_dereference_check(cgrp->subsys[ss->id], lockdep_is_held(&cgroup_mutex)); else return &cgrp->self; } /** * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest (%NULL returns @cgrp->self) * * Similar to cgroup_css() but returns the effective css, which is defined * as the matching css of the nearest ancestor including self which has @ss * enabled. If @ss is associated with the hierarchy @cgrp is on, this * function is guaranteed to return non-NULL css. */ static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { lockdep_assert_held(&cgroup_mutex); if (!ss) return &cgrp->self; /* * This function is used while updating css associations and thus * can't test the csses directly. Test ss_mask. */ while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { cgrp = cgroup_parent(cgrp); if (!cgrp) return NULL; } return cgroup_css(cgrp, ss); } /** * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest * * Find and get the effective css of @cgrp for @ss. The effective css is * defined as the matching css of the nearest ancestor including self which * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, * the root css is returned, so this function always returns a valid css. * The returned css must be put using css_put(). */ struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { struct cgroup_subsys_state *css; rcu_read_lock(); do { css = cgroup_css(cgrp, ss); if (css && css_tryget_online(css)) goto out_unlock; cgrp = cgroup_parent(cgrp); } while (cgrp); css = init_css_set.subsys[ss->id]; css_get(css); out_unlock: rcu_read_unlock(); return css; } /* convenient tests for these bits */ static inline bool cgroup_is_dead(const struct cgroup *cgrp) { return !(cgrp->self.flags & CSS_ONLINE); } static void cgroup_get(struct cgroup *cgrp) { WARN_ON_ONCE(cgroup_is_dead(cgrp)); css_get(&cgrp->self); } static bool cgroup_tryget(struct cgroup *cgrp) { return css_tryget(&cgrp->self); } struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) { struct cgroup *cgrp = of->kn->parent->priv; struct cftype *cft = of_cft(of); /* * This is open and unprotected implementation of cgroup_css(). * seq_css() is only called from a kernfs file operation which has * an active reference on the file. Because all the subsystem * files are drained before a css is disassociated with a cgroup, * the matching css from the cgroup's subsys table is guaranteed to * be and stay valid until the enclosing operation is complete. */ if (cft->ss) return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); else return &cgrp->self; } EXPORT_SYMBOL_GPL(of_css); static int notify_on_release(const struct cgroup *cgrp) { return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); } /** * for_each_css - iterate all css's of a cgroup * @css: the iteration cursor * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end * @cgrp: the target cgroup to iterate css's of * * Should be called under cgroup_[tree_]mutex. */ #define for_each_css(css, ssid, cgrp) \ for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ if (!((css) = rcu_dereference_check( \ (cgrp)->subsys[(ssid)], \ lockdep_is_held(&cgroup_mutex)))) { } \ else /** * for_each_e_css - iterate all effective css's of a cgroup * @css: the iteration cursor * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end * @cgrp: the target cgroup to iterate css's of * * Should be called under cgroup_[tree_]mutex. */ #define for_each_e_css(css, ssid, cgrp) \ for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ ; \ else /** * for_each_subsys - iterate all enabled cgroup subsystems * @ss: the iteration cursor * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end */ #define for_each_subsys(ss, ssid) \ for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \ (((ss) = cgroup_subsys[ssid]) || true); (ssid)++) /** * do_each_subsys_mask - filter for_each_subsys with a bitmask * @ss: the iteration cursor * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end * @ss_mask: the bitmask * * The block will only run for cases where the ssid-th bit (1 << ssid) of * @ss_mask is set. */ #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ unsigned long __ss_mask = (ss_mask); \ if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ (ssid) = 0; \ break; \ } \ for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ (ss) = cgroup_subsys[ssid]; \ { #define while_each_subsys_mask() \ } \ } \ } while (false) /* iterate across the hierarchies */ #define for_each_root(root) \ list_for_each_entry((root), &cgroup_roots, root_list) /* iterate over child cgrps, lock should be held throughout iteration */ #define cgroup_for_each_live_child(child, cgrp) \ list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ if (({ lockdep_assert_held(&cgroup_mutex); \ cgroup_is_dead(child); })) \ ; \ else /* walk live descendants in preorder */ #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ if (({ lockdep_assert_held(&cgroup_mutex); \ (dsct) = (d_css)->cgroup; \ cgroup_is_dead(dsct); })) \ ; \ else /* walk live descendants in postorder */ #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ if (({ lockdep_assert_held(&cgroup_mutex); \ (dsct) = (d_css)->cgroup; \ cgroup_is_dead(dsct); })) \ ; \ else static void cgroup_release_agent(struct work_struct *work); static void check_for_release(struct cgroup *cgrp); /* * A cgroup can be associated with multiple css_sets as different tasks may * belong to different cgroups on different hierarchies. In the other * direction, a css_set is naturally associated with multiple cgroups. * This M:N relationship is represented by the following link structure * which exists for each association and allows traversing the associations * from both sides. */ struct cgrp_cset_link { /* the cgroup and css_set this link associates */ struct cgroup *cgrp; struct css_set *cset; /* list of cgrp_cset_links anchored at cgrp->cset_links */ struct list_head cset_link; /* list of cgrp_cset_links anchored at css_set->cgrp_links */ struct list_head cgrp_link; }; /* * The default css_set - used by init and its children prior to any * hierarchies being mounted. It contains a pointer to the root state * for each subsystem. Also used to anchor the list of css_sets. Not * reference-counted, to improve performance when child cgroups * haven't been created. */ struct css_set init_css_set = { .refcount = ATOMIC_INIT(1), .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), .tasks = LIST_HEAD_INIT(init_css_set.tasks), .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), }; static int css_set_count = 1; /* 1 for init_css_set */ /** * css_set_populated - does a css_set contain any tasks? * @cset: target css_set */ static bool css_set_populated(struct css_set *cset) { lockdep_assert_held(&css_set_lock); return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); } /** * cgroup_update_populated - updated populated count of a cgroup * @cgrp: the target cgroup * @populated: inc or dec populated count * * One of the css_sets associated with @cgrp is either getting its first * task or losing the last. Update @cgrp->populated_cnt accordingly. The * count is propagated towards root so that a given cgroup's populated_cnt * is zero iff the cgroup and all its descendants don't contain any tasks. * * @cgrp's interface file "cgroup.populated" is zero if * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt * changes from or to zero, userland is notified that the content of the * interface file has changed. This can be used to detect when @cgrp and * its descendants become populated or empty. */ static void cgroup_update_populated(struct cgroup *cgrp, bool populated) { lockdep_assert_held(&css_set_lock); do { bool trigger; if (populated) trigger = !cgrp->populated_cnt++; else trigger = !--cgrp->populated_cnt; if (!trigger) break; check_for_release(cgrp); cgroup_file_notify(&cgrp->events_file); cgrp = cgroup_parent(cgrp); } while (cgrp); } /** * css_set_update_populated - update populated state of a css_set * @cset: target css_set * @populated: whether @cset is populated or depopulated * * @cset is either getting the first task or losing the last. Update the * ->populated_cnt of all associated cgroups accordingly. */ static void css_set_update_populated(struct css_set *cset, bool populated) { struct cgrp_cset_link *link; lockdep_assert_held(&css_set_lock); list_for_each_entry(link, &cset->cgrp_links, cgrp_link) cgroup_update_populated(link->cgrp, populated); } /** * css_set_move_task - move a task from one css_set to another * @task: task being moved * @from_cset: css_set @task currently belongs to (may be NULL) * @to_cset: new css_set @task is being moved to (may be NULL) * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks * * Move @task from @from_cset to @to_cset. If @task didn't belong to any * css_set, @from_cset can be NULL. If @task is being disassociated * instead of moved, @to_cset can be NULL. * * This function automatically handles populated_cnt updates and * css_task_iter adjustments but the caller is responsible for managing * @from_cset and @to_cset's reference counts. */ static void css_set_move_task(struct task_struct *task, struct css_set *from_cset, struct css_set *to_cset, bool use_mg_tasks) { lockdep_assert_held(&css_set_lock); if (to_cset && !css_set_populated(to_cset)) css_set_update_populated(to_cset, true); if (from_cset) { struct css_task_iter *it, *pos; WARN_ON_ONCE(list_empty(&task->cg_list)); /* * @task is leaving, advance task iterators which are * pointing to it so that they can resume at the next * position. Advancing an iterator might remove it from * the list, use safe walk. See css_task_iter_advance*() * for details. */ list_for_each_entry_safe(it, pos, &from_cset->task_iters, iters_node) if (it->task_pos == &task->cg_list) css_task_iter_advance(it); list_del_init(&task->cg_list); if (!css_set_populated(from_cset)) css_set_update_populated(from_cset, false); } else { WARN_ON_ONCE(!list_empty(&task->cg_list)); } if (to_cset) { /* * We are synchronized through cgroup_threadgroup_rwsem * against PF_EXITING setting such that we can't race * against cgroup_exit() changing the css_set to * init_css_set and dropping the old one. */ WARN_ON_ONCE(task->flags & PF_EXITING); rcu_assign_pointer(task->cgroups, to_cset); list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : &to_cset->tasks); } } /* * hash table for cgroup groups. This improves the performance to find * an existing css_set. This hash doesn't (currently) take into * account cgroups in empty hierarchies. */ #define CSS_SET_HASH_BITS 7 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) { unsigned long key = 0UL; struct cgroup_subsys *ss; int i; for_each_subsys(ss, i) key += (unsigned long)css[i]; key = (key >> 16) ^ key; return key; } static void put_css_set_locked(struct css_set *cset) { struct cgrp_cset_link *link, *tmp_link; struct cgroup_subsys *ss; int ssid; lockdep_assert_held(&css_set_lock); if (!atomic_dec_and_test(&cset->refcount)) return; /* This css_set is dead. unlink it and release cgroup and css refs */ for_each_subsys(ss, ssid) { list_del(&cset->e_cset_node[ssid]); css_put(cset->subsys[ssid]); } hash_del(&cset->hlist); css_set_count--; list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { list_del(&link->cset_link); list_del(&link->cgrp_link); if (cgroup_parent(link->cgrp)) cgroup_put(link->cgrp); kfree(link); } kfree_rcu(cset, rcu_head); } static void put_css_set(struct css_set *cset) { unsigned long flags; /* * Ensure that the refcount doesn't hit zero while any readers * can see it. Similar to atomic_dec_and_lock(), but for an * rwlock */ if (atomic_add_unless(&cset->refcount, -1, 1)) return; spin_lock_irqsave(&css_set_lock, flags); put_css_set_locked(cset); spin_unlock_irqrestore(&css_set_lock, flags); } /* * refcounted get/put for css_set objects */ static inline void get_css_set(struct css_set *cset) { atomic_inc(&cset->refcount); } /** * compare_css_sets - helper function for find_existing_css_set(). * @cset: candidate css_set being tested * @old_cset: existing css_set for a task * @new_cgrp: cgroup that's being entered by the task * @template: desired set of css pointers in css_set (pre-calculated) * * Returns true if "cset" matches "old_cset" except for the hierarchy * which "new_cgrp" belongs to, for which it should match "new_cgrp". */ static bool compare_css_sets(struct css_set *cset, struct css_set *old_cset, struct cgroup *new_cgrp, struct cgroup_subsys_state *template[]) { struct list_head *l1, *l2; /* * On the default hierarchy, there can be csets which are * associated with the same set of cgroups but different csses. * Let's first ensure that csses match. */ if (memcmp(template, cset->subsys, sizeof(cset->subsys))) return false; /* * Compare cgroup pointers in order to distinguish between * different cgroups in hierarchies. As different cgroups may * share the same effective css, this comparison is always * necessary. */ l1 = &cset->cgrp_links; l2 = &old_cset->cgrp_links; while (1) { struct cgrp_cset_link *link1, *link2; struct cgroup *cgrp1, *cgrp2; l1 = l1->next; l2 = l2->next; /* See if we reached the end - both lists are equal length. */ if (l1 == &cset->cgrp_links) { BUG_ON(l2 != &old_cset->cgrp_links); break; } else { BUG_ON(l2 == &old_cset->cgrp_links); } /* Locate the cgroups associated with these links. */ link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); cgrp1 = link1->cgrp; cgrp2 = link2->cgrp; /* Hierarchies should be linked in the same order. */ BUG_ON(cgrp1->root != cgrp2->root); /* * If this hierarchy is the hierarchy of the cgroup * that's changing, then we need to check that this * css_set points to the new cgroup; if it's any other * hierarchy, then this css_set should point to the * same cgroup as the old css_set. */ if (cgrp1->root == new_cgrp->root) { if (cgrp1 != new_cgrp) return false; } else { if (cgrp1 != cgrp2) return false; } } return true; } /** * find_existing_css_set - init css array and find the matching css_set * @old_cset: the css_set that we're using before the cgroup transition * @cgrp: the cgroup that we're moving into * @template: out param for the new set of csses, should be clear on entry */ static struct css_set *find_existing_css_set(struct css_set *old_cset, struct cgroup *cgrp, struct cgroup_subsys_state *template[]) { struct cgroup_root *root = cgrp->root; struct cgroup_subsys *ss; struct css_set *cset; unsigned long key; int i; /* * Build the set of subsystem state objects that we want to see in the * new css_set. while subsystems can change globally, the entries here * won't change, so no need for locking. */ for_each_subsys(ss, i) { if (root->subsys_mask & (1UL << i)) { /* * @ss is in this hierarchy, so we want the * effective css from @cgrp. */ template[i] = cgroup_e_css(cgrp, ss); } else { /* * @ss is not in this hierarchy, so we don't want * to change the css. */ template[i] = old_cset->subsys[i]; } } key = css_set_hash(template); hash_for_each_possible(css_set_table, cset, hlist, key) { if (!compare_css_sets(cset, old_cset, cgrp, template)) continue; /* This css_set matches what we need */ return cset; } /* No existing cgroup group matched */ return NULL; } static void free_cgrp_cset_links(struct list_head *links_to_free) { struct cgrp_cset_link *link, *tmp_link; list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { list_del(&link->cset_link); kfree(link); } } /** * allocate_cgrp_cset_links - allocate cgrp_cset_links * @count: the number of links to allocate * @tmp_links: list_head the allocated links are put on * * Allocate @count cgrp_cset_link structures and chain them on @tmp_links * through ->cset_link. Returns 0 on success or -errno. */ static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) { struct cgrp_cset_link *link; int i; INIT_LIST_HEAD(tmp_links); for (i = 0; i < count; i++) { link = kzalloc(sizeof(*link), GFP_KERNEL); if (!link) { free_cgrp_cset_links(tmp_links); return -ENOMEM; } list_add(&link->cset_link, tmp_links); } return 0; } /** * link_css_set - a helper function to link a css_set to a cgroup * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() * @cset: the css_set to be linked * @cgrp: the destination cgroup */ static void link_css_set(struct list_head *tmp_links, struct css_set *cset, struct cgroup *cgrp) { struct cgrp_cset_link *link; BUG_ON(list_empty(tmp_links)); if (cgroup_on_dfl(cgrp)) cset->dfl_cgrp = cgrp; link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); link->cset = cset; link->cgrp = cgrp; /* * Always add links to the tail of the lists so that the lists are * in choronological order. */ list_move_tail(&link->cset_link, &cgrp->cset_links); list_add_tail(&link->cgrp_link, &cset->cgrp_links); if (cgroup_parent(cgrp)) cgroup_get(cgrp); } /** * find_css_set - return a new css_set with one cgroup updated * @old_cset: the baseline css_set * @cgrp: the cgroup to be updated * * Return a new css_set that's equivalent to @old_cset, but with @cgrp * substituted into the appropriate hierarchy. */ static struct css_set *find_css_set(struct css_set *old_cset, struct cgroup *cgrp) { struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; struct css_set *cset; struct list_head tmp_links; struct cgrp_cset_link *link; struct cgroup_subsys *ss; unsigned long key; int ssid; lockdep_assert_held(&cgroup_mutex); /* First see if we already have a cgroup group that matches * the desired set */ spin_lock_irq(&css_set_lock); cset = find_existing_css_set(old_cset, cgrp, template); if (cset) get_css_set(cset); spin_unlock_irq(&css_set_lock); if (cset) return cset; cset = kzalloc(sizeof(*cset), GFP_KERNEL); if (!cset) return NULL; /* Allocate all the cgrp_cset_link objects that we'll need */ if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { kfree(cset); return NULL; } atomic_set(&cset->refcount, 1); INIT_LIST_HEAD(&cset->cgrp_links); INIT_LIST_HEAD(&cset->tasks); INIT_LIST_HEAD(&cset->mg_tasks); INIT_LIST_HEAD(&cset->mg_preload_node); INIT_LIST_HEAD(&cset->mg_node); INIT_LIST_HEAD(&cset->task_iters); INIT_HLIST_NODE(&cset->hlist); /* Copy the set of subsystem state objects generated in * find_existing_css_set() */ memcpy(cset->subsys, template, sizeof(cset->subsys)); spin_lock_irq(&css_set_lock); /* Add reference counts and links from the new css_set. */ list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; if (c->root == cgrp->root) c = cgrp; link_css_set(&tmp_links, cset, c); } BUG_ON(!list_empty(&tmp_links)); css_set_count++; /* Add @cset to the hash table */ key = css_set_hash(cset->subsys); hash_add(css_set_table, &cset->hlist, key); for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cset->subsys[ssid]; list_add_tail(&cset->e_cset_node[ssid], &css->cgroup->e_csets[ssid]); css_get(css); } spin_unlock_irq(&css_set_lock); return cset; } static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) { struct cgroup *root_cgrp = kf_root->kn->priv; return root_cgrp->root; } static int cgroup_init_root_id(struct cgroup_root *root) { int id; lockdep_assert_held(&cgroup_mutex); id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); if (id < 0) return id; root->hierarchy_id = id; return 0; } static void cgroup_exit_root_id(struct cgroup_root *root) { lockdep_assert_held(&cgroup_mutex); idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); } static void cgroup_free_root(struct cgroup_root *root) { if (root) { idr_destroy(&root->cgroup_idr); kfree(root); } } static void cgroup_destroy_root(struct cgroup_root *root) { struct cgroup *cgrp = &root->cgrp; struct cgrp_cset_link *link, *tmp_link; trace_cgroup_destroy_root(root); cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); BUG_ON(atomic_read(&root->nr_cgrps)); BUG_ON(!list_empty(&cgrp->self.children)); /* Rebind all subsystems back to the default hierarchy */ WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); /* * Release all the links from cset_links to this hierarchy's * root cgroup */ spin_lock_irq(&css_set_lock); list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { list_del(&link->cset_link); list_del(&link->cgrp_link); kfree(link); } spin_unlock_irq(&css_set_lock); if (!list_empty(&root->root_list)) { list_del(&root->root_list); cgroup_root_count--; } cgroup_exit_root_id(root); mutex_unlock(&cgroup_mutex); kernfs_destroy_root(root->kf_root); cgroup_free_root(root); } /* * look up cgroup associated with current task's cgroup namespace on the * specified hierarchy */ static struct cgroup * current_cgns_cgroup_from_root(struct cgroup_root *root) { struct cgroup *res = NULL; struct css_set *cset; lockdep_assert_held(&css_set_lock); rcu_read_lock(); cset = current->nsproxy->cgroup_ns->root_cset; if (cset == &init_css_set) { res = &root->cgrp; } else { struct cgrp_cset_link *link; list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; if (c->root == root) { res = c; break; } } } rcu_read_unlock(); BUG_ON(!res); return res; } /* look up cgroup associated with given css_set on the specified hierarchy */ static struct cgroup *cset_cgroup_from_root(struct css_set *cset, struct cgroup_root *root) { struct cgroup *res = NULL; lockdep_assert_held(&cgroup_mutex); lockdep_assert_held(&css_set_lock); if (cset == &init_css_set) { res = &root->cgrp; } else { struct cgrp_cset_link *link; list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; if (c->root == root) { res = c; break; } } } BUG_ON(!res); return res; } /* * Return the cgroup for "task" from the given hierarchy. Must be * called with cgroup_mutex and css_set_lock held. */ static struct cgroup *task_cgroup_from_root(struct task_struct *task, struct cgroup_root *root) { /* * No need to lock the task - since we hold cgroup_mutex the * task can't change groups, so the only thing that can happen * is that it exits and its css is set back to init_css_set. */ return cset_cgroup_from_root(task_css_set(task), root); } /* * A task must hold cgroup_mutex to modify cgroups. * * Any task can increment and decrement the count field without lock. * So in general, code holding cgroup_mutex can't rely on the count * field not changing. However, if the count goes to zero, then only * cgroup_attach_task() can increment it again. Because a count of zero * means that no tasks are currently attached, therefore there is no * way a task attached to that cgroup can fork (the other way to * increment the count). So code holding cgroup_mutex can safely * assume that if the count is zero, it will stay zero. Similarly, if * a task holds cgroup_mutex on a cgroup with zero count, it * knows that the cgroup won't be removed, as cgroup_rmdir() * needs that mutex. * * A cgroup can only be deleted if both its 'count' of using tasks * is zero, and its list of 'children' cgroups is empty. Since all * tasks in the system use _some_ cgroup, and since there is always at * least one task in the system (init, pid == 1), therefore, root cgroup * always has either children cgroups and/or using tasks. So we don't * need a special hack to ensure that root cgroup cannot be deleted. * * P.S. One more locking exception. RCU is used to guard the * update of a tasks cgroup pointer by cgroup_attach_task() */ static struct kernfs_syscall_ops cgroup_kf_syscall_ops; static const struct file_operations proc_cgroupstats_operations; static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, char *buf) { struct cgroup_subsys *ss = cft->ss; if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, cft->name); else strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); return buf; } /** * cgroup_file_mode - deduce file mode of a control file * @cft: the control file in question * * S_IRUGO for read, S_IWUSR for write. */ static umode_t cgroup_file_mode(const struct cftype *cft) { umode_t mode = 0; if (cft->read_u64 || cft->read_s64 || cft->seq_show) mode |= S_IRUGO; if (cft->write_u64 || cft->write_s64 || cft->write) { if (cft->flags & CFTYPE_WORLD_WRITABLE) mode |= S_IWUGO; else mode |= S_IWUSR; } return mode; } /** * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask * @subtree_control: the new subtree_control mask to consider * @this_ss_mask: available subsystems * * On the default hierarchy, a subsystem may request other subsystems to be * enabled together through its ->depends_on mask. In such cases, more * subsystems than specified in "cgroup.subtree_control" may be enabled. * * This function calculates which subsystems need to be enabled if * @subtree_control is to be applied while restricted to @this_ss_mask. */ static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) { u16 cur_ss_mask = subtree_control; struct cgroup_subsys *ss; int ssid; lockdep_assert_held(&cgroup_mutex); cur_ss_mask |= cgrp_dfl_implicit_ss_mask; while (true) { u16 new_ss_mask = cur_ss_mask; do_each_subsys_mask(ss, ssid, cur_ss_mask) { new_ss_mask |= ss->depends_on; } while_each_subsys_mask(); /* * Mask out subsystems which aren't available. This can * happen only if some depended-upon subsystems were bound * to non-default hierarchies. */ new_ss_mask &= this_ss_mask; if (new_ss_mask == cur_ss_mask) break; cur_ss_mask = new_ss_mask; } return cur_ss_mask; } /** * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods * @kn: the kernfs_node being serviced * * This helper undoes cgroup_kn_lock_live() and should be invoked before * the method finishes if locking succeeded. Note that once this function * returns the cgroup returned by cgroup_kn_lock_live() may become * inaccessible any time. If the caller intends to continue to access the * cgroup, it should pin it before invoking this function. */ static void cgroup_kn_unlock(struct kernfs_node *kn) { struct cgroup *cgrp; if (kernfs_type(kn) == KERNFS_DIR) cgrp = kn->priv; else cgrp = kn->parent->priv; mutex_unlock(&cgroup_mutex); kernfs_unbreak_active_protection(kn); cgroup_put(cgrp); } /** * cgroup_kn_lock_live - locking helper for cgroup kernfs methods * @kn: the kernfs_node being serviced * @drain_offline: perform offline draining on the cgroup * * This helper is to be used by a cgroup kernfs method currently servicing * @kn. It breaks the active protection, performs cgroup locking and * verifies that the associated cgroup is alive. Returns the cgroup if * alive; otherwise, %NULL. A successful return should be undone by a * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the * cgroup is drained of offlining csses before return. * * Any cgroup kernfs method implementation which requires locking the * associated cgroup should use this helper. It avoids nesting cgroup * locking under kernfs active protection and allows all kernfs operations * including self-removal. */ static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) { struct cgroup *cgrp; if (kernfs_type(kn) == KERNFS_DIR) cgrp = kn->priv; else cgrp = kn->parent->priv; /* * We're gonna grab cgroup_mutex which nests outside kernfs * active_ref. cgroup liveliness check alone provides enough * protection against removal. Ensure @cgrp stays accessible and * break the active_ref protection. */ if (!cgroup_tryget(cgrp)) return NULL; kernfs_break_active_protection(kn); if (drain_offline) cgroup_lock_and_drain_offline(cgrp); else mutex_lock(&cgroup_mutex); if (!cgroup_is_dead(cgrp)) return cgrp; cgroup_kn_unlock(kn); return NULL; } static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) { char name[CGROUP_FILE_NAME_MAX]; lockdep_assert_held(&cgroup_mutex); if (cft->file_offset) { struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); struct cgroup_file *cfile = (void *)css + cft->file_offset; spin_lock_irq(&cgroup_file_kn_lock); cfile->kn = NULL; spin_unlock_irq(&cgroup_file_kn_lock); } kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); } /** * css_clear_dir - remove subsys files in a cgroup directory * @css: taget css */ static void css_clear_dir(struct cgroup_subsys_state *css) { struct cgroup *cgrp = css->cgroup; struct cftype *cfts; if (!(css->flags & CSS_VISIBLE)) return; css->flags &= ~CSS_VISIBLE; list_for_each_entry(cfts, &css->ss->cfts, node) cgroup_addrm_files(css, cgrp, cfts, false); } /** * css_populate_dir - create subsys files in a cgroup directory * @css: target css * * On failure, no file is added. */ static int css_populate_dir(struct cgroup_subsys_state *css) { struct cgroup *cgrp = css->cgroup; struct cftype *cfts, *failed_cfts; int ret; if ((css->flags & CSS_VISIBLE) || !cgrp->kn) return 0; if (!css->ss) { if (cgroup_on_dfl(cgrp)) cfts = cgroup_dfl_base_files; else cfts = cgroup_legacy_base_files; return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); } list_for_each_entry(cfts, &css->ss->cfts, node) { ret = cgroup_addrm_files(css, cgrp, cfts, true); if (ret < 0) { failed_cfts = cfts; goto err; } } css->flags |= CSS_VISIBLE; return 0; err: list_for_each_entry(cfts, &css->ss->cfts, node) { if (cfts == failed_cfts) break; cgroup_addrm_files(css, cgrp, cfts, false); } return ret; } static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) { struct cgroup *dcgrp = &dst_root->cgrp; struct cgroup_subsys *ss; int ssid, i, ret; lockdep_assert_held(&cgroup_mutex); do_each_subsys_mask(ss, ssid, ss_mask) { /* * If @ss has non-root csses attached to it, can't move. * If @ss is an implicit controller, it is exempt from this * rule and can be stolen. */ if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && !ss->implicit_on_dfl) return -EBUSY; /* can't move between two non-dummy roots either */ if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) return -EBUSY; } while_each_subsys_mask(); do_each_subsys_mask(ss, ssid, ss_mask) { struct cgroup_root *src_root = ss->root; struct cgroup *scgrp = &src_root->cgrp; struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); struct css_set *cset; WARN_ON(!css || cgroup_css(dcgrp, ss)); /* disable from the source */ src_root->subsys_mask &= ~(1 << ssid); WARN_ON(cgroup_apply_control(scgrp)); cgroup_finalize_control(scgrp, 0); /* rebind */ RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); rcu_assign_pointer(dcgrp->subsys[ssid], css); ss->root = dst_root; css->cgroup = dcgrp; spin_lock_irq(&css_set_lock); hash_for_each(css_set_table, i, cset, hlist) list_move_tail(&cset->e_cset_node[ss->id], &dcgrp->e_csets[ss->id]); spin_unlock_irq(&css_set_lock); /* default hierarchy doesn't enable controllers by default */ dst_root->subsys_mask |= 1 << ssid; if (dst_root == &cgrp_dfl_root) { static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); } else { dcgrp->subtree_control |= 1 << ssid; static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); } ret = cgroup_apply_control(dcgrp); if (ret) pr_warn("partial failure to rebind %s controller (err=%d)\n", ss->name, ret); if (ss->bind) ss->bind(css); } while_each_subsys_mask(); kernfs_activate(dcgrp->kn); return 0; } static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, struct kernfs_root *kf_root) { int len = 0; char *buf = NULL; struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); struct cgroup *ns_cgroup; buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) return -ENOMEM; spin_lock_irq(&css_set_lock); ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); spin_unlock_irq(&css_set_lock); if (len >= PATH_MAX) len = -ERANGE; else if (len > 0) { seq_escape(sf, buf, " \t\n\\"); len = 0; } kfree(buf); return len; } static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) { struct cgroup_root *root = cgroup_root_from_kf(kf_root); struct cgroup_subsys *ss; int ssid; if (root != &cgrp_dfl_root) for_each_subsys(ss, ssid) if (root->subsys_mask & (1 << ssid)) seq_show_option(seq, ss->legacy_name, NULL); if (root->flags & CGRP_ROOT_NOPREFIX) seq_puts(seq, ",noprefix"); if (root->flags & CGRP_ROOT_XATTR) seq_puts(seq, ",xattr"); spin_lock(&release_agent_path_lock); if (strlen(root->release_agent_path)) seq_show_option(seq, "release_agent", root->release_agent_path); spin_unlock(&release_agent_path_lock); if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) seq_puts(seq, ",clone_children"); if (strlen(root->name)) seq_show_option(seq, "name", root->name); return 0; } struct cgroup_sb_opts { u16 subsys_mask; unsigned int flags; char *release_agent; bool cpuset_clone_children; char *name; /* User explicitly requested empty subsystem */ bool none; }; static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) { char *token, *o = data; bool all_ss = false, one_ss = false; u16 mask = U16_MAX; struct cgroup_subsys *ss; int nr_opts = 0; int i; #ifdef CONFIG_CPUSETS mask = ~((u16)1 << cpuset_cgrp_id); #endif memset(opts, 0, sizeof(*opts)); while ((token = strsep(&o, ",")) != NULL) { nr_opts++; if (!*token) return -EINVAL; if (!strcmp(token, "none")) { /* Explicitly have no subsystems */ opts->none = true; continue; } if (!strcmp(token, "all")) { /* Mutually exclusive option 'all' + subsystem name */ if (one_ss) return -EINVAL; all_ss = true; continue; } if (!strcmp(token, "noprefix")) { opts->flags |= CGRP_ROOT_NOPREFIX; continue; } if (!strcmp(token, "clone_children")) { opts->cpuset_clone_children = true; continue; } if (!strcmp(token, "xattr")) { opts->flags |= CGRP_ROOT_XATTR; continue; } if (!strncmp(token, "release_agent=", 14)) { /* Specifying two release agents is forbidden */ if (opts->release_agent) return -EINVAL; opts->release_agent = kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); if (!opts->release_agent) return -ENOMEM; continue; } if (!strncmp(token, "name=", 5)) { const char *name = token + 5; /* Can't specify an empty name */ if (!strlen(name)) return -EINVAL; /* Must match [\w.-]+ */ for (i = 0; i < strlen(name); i++) { char c = name[i]; if (isalnum(c)) continue; if ((c == '.') || (c == '-') || (c == '_')) continue; return -EINVAL; } /* Specifying two names is forbidden */ if (opts->name) return -EINVAL; opts->name = kstrndup(name, MAX_CGROUP_ROOT_NAMELEN - 1, GFP_KERNEL); if (!opts->name) return -ENOMEM; continue; } for_each_subsys(ss, i) { if (strcmp(token, ss->legacy_name)) continue; if (!cgroup_ssid_enabled(i)) continue; if (cgroup_ssid_no_v1(i)) continue; /* Mutually exclusive option 'all' + subsystem name */ if (all_ss) return -EINVAL; opts->subsys_mask |= (1 << i); one_ss = true; break; } if (i == CGROUP_SUBSYS_COUNT) return -ENOENT; } /* * If the 'all' option was specified select all the subsystems, * otherwise if 'none', 'name=' and a subsystem name options were * not specified, let's default to 'all' */ if (all_ss || (!one_ss && !opts->none && !opts->name)) for_each_subsys(ss, i) if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i)) opts->subsys_mask |= (1 << i); /* * We either have to specify by name or by subsystems. (So all * empty hierarchies must have a name). */ if (!opts->subsys_mask && !opts->name) return -EINVAL; /* * Option noprefix was introduced just for backward compatibility * with the old cpuset, so we allow noprefix only if mounting just * the cpuset subsystem. */ if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) return -EINVAL; /* Can't specify "none" and some subsystems */ if (opts->subsys_mask && opts->none) return -EINVAL; return 0; } static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) { int ret = 0; struct cgroup_root *root = cgroup_root_from_kf(kf_root); struct cgroup_sb_opts opts; u16 added_mask, removed_mask; if (root == &cgrp_dfl_root) { pr_err("remount is not allowed\n"); return -EINVAL; } cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); /* See what subsystems are wanted */ ret = parse_cgroupfs_options(data, &opts); if (ret) goto out_unlock; if (opts.subsys_mask != root->subsys_mask || opts.release_agent) pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", task_tgid_nr(current), current->comm); added_mask = opts.subsys_mask & ~root->subsys_mask; removed_mask = root->subsys_mask & ~opts.subsys_mask; /* Don't allow flags or name to change at remount */ if ((opts.flags ^ root->flags) || (opts.name && strcmp(opts.name, root->name))) { pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", opts.flags, opts.name ?: "", root->flags, root->name); ret = -EINVAL; goto out_unlock; } /* remounting is not allowed for populated hierarchies */ if (!list_empty(&root->cgrp.self.children)) { ret = -EBUSY; goto out_unlock; } ret = rebind_subsystems(root, added_mask); if (ret) goto out_unlock; WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); if (opts.release_agent) { spin_lock(&release_agent_path_lock); strcpy(root->release_agent_path, opts.release_agent); spin_unlock(&release_agent_path_lock); } trace_cgroup_remount(root); out_unlock: kfree(opts.release_agent); kfree(opts.name); mutex_unlock(&cgroup_mutex); return ret; } /* * To reduce the fork() overhead for systems that are not actually using * their cgroups capability, we don't maintain the lists running through * each css_set to its tasks until we see the list actually used - in other * words after the first mount. */ static bool use_task_css_set_links __read_mostly; static void cgroup_enable_task_cg_lists(void) { struct task_struct *p, *g; spin_lock_irq(&css_set_lock); if (use_task_css_set_links) goto out_unlock; use_task_css_set_links = true; /* * We need tasklist_lock because RCU is not safe against * while_each_thread(). Besides, a forking task that has passed * cgroup_post_fork() without seeing use_task_css_set_links = 1 * is not guaranteed to have its child immediately visible in the * tasklist if we walk through it with RCU. */ read_lock(&tasklist_lock); do_each_thread(g, p) { WARN_ON_ONCE(!list_empty(&p->cg_list) || task_css_set(p) != &init_css_set); /* * We should check if the process is exiting, otherwise * it will race with cgroup_exit() in that the list * entry won't be deleted though the process has exited. * Do it while holding siglock so that we don't end up * racing against cgroup_exit(). * * Interrupts were already disabled while acquiring * the css_set_lock, so we do not need to disable it * again when acquiring the sighand->siglock here. */ spin_lock(&p->sighand->siglock); if (!(p->flags & PF_EXITING)) { struct css_set *cset = task_css_set(p); if (!css_set_populated(cset)) css_set_update_populated(cset, true); list_add_tail(&p->cg_list, &cset->tasks); get_css_set(cset); } spin_unlock(&p->sighand->siglock); } while_each_thread(g, p); read_unlock(&tasklist_lock); out_unlock: spin_unlock_irq(&css_set_lock); } static void init_cgroup_housekeeping(struct cgroup *cgrp) { struct cgroup_subsys *ss; int ssid; INIT_LIST_HEAD(&cgrp->self.sibling); INIT_LIST_HEAD(&cgrp->self.children); INIT_LIST_HEAD(&cgrp->cset_links); INIT_LIST_HEAD(&cgrp->pidlists); mutex_init(&cgrp->pidlist_mutex); cgrp->self.cgroup = cgrp; cgrp->self.flags |= CSS_ONLINE; for_each_subsys(ss, ssid) INIT_LIST_HEAD(&cgrp->e_csets[ssid]); init_waitqueue_head(&cgrp->offline_waitq); INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent); } static void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) { struct cgroup *cgrp = &root->cgrp; INIT_LIST_HEAD(&root->root_list); atomic_set(&root->nr_cgrps, 1); cgrp->root = root; init_cgroup_housekeeping(cgrp); idr_init(&root->cgroup_idr); root->flags = opts->flags; if (opts->release_agent) strcpy(root->release_agent_path, opts->release_agent); if (opts->name) strcpy(root->name, opts->name); if (opts->cpuset_clone_children) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); } static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) { LIST_HEAD(tmp_links); struct cgroup *root_cgrp = &root->cgrp; struct css_set *cset; int i, ret; lockdep_assert_held(&cgroup_mutex); ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); if (ret < 0) goto out; root_cgrp->id = ret; root_cgrp->ancestor_ids[0] = ret; ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0, GFP_KERNEL); if (ret) goto out; /* * We're accessing css_set_count without locking css_set_lock here, * but that's OK - it can only be increased by someone holding * cgroup_lock, and that's us. Later rebinding may disable * controllers on the default hierarchy and thus create new csets, * which can't be more than the existing ones. Allocate 2x. */ ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); if (ret) goto cancel_ref; ret = cgroup_init_root_id(root); if (ret) goto cancel_ref; root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops, KERNFS_ROOT_CREATE_DEACTIVATED, root_cgrp); if (IS_ERR(root->kf_root)) { ret = PTR_ERR(root->kf_root); goto exit_root_id; } root_cgrp->kn = root->kf_root->kn; ret = css_populate_dir(&root_cgrp->self); if (ret) goto destroy_root; ret = rebind_subsystems(root, ss_mask); if (ret) goto destroy_root; trace_cgroup_setup_root(root); /* * There must be no failure case after here, since rebinding takes * care of subsystems' refcounts, which are explicitly dropped in * the failure exit path. */ list_add(&root->root_list, &cgroup_roots); cgroup_root_count++; /* * Link the root cgroup in this hierarchy into all the css_set * objects. */ spin_lock_irq(&css_set_lock); hash_for_each(css_set_table, i, cset, hlist) { link_css_set(&tmp_links, cset, root_cgrp); if (css_set_populated(cset)) cgroup_update_populated(root_cgrp, true); } spin_unlock_irq(&css_set_lock); BUG_ON(!list_empty(&root_cgrp->self.children)); BUG_ON(atomic_read(&root->nr_cgrps) != 1); kernfs_activate(root_cgrp->kn); ret = 0; goto out; destroy_root: kernfs_destroy_root(root->kf_root); root->kf_root = NULL; exit_root_id: cgroup_exit_root_id(root); cancel_ref: percpu_ref_exit(&root_cgrp->self.refcnt); out: free_cgrp_cset_links(&tmp_links); return ret; } static struct dentry *cgroup_mount(struct file_system_type *fs_type, int flags, const char *unused_dev_name, void *data) { bool is_v2 = fs_type == &cgroup2_fs_type; struct super_block *pinned_sb = NULL; struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; struct cgroup_subsys *ss; struct cgroup_root *root; struct cgroup_sb_opts opts; struct dentry *dentry; int ret; int i; bool new_sb; get_cgroup_ns(ns); /* Check if the caller has permission to mount. */ if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { put_cgroup_ns(ns); return ERR_PTR(-EPERM); } /* * The first time anyone tries to mount a cgroup, enable the list * linking each css_set to its tasks and fix up all existing tasks. */ if (!use_task_css_set_links) cgroup_enable_task_cg_lists(); if (is_v2) { if (data) { pr_err("cgroup2: unknown option \"%s\"\n", (char *)data); put_cgroup_ns(ns); return ERR_PTR(-EINVAL); } cgrp_dfl_visible = true; root = &cgrp_dfl_root; cgroup_get(&root->cgrp); goto out_mount; } cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); /* First find the desired set of subsystems */ ret = parse_cgroupfs_options(data, &opts); if (ret) goto out_unlock; /* * Destruction of cgroup root is asynchronous, so subsystems may * still be dying after the previous unmount. Let's drain the * dying subsystems. We just need to ensure that the ones * unmounted previously finish dying and don't care about new ones * starting. Testing ref liveliness is good enough. */ for_each_subsys(ss, i) { if (!(opts.subsys_mask & (1 << i)) || ss->root == &cgrp_dfl_root) continue; if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { mutex_unlock(&cgroup_mutex); msleep(10); ret = restart_syscall(); goto out_free; } cgroup_put(&ss->root->cgrp); } for_each_root(root) { bool name_match = false; if (root == &cgrp_dfl_root) continue; /* * If we asked for a name then it must match. Also, if * name matches but sybsys_mask doesn't, we should fail. * Remember whether name matched. */ if (opts.name) { if (strcmp(opts.name, root->name)) continue; name_match = true; } /* * If we asked for subsystems (or explicitly for no * subsystems) then they must match. */ if ((opts.subsys_mask || opts.none) && (opts.subsys_mask != root->subsys_mask)) { if (!name_match) continue; ret = -EBUSY; goto out_unlock; } if (root->flags ^ opts.flags) pr_warn("new mount options do not match the existing superblock, will be ignored\n"); /* * We want to reuse @root whose lifetime is governed by its * ->cgrp. Let's check whether @root is alive and keep it * that way. As cgroup_kill_sb() can happen anytime, we * want to block it by pinning the sb so that @root doesn't * get killed before mount is complete. * * With the sb pinned, tryget_live can reliably indicate * whether @root can be reused. If it's being killed, * drain it. We can use wait_queue for the wait but this * path is super cold. Let's just sleep a bit and retry. */ pinned_sb = kernfs_pin_sb(root->kf_root, NULL); if (IS_ERR(pinned_sb) || !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) { mutex_unlock(&cgroup_mutex); if (!IS_ERR_OR_NULL(pinned_sb)) deactivate_super(pinned_sb); msleep(10); ret = restart_syscall(); goto out_free; } ret = 0; goto out_unlock; } /* * No such thing, create a new one. name= matching without subsys * specification is allowed for already existing hierarchies but we * can't create new one without subsys specification. */ if (!opts.subsys_mask && !opts.none) { ret = -EINVAL; goto out_unlock; } /* Hierarchies may only be created in the initial cgroup namespace. */ if (ns != &init_cgroup_ns) { ret = -EPERM; goto out_unlock; } root = kzalloc(sizeof(*root), GFP_KERNEL); if (!root) { ret = -ENOMEM; goto out_unlock; } init_cgroup_root(root, &opts); ret = cgroup_setup_root(root, opts.subsys_mask); if (ret) cgroup_free_root(root); out_unlock: mutex_unlock(&cgroup_mutex); out_free: kfree(opts.release_agent); kfree(opts.name); if (ret) { put_cgroup_ns(ns); return ERR_PTR(ret); } out_mount: dentry = kernfs_mount(fs_type, flags, root->kf_root, is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC, &new_sb); /* * In non-init cgroup namespace, instead of root cgroup's * dentry, we return the dentry corresponding to the * cgroupns->root_cgrp. */ if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { struct dentry *nsdentry; struct cgroup *cgrp; mutex_lock(&cgroup_mutex); spin_lock_irq(&css_set_lock); cgrp = cset_cgroup_from_root(ns->root_cset, root); spin_unlock_irq(&css_set_lock); mutex_unlock(&cgroup_mutex); nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); dput(dentry); dentry = nsdentry; } if (IS_ERR(dentry) || !new_sb) cgroup_put(&root->cgrp); /* * If @pinned_sb, we're reusing an existing root and holding an * extra ref on its sb. Mount is complete. Put the extra ref. */ if (pinned_sb) { WARN_ON(new_sb); deactivate_super(pinned_sb); } put_cgroup_ns(ns); return dentry; } static void cgroup_kill_sb(struct super_block *sb) { struct kernfs_root *kf_root = kernfs_root_from_sb(sb); struct cgroup_root *root = cgroup_root_from_kf(kf_root); /* * If @root doesn't have any mounts or children, start killing it. * This prevents new mounts by disabling percpu_ref_tryget_live(). * cgroup_mount() may wait for @root's release. * * And don't kill the default root. */ if (!list_empty(&root->cgrp.self.children) || root == &cgrp_dfl_root) cgroup_put(&root->cgrp); else percpu_ref_kill(&root->cgrp.self.refcnt); kernfs_kill_sb(sb); } static struct file_system_type cgroup_fs_type = { .name = "cgroup", .mount = cgroup_mount, .kill_sb = cgroup_kill_sb, .fs_flags = FS_USERNS_MOUNT, }; static struct file_system_type cgroup2_fs_type = { .name = "cgroup2", .mount = cgroup_mount, .kill_sb = cgroup_kill_sb, .fs_flags = FS_USERNS_MOUNT, }; static int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns) { struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); } int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns) { int ret; mutex_lock(&cgroup_mutex); spin_lock_irq(&css_set_lock); ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); spin_unlock_irq(&css_set_lock); mutex_unlock(&cgroup_mutex); return ret; } EXPORT_SYMBOL_GPL(cgroup_path_ns); /** * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy * @task: target task * @buf: the buffer to write the path into * @buflen: the length of the buffer * * Determine @task's cgroup on the first (the one with the lowest non-zero * hierarchy_id) cgroup hierarchy and copy its path into @buf. This * function grabs cgroup_mutex and shouldn't be used inside locks used by * cgroup controller callbacks. * * Return value is the same as kernfs_path(). */ int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) { struct cgroup_root *root; struct cgroup *cgrp; int hierarchy_id = 1; int ret; mutex_lock(&cgroup_mutex); spin_lock_irq(&css_set_lock); root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); if (root) { cgrp = task_cgroup_from_root(task, root); ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); } else { /* if no hierarchy exists, everyone is in "/" */ ret = strlcpy(buf, "/", buflen); } spin_unlock_irq(&css_set_lock); mutex_unlock(&cgroup_mutex); return ret; } EXPORT_SYMBOL_GPL(task_cgroup_path); /* used to track tasks and other necessary states during migration */ struct cgroup_taskset { /* the src and dst cset list running through cset->mg_node */ struct list_head src_csets; struct list_head dst_csets; /* the subsys currently being processed */ int ssid; /* * Fields for cgroup_taskset_*() iteration. * * Before migration is committed, the target migration tasks are on * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of * the csets on ->dst_csets. ->csets point to either ->src_csets * or ->dst_csets depending on whether migration is committed. * * ->cur_csets and ->cur_task point to the current task position * during iteration. */ struct list_head *csets; struct css_set *cur_cset; struct task_struct *cur_task; }; #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \ .src_csets = LIST_HEAD_INIT(tset.src_csets), \ .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \ .csets = &tset.src_csets, \ } /** * cgroup_taskset_add - try to add a migration target task to a taskset * @task: target task * @tset: target taskset * * Add @task, which is a migration target, to @tset. This function becomes * noop if @task doesn't need to be migrated. @task's css_set should have * been added as a migration source and @task->cg_list will be moved from * the css_set's tasks list to mg_tasks one. */ static void cgroup_taskset_add(struct task_struct *task, struct cgroup_taskset *tset) { struct css_set *cset; lockdep_assert_held(&css_set_lock); /* @task either already exited or can't exit until the end */ if (task->flags & PF_EXITING) return; /* leave @task alone if post_fork() hasn't linked it yet */ if (list_empty(&task->cg_list)) return; cset = task_css_set(task); if (!cset->mg_src_cgrp) return; list_move_tail(&task->cg_list, &cset->mg_tasks); if (list_empty(&cset->mg_node)) list_add_tail(&cset->mg_node, &tset->src_csets); if (list_empty(&cset->mg_dst_cset->mg_node)) list_move_tail(&cset->mg_dst_cset->mg_node, &tset->dst_csets); } /** * cgroup_taskset_first - reset taskset and return the first task * @tset: taskset of interest * @dst_cssp: output variable for the destination css * * @tset iteration is initialized and the first task is returned. */ struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, struct cgroup_subsys_state **dst_cssp) { tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); tset->cur_task = NULL; return cgroup_taskset_next(tset, dst_cssp); } /** * cgroup_taskset_next - iterate to the next task in taskset * @tset: taskset of interest * @dst_cssp: output variable for the destination css * * Return the next task in @tset. Iteration must have been initialized * with cgroup_taskset_first(). */ struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, struct cgroup_subsys_state **dst_cssp) { struct css_set *cset = tset->cur_cset; struct task_struct *task = tset->cur_task; while (&cset->mg_node != tset->csets) { if (!task) task = list_first_entry(&cset->mg_tasks, struct task_struct, cg_list); else task = list_next_entry(task, cg_list); if (&task->cg_list != &cset->mg_tasks) { tset->cur_cset = cset; tset->cur_task = task; /* * This function may be called both before and * after cgroup_taskset_migrate(). The two cases * can be distinguished by looking at whether @cset * has its ->mg_dst_cset set. */ if (cset->mg_dst_cset) *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; else *dst_cssp = cset->subsys[tset->ssid]; return task; } cset = list_next_entry(cset, mg_node); task = NULL; } return NULL; } /** * cgroup_taskset_migrate - migrate a taskset * @tset: taget taskset * @root: cgroup root the migration is taking place on * * Migrate tasks in @tset as setup by migration preparation functions. * This function fails iff one of the ->can_attach callbacks fails and * guarantees that either all or none of the tasks in @tset are migrated. * @tset is consumed regardless of success. */ static int cgroup_taskset_migrate(struct cgroup_taskset *tset, struct cgroup_root *root) { struct cgroup_subsys *ss; struct task_struct *task, *tmp_task; struct css_set *cset, *tmp_cset; int ssid, failed_ssid, ret; /* methods shouldn't be called if no task is actually migrating */ if (list_empty(&tset->src_csets)) return 0; /* check that we can legitimately attach to the cgroup */ do_each_subsys_mask(ss, ssid, root->subsys_mask) { if (ss->can_attach) { tset->ssid = ssid; ret = ss->can_attach(tset); if (ret) { failed_ssid = ssid; goto out_cancel_attach; } } } while_each_subsys_mask(); /* * Now that we're guaranteed success, proceed to move all tasks to * the new cgroup. There are no failure cases after here, so this * is the commit point. */ spin_lock_irq(&css_set_lock); list_for_each_entry(cset, &tset->src_csets, mg_node) { list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { struct css_set *from_cset = task_css_set(task); struct css_set *to_cset = cset->mg_dst_cset; get_css_set(to_cset); css_set_move_task(task, from_cset, to_cset, true); put_css_set_locked(from_cset); } } spin_unlock_irq(&css_set_lock); /* * Migration is committed, all target tasks are now on dst_csets. * Nothing is sensitive to fork() after this point. Notify * controllers that migration is complete. */ tset->csets = &tset->dst_csets; do_each_subsys_mask(ss, ssid, root->subsys_mask) { if (ss->attach) { tset->ssid = ssid; ss->attach(tset); } } while_each_subsys_mask(); ret = 0; goto out_release_tset; out_cancel_attach: do_each_subsys_mask(ss, ssid, root->subsys_mask) { if (ssid == failed_ssid) break; if (ss->cancel_attach) { tset->ssid = ssid; ss->cancel_attach(tset); } } while_each_subsys_mask(); out_release_tset: spin_lock_irq(&css_set_lock); list_splice_init(&tset->dst_csets, &tset->src_csets); list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { list_splice_tail_init(&cset->mg_tasks, &cset->tasks); list_del_init(&cset->mg_node); } spin_unlock_irq(&css_set_lock); return ret; } /** * cgroup_may_migrate_to - verify whether a cgroup can be migration destination * @dst_cgrp: destination cgroup to test * * On the default hierarchy, except for the root, subtree_control must be * zero for migration destination cgroups with tasks so that child cgroups * don't compete against tasks. */ static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp) { return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) || !dst_cgrp->subtree_control; } /** * cgroup_migrate_finish - cleanup after attach * @preloaded_csets: list of preloaded css_sets * * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See * those functions for details. */ static void cgroup_migrate_finish(struct list_head *preloaded_csets) { struct css_set *cset, *tmp_cset; lockdep_assert_held(&cgroup_mutex); spin_lock_irq(&css_set_lock); list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) { cset->mg_src_cgrp = NULL; cset->mg_dst_cgrp = NULL; cset->mg_dst_cset = NULL; list_del_init(&cset->mg_preload_node); put_css_set_locked(cset); } spin_unlock_irq(&css_set_lock); } /** * cgroup_migrate_add_src - add a migration source css_set * @src_cset: the source css_set to add * @dst_cgrp: the destination cgroup * @preloaded_csets: list of preloaded css_sets * * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin * @src_cset and add it to @preloaded_csets, which should later be cleaned * up by cgroup_migrate_finish(). * * This function may be called without holding cgroup_threadgroup_rwsem * even if the target is a process. Threads may be created and destroyed * but as long as cgroup_mutex is not dropped, no new css_set can be put * into play and the preloaded css_sets are guaranteed to cover all * migrations. */ static void cgroup_migrate_add_src(struct css_set *src_cset, struct cgroup *dst_cgrp, struct list_head *preloaded_csets) { struct cgroup *src_cgrp; lockdep_assert_held(&cgroup_mutex); lockdep_assert_held(&css_set_lock); /* * If ->dead, @src_set is associated with one or more dead cgroups * and doesn't contain any migratable tasks. Ignore it early so * that the rest of migration path doesn't get confused by it. */ if (src_cset->dead) return; src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); if (!list_empty(&src_cset->mg_preload_node)) return; WARN_ON(src_cset->mg_src_cgrp); WARN_ON(src_cset->mg_dst_cgrp); WARN_ON(!list_empty(&src_cset->mg_tasks)); WARN_ON(!list_empty(&src_cset->mg_node)); src_cset->mg_src_cgrp = src_cgrp; src_cset->mg_dst_cgrp = dst_cgrp; get_css_set(src_cset); list_add(&src_cset->mg_preload_node, preloaded_csets); } /** * cgroup_migrate_prepare_dst - prepare destination css_sets for migration * @preloaded_csets: list of preloaded source css_sets * * Tasks are about to be moved and all the source css_sets have been * preloaded to @preloaded_csets. This function looks up and pins all * destination css_sets, links each to its source, and append them to * @preloaded_csets. * * This function must be called after cgroup_migrate_add_src() has been * called on each migration source css_set. After migration is performed * using cgroup_migrate(), cgroup_migrate_finish() must be called on * @preloaded_csets. */ static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets) { LIST_HEAD(csets); struct css_set *src_cset, *tmp_cset; lockdep_assert_held(&cgroup_mutex); /* look up the dst cset for each src cset and link it to src */ list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) { struct css_set *dst_cset; dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); if (!dst_cset) goto err; WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); /* * If src cset equals dst, it's noop. Drop the src. * cgroup_migrate() will skip the cset too. Note that we * can't handle src == dst as some nodes are used by both. */ if (src_cset == dst_cset) { src_cset->mg_src_cgrp = NULL; src_cset->mg_dst_cgrp = NULL; list_del_init(&src_cset->mg_preload_node); put_css_set(src_cset); put_css_set(dst_cset); continue; } src_cset->mg_dst_cset = dst_cset; if (list_empty(&dst_cset->mg_preload_node)) list_add(&dst_cset->mg_preload_node, &csets); else put_css_set(dst_cset); } list_splice_tail(&csets, preloaded_csets); return 0; err: cgroup_migrate_finish(&csets); return -ENOMEM; } /** * cgroup_migrate - migrate a process or task to a cgroup * @leader: the leader of the process or the task to migrate * @threadgroup: whether @leader points to the whole process or a single task * @root: cgroup root migration is taking place on * * Migrate a process or task denoted by @leader. If migrating a process, * the caller must be holding cgroup_threadgroup_rwsem. The caller is also * responsible for invoking cgroup_migrate_add_src() and * cgroup_migrate_prepare_dst() on the targets before invoking this * function and following up with cgroup_migrate_finish(). * * As long as a controller's ->can_attach() doesn't fail, this function is * guaranteed to succeed. This means that, excluding ->can_attach() * failure, when migrating multiple targets, the success or failure can be * decided for all targets by invoking group_migrate_prepare_dst() before * actually starting migrating. */ static int cgroup_migrate(struct task_struct *leader, bool threadgroup, struct cgroup_root *root) { struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset); struct task_struct *task; /* * Prevent freeing of tasks while we take a snapshot. Tasks that are * already PF_EXITING could be freed from underneath us unless we * take an rcu_read_lock. */ spin_lock_irq(&css_set_lock); rcu_read_lock(); task = leader; do { cgroup_taskset_add(task, &tset); if (!threadgroup) break; } while_each_thread(leader, task); rcu_read_unlock(); spin_unlock_irq(&css_set_lock); return cgroup_taskset_migrate(&tset, root); } /** * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup * @dst_cgrp: the cgroup to attach to * @leader: the task or the leader of the threadgroup to be attached * @threadgroup: attach the whole threadgroup? * * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. */ static int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, bool threadgroup) { LIST_HEAD(preloaded_csets); struct task_struct *task; int ret; if (!cgroup_may_migrate_to(dst_cgrp)) return -EBUSY; /* look up all src csets */ spin_lock_irq(&css_set_lock); rcu_read_lock(); task = leader; do { cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &preloaded_csets); if (!threadgroup) break; } while_each_thread(leader, task); rcu_read_unlock(); spin_unlock_irq(&css_set_lock); /* prepare dst csets and commit */ ret = cgroup_migrate_prepare_dst(&preloaded_csets); if (!ret) ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root); cgroup_migrate_finish(&preloaded_csets); if (!ret) trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); return ret; } static int cgroup_procs_write_permission(struct task_struct *task, struct cgroup *dst_cgrp, struct kernfs_open_file *of) { const struct cred *cred = current_cred(); const struct cred *tcred = get_task_cred(task); int ret = 0; /* * even if we're attaching all tasks in the thread group, we only * need to check permissions on one of them. */ if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && !uid_eq(cred->euid, tcred->uid) && !uid_eq(cred->euid, tcred->suid)) ret = -EACCES; if (!ret && cgroup_on_dfl(dst_cgrp)) { struct super_block *sb = of->file->f_path.dentry->d_sb; struct cgroup *cgrp; struct inode *inode; spin_lock_irq(&css_set_lock); cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); spin_unlock_irq(&css_set_lock); while (!cgroup_is_descendant(dst_cgrp, cgrp)) cgrp = cgroup_parent(cgrp); ret = -ENOMEM; inode = kernfs_get_inode(sb, cgrp->procs_file.kn); if (inode) { ret = inode_permission(inode, MAY_WRITE); iput(inode); } } put_cred(tcred); return ret; } /* * Find the task_struct of the task to attach by vpid and pass it along to the * function to attach either it or all tasks in its threadgroup. Will lock * cgroup_mutex and threadgroup. */ static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off, bool threadgroup) { struct task_struct *tsk; struct cgroup_subsys *ss; struct cgroup *cgrp; pid_t pid; int ssid, ret; if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) return -EINVAL; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENODEV; percpu_down_write(&cgroup_threadgroup_rwsem); rcu_read_lock(); if (pid) { tsk = find_task_by_vpid(pid); if (!tsk) { ret = -ESRCH; goto out_unlock_rcu; } } else { tsk = current; } if (threadgroup) tsk = tsk->group_leader; /* * kthreads may acquire PF_NO_SETAFFINITY during initialization. * If userland migrates such a kthread to a non-root cgroup, it can * become trapped in a cpuset, or RT kthread may be born in a * cgroup with no rt_runtime allocated. Just say no. */ if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { ret = -EINVAL; goto out_unlock_rcu; } get_task_struct(tsk); rcu_read_unlock(); ret = cgroup_procs_write_permission(tsk, cgrp, of); if (!ret) ret = cgroup_attach_task(cgrp, tsk, threadgroup); put_task_struct(tsk); goto out_unlock_threadgroup; out_unlock_rcu: rcu_read_unlock(); out_unlock_threadgroup: percpu_up_write(&cgroup_threadgroup_rwsem); for_each_subsys(ss, ssid) if (ss->post_attach) ss->post_attach(); cgroup_kn_unlock(of->kn); return ret ?: nbytes; } /** * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' * @from: attach to all cgroups of a given task * @tsk: the task to be attached */ int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) { struct cgroup_root *root; int retval = 0; mutex_lock(&cgroup_mutex); percpu_down_write(&cgroup_threadgroup_rwsem); for_each_root(root) { struct cgroup *from_cgrp; if (root == &cgrp_dfl_root) continue; spin_lock_irq(&css_set_lock); from_cgrp = task_cgroup_from_root(from, root); spin_unlock_irq(&css_set_lock); retval = cgroup_attach_task(from_cgrp, tsk, false); if (retval) break; } percpu_up_write(&cgroup_threadgroup_rwsem); mutex_unlock(&cgroup_mutex); return retval; } EXPORT_SYMBOL_GPL(cgroup_attach_task_all); static ssize_t cgroup_tasks_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return __cgroup_procs_write(of, buf, nbytes, off, false); } static ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return __cgroup_procs_write(of, buf, nbytes, off, true); } static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENODEV; spin_lock(&release_agent_path_lock); strlcpy(cgrp->root->release_agent_path, strstrip(buf), sizeof(cgrp->root->release_agent_path)); spin_unlock(&release_agent_path_lock); cgroup_kn_unlock(of->kn); return nbytes; } static int cgroup_release_agent_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; spin_lock(&release_agent_path_lock); seq_puts(seq, cgrp->root->release_agent_path); spin_unlock(&release_agent_path_lock); seq_putc(seq, '\n'); return 0; } static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) { seq_puts(seq, "0\n"); return 0; } static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) { struct cgroup_subsys *ss; bool printed = false; int ssid; do_each_subsys_mask(ss, ssid, ss_mask) { if (printed) seq_putc(seq, ' '); seq_printf(seq, "%s", ss->name); printed = true; } while_each_subsys_mask(); if (printed) seq_putc(seq, '\n'); } /* show controllers which are enabled from the parent */ static int cgroup_controllers_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; cgroup_print_ss_mask(seq, cgroup_control(cgrp)); return 0; } /* show controllers which are enabled for a given cgroup's children */ static int cgroup_subtree_control_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; cgroup_print_ss_mask(seq, cgrp->subtree_control); return 0; } /** * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy * @cgrp: root of the subtree to update csses for * * @cgrp's control masks have changed and its subtree's css associations * need to be updated accordingly. This function looks up all css_sets * which are attached to the subtree, creates the matching updated css_sets * and migrates the tasks to the new ones. */ static int cgroup_update_dfl_csses(struct cgroup *cgrp) { LIST_HEAD(preloaded_csets); struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset); struct cgroup_subsys_state *d_css; struct cgroup *dsct; struct css_set *src_cset; int ret; lockdep_assert_held(&cgroup_mutex); percpu_down_write(&cgroup_threadgroup_rwsem); /* look up all csses currently attached to @cgrp's subtree */ spin_lock_irq(&css_set_lock); cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { struct cgrp_cset_link *link; list_for_each_entry(link, &dsct->cset_links, cset_link) cgroup_migrate_add_src(link->cset, dsct, &preloaded_csets); } spin_unlock_irq(&css_set_lock); /* NULL dst indicates self on default hierarchy */ ret = cgroup_migrate_prepare_dst(&preloaded_csets); if (ret) goto out_finish; spin_lock_irq(&css_set_lock); list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) { struct task_struct *task, *ntask; /* src_csets precede dst_csets, break on the first dst_cset */ if (!src_cset->mg_src_cgrp) break; /* all tasks in src_csets need to be migrated */ list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) cgroup_taskset_add(task, &tset); } spin_unlock_irq(&css_set_lock); ret = cgroup_taskset_migrate(&tset, cgrp->root); out_finish: cgroup_migrate_finish(&preloaded_csets); percpu_up_write(&cgroup_threadgroup_rwsem); return ret; } /** * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses * @cgrp: root of the target subtree * * Because css offlining is asynchronous, userland may try to re-enable a * controller while the previous css is still around. This function grabs * cgroup_mutex and drains the previous css instances of @cgrp's subtree. */ static void cgroup_lock_and_drain_offline(struct cgroup *cgrp) __acquires(&cgroup_mutex) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; struct cgroup_subsys *ss; int ssid; restart: mutex_lock(&cgroup_mutex); cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cgroup_css(dsct, ss); DEFINE_WAIT(wait); if (!css || !percpu_ref_is_dying(&css->refcnt)) continue; cgroup_get(dsct); prepare_to_wait(&dsct->offline_waitq, &wait, TASK_UNINTERRUPTIBLE); mutex_unlock(&cgroup_mutex); schedule(); finish_wait(&dsct->offline_waitq, &wait); cgroup_put(dsct); goto restart; } } } /** * cgroup_save_control - save control masks of a subtree * @cgrp: root of the target subtree * * Save ->subtree_control and ->subtree_ss_mask to the respective old_ * prefixed fields for @cgrp's subtree including @cgrp itself. */ static void cgroup_save_control(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { dsct->old_subtree_control = dsct->subtree_control; dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; } } /** * cgroup_propagate_control - refresh control masks of a subtree * @cgrp: root of the target subtree * * For @cgrp and its subtree, ensure ->subtree_ss_mask matches * ->subtree_control and propagate controller availability through the * subtree so that descendants don't have unavailable controllers enabled. */ static void cgroup_propagate_control(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { dsct->subtree_control &= cgroup_control(dsct); dsct->subtree_ss_mask = cgroup_calc_subtree_ss_mask(dsct->subtree_control, cgroup_ss_mask(dsct)); } } /** * cgroup_restore_control - restore control masks of a subtree * @cgrp: root of the target subtree * * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ * prefixed fields for @cgrp's subtree including @cgrp itself. */ static void cgroup_restore_control(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { dsct->subtree_control = dsct->old_subtree_control; dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; } } static bool css_visible(struct cgroup_subsys_state *css) { struct cgroup_subsys *ss = css->ss; struct cgroup *cgrp = css->cgroup; if (cgroup_control(cgrp) & (1 << ss->id)) return true; if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) return false; return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; } /** * cgroup_apply_control_enable - enable or show csses according to control * @cgrp: root of the target subtree * * Walk @cgrp's subtree and create new csses or make the existing ones * visible. A css is created invisible if it's being implicitly enabled * through dependency. An invisible css is made visible when the userland * explicitly enables it. * * Returns 0 on success, -errno on failure. On failure, csses which have * been processed already aren't cleaned up. The caller is responsible for * cleaning up with cgroup_apply_control_disble(). */ static int cgroup_apply_control_enable(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; struct cgroup_subsys *ss; int ssid, ret; cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cgroup_css(dsct, ss); WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) continue; if (!css) { css = css_create(dsct, ss); if (IS_ERR(css)) return PTR_ERR(css); } if (css_visible(css)) { ret = css_populate_dir(css); if (ret) return ret; } } } return 0; } /** * cgroup_apply_control_disable - kill or hide csses according to control * @cgrp: root of the target subtree * * Walk @cgrp's subtree and kill and hide csses so that they match * cgroup_ss_mask() and cgroup_visible_mask(). * * A css is hidden when the userland requests it to be disabled while other * subsystems are still depending on it. The css must not actively control * resources and be in the vanilla state if it's made visible again later. * Controllers which may be depended upon should provide ->css_reset() for * this purpose. */ static void cgroup_apply_control_disable(struct cgroup *cgrp) { struct cgroup *dsct; struct cgroup_subsys_state *d_css; struct cgroup_subsys *ss; int ssid; cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cgroup_css(dsct, ss); WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); if (!css) continue; if (css->parent && !(cgroup_ss_mask(dsct) & (1 << ss->id))) { kill_css(css); } else if (!css_visible(css)) { css_clear_dir(css); if (ss->css_reset) ss->css_reset(css); } } } } /** * cgroup_apply_control - apply control mask updates to the subtree * @cgrp: root of the target subtree * * subsystems can be enabled and disabled in a subtree using the following * steps. * * 1. Call cgroup_save_control() to stash the current state. * 2. Update ->subtree_control masks in the subtree as desired. * 3. Call cgroup_apply_control() to apply the changes. * 4. Optionally perform other related operations. * 5. Call cgroup_finalize_control() to finish up. * * This function implements step 3 and propagates the mask changes * throughout @cgrp's subtree, updates csses accordingly and perform * process migrations. */ static int cgroup_apply_control(struct cgroup *cgrp) { int ret; cgroup_propagate_control(cgrp); ret = cgroup_apply_control_enable(cgrp); if (ret) return ret; /* * At this point, cgroup_e_css() results reflect the new csses * making the following cgroup_update_dfl_csses() properly update * css associations of all tasks in the subtree. */ ret = cgroup_update_dfl_csses(cgrp); if (ret) return ret; return 0; } /** * cgroup_finalize_control - finalize control mask update * @cgrp: root of the target subtree * @ret: the result of the update * * Finalize control mask update. See cgroup_apply_control() for more info. */ static void cgroup_finalize_control(struct cgroup *cgrp, int ret) { if (ret) { cgroup_restore_control(cgrp); cgroup_propagate_control(cgrp); } cgroup_apply_control_disable(cgrp); } /* change the enabled child controllers for a cgroup in the default hierarchy */ static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { u16 enable = 0, disable = 0; struct cgroup *cgrp, *child; struct cgroup_subsys *ss; char *tok; int ssid, ret; /* * Parse input - space separated list of subsystem names prefixed * with either + or -. */ buf = strstrip(buf); while ((tok = strsep(&buf, " "))) { if (tok[0] == '\0') continue; do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { if (!cgroup_ssid_enabled(ssid) || strcmp(tok + 1, ss->name)) continue; if (*tok == '+') { enable |= 1 << ssid; disable &= ~(1 << ssid); } else if (*tok == '-') { disable |= 1 << ssid; enable &= ~(1 << ssid); } else { return -EINVAL; } break; } while_each_subsys_mask(); if (ssid == CGROUP_SUBSYS_COUNT) return -EINVAL; } cgrp = cgroup_kn_lock_live(of->kn, true); if (!cgrp) return -ENODEV; for_each_subsys(ss, ssid) { if (enable & (1 << ssid)) { if (cgrp->subtree_control & (1 << ssid)) { enable &= ~(1 << ssid); continue; } if (!(cgroup_control(cgrp) & (1 << ssid))) { ret = -ENOENT; goto out_unlock; } } else if (disable & (1 << ssid)) { if (!(cgrp->subtree_control & (1 << ssid))) { disable &= ~(1 << ssid); continue; } /* a child has it enabled? */ cgroup_for_each_live_child(child, cgrp) { if (child->subtree_control & (1 << ssid)) { ret = -EBUSY; goto out_unlock; } } } } if (!enable && !disable) { ret = 0; goto out_unlock; } /* * Except for the root, subtree_control must be zero for a cgroup * with tasks so that child cgroups don't compete against tasks. */ if (enable && cgroup_parent(cgrp)) { struct cgrp_cset_link *link; /* * Because namespaces pin csets too, @cgrp->cset_links * might not be empty even when @cgrp is empty. Walk and * verify each cset. */ spin_lock_irq(&css_set_lock); ret = 0; list_for_each_entry(link, &cgrp->cset_links, cset_link) { if (css_set_populated(link->cset)) { ret = -EBUSY; break; } } spin_unlock_irq(&css_set_lock); if (ret) goto out_unlock; } /* save and update control masks and prepare csses */ cgroup_save_control(cgrp); cgrp->subtree_control |= enable; cgrp->subtree_control &= ~disable; ret = cgroup_apply_control(cgrp); cgroup_finalize_control(cgrp, ret); if (ret) goto out_unlock; kernfs_activate(cgrp->kn); out_unlock: cgroup_kn_unlock(of->kn); return ret ?: nbytes; } static int cgroup_events_show(struct seq_file *seq, void *v) { seq_printf(seq, "populated %d\n", cgroup_is_populated(seq_css(seq)->cgroup)); return 0; } static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp = of->kn->parent->priv; struct cftype *cft = of->kn->priv; struct cgroup_subsys_state *css; int ret; if (cft->write) return cft->write(of, buf, nbytes, off); /* * kernfs guarantees that a file isn't deleted with operations in * flight, which means that the matching css is and stays alive and * doesn't need to be pinned. The RCU locking is not necessary * either. It's just for the convenience of using cgroup_css(). */ rcu_read_lock(); css = cgroup_css(cgrp, cft->ss); rcu_read_unlock(); if (cft->write_u64) { unsigned long long v; ret = kstrtoull(buf, 0, &v); if (!ret) ret = cft->write_u64(css, cft, v); } else if (cft->write_s64) { long long v; ret = kstrtoll(buf, 0, &v); if (!ret) ret = cft->write_s64(css, cft, v); } else { ret = -EINVAL; } return ret ?: nbytes; } static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) { return seq_cft(seq)->seq_start(seq, ppos); } static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) { return seq_cft(seq)->seq_next(seq, v, ppos); } static void cgroup_seqfile_stop(struct seq_file *seq, void *v) { seq_cft(seq)->seq_stop(seq, v); } static int cgroup_seqfile_show(struct seq_file *m, void *arg) { struct cftype *cft = seq_cft(m); struct cgroup_subsys_state *css = seq_css(m); if (cft->seq_show) return cft->seq_show(m, arg); if (cft->read_u64) seq_printf(m, "%llu\n", cft->read_u64(css, cft)); else if (cft->read_s64) seq_printf(m, "%lld\n", cft->read_s64(css, cft)); else return -EINVAL; return 0; } static struct kernfs_ops cgroup_kf_single_ops = { .atomic_write_len = PAGE_SIZE, .write = cgroup_file_write, .seq_show = cgroup_seqfile_show, }; static struct kernfs_ops cgroup_kf_ops = { .atomic_write_len = PAGE_SIZE, .write = cgroup_file_write, .seq_start = cgroup_seqfile_start, .seq_next = cgroup_seqfile_next, .seq_stop = cgroup_seqfile_stop, .seq_show = cgroup_seqfile_show, }; /* * cgroup_rename - Only allow simple rename of directories in place. */ static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name_str) { struct cgroup *cgrp = kn->priv; int ret; if (kernfs_type(kn) != KERNFS_DIR) return -ENOTDIR; if (kn->parent != new_parent) return -EIO; /* * This isn't a proper migration and its usefulness is very * limited. Disallow on the default hierarchy. */ if (cgroup_on_dfl(cgrp)) return -EPERM; /* * We're gonna grab cgroup_mutex which nests outside kernfs * active_ref. kernfs_rename() doesn't require active_ref * protection. Break them before grabbing cgroup_mutex. */ kernfs_break_active_protection(new_parent); kernfs_break_active_protection(kn); mutex_lock(&cgroup_mutex); ret = kernfs_rename(kn, new_parent, new_name_str); if (!ret) trace_cgroup_rename(cgrp); mutex_unlock(&cgroup_mutex); kernfs_unbreak_active_protection(kn); kernfs_unbreak_active_protection(new_parent); return ret; } /* set uid and gid of cgroup dirs and files to that of the creator */ static int cgroup_kn_set_ugid(struct kernfs_node *kn) { struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, .ia_uid = current_fsuid(), .ia_gid = current_fsgid(), }; if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) return 0; return kernfs_setattr(kn, &iattr); } static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, struct cftype *cft) { char name[CGROUP_FILE_NAME_MAX]; struct kernfs_node *kn; struct lock_class_key *key = NULL; int ret; #ifdef CONFIG_DEBUG_LOCK_ALLOC key = &cft->lockdep_key; #endif kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), cgroup_file_mode(cft), 0, cft->kf_ops, cft, NULL, key); if (IS_ERR(kn)) return PTR_ERR(kn); ret = cgroup_kn_set_ugid(kn); if (ret) { kernfs_remove(kn); return ret; } if (cft->file_offset) { struct cgroup_file *cfile = (void *)css + cft->file_offset; spin_lock_irq(&cgroup_file_kn_lock); cfile->kn = kn; spin_unlock_irq(&cgroup_file_kn_lock); } return 0; } /** * cgroup_addrm_files - add or remove files to a cgroup directory * @css: the target css * @cgrp: the target cgroup (usually css->cgroup) * @cfts: array of cftypes to be added * @is_add: whether to add or remove * * Depending on @is_add, add or remove files defined by @cfts on @cgrp. * For removals, this function never fails. */ static int cgroup_addrm_files(struct cgroup_subsys_state *css, struct cgroup *cgrp, struct cftype cfts[], bool is_add) { struct cftype *cft, *cft_end = NULL; int ret = 0; lockdep_assert_held(&cgroup_mutex); restart: for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { /* does cft->flags tell us to skip this file on @cgrp? */ if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) continue; if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) continue; if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) continue; if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) continue; if (is_add) { ret = cgroup_add_file(css, cgrp, cft); if (ret) { pr_warn("%s: failed to add %s, err=%d\n", __func__, cft->name, ret); cft_end = cft; is_add = false; goto restart; } } else { cgroup_rm_file(cgrp, cft); } } return ret; } static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) { LIST_HEAD(pending); struct cgroup_subsys *ss = cfts[0].ss; struct cgroup *root = &ss->root->cgrp; struct cgroup_subsys_state *css; int ret = 0; lockdep_assert_held(&cgroup_mutex); /* add/rm files for all cgroups created before */ css_for_each_descendant_pre(css, cgroup_css(root, ss)) { struct cgroup *cgrp = css->cgroup; if (!(css->flags & CSS_VISIBLE)) continue; ret = cgroup_addrm_files(css, cgrp, cfts, is_add); if (ret) break; } if (is_add && !ret) kernfs_activate(root->kn); return ret; } static void cgroup_exit_cftypes(struct cftype *cfts) { struct cftype *cft; for (cft = cfts; cft->name[0] != '\0'; cft++) { /* free copy for custom atomic_write_len, see init_cftypes() */ if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) kfree(cft->kf_ops); cft->kf_ops = NULL; cft->ss = NULL; /* revert flags set by cgroup core while adding @cfts */ cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); } } static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { struct cftype *cft; for (cft = cfts; cft->name[0] != '\0'; cft++) { struct kernfs_ops *kf_ops; WARN_ON(cft->ss || cft->kf_ops); if (cft->seq_start) kf_ops = &cgroup_kf_ops; else kf_ops = &cgroup_kf_single_ops; /* * Ugh... if @cft wants a custom max_write_len, we need to * make a copy of kf_ops to set its atomic_write_len. */ if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); if (!kf_ops) { cgroup_exit_cftypes(cfts); return -ENOMEM; } kf_ops->atomic_write_len = cft->max_write_len; } cft->kf_ops = kf_ops; cft->ss = ss; } return 0; } static int cgroup_rm_cftypes_locked(struct cftype *cfts) { lockdep_assert_held(&cgroup_mutex); if (!cfts || !cfts[0].ss) return -ENOENT; list_del(&cfts->node); cgroup_apply_cftypes(cfts, false); cgroup_exit_cftypes(cfts); return 0; } /** * cgroup_rm_cftypes - remove an array of cftypes from a subsystem * @cfts: zero-length name terminated array of cftypes * * Unregister @cfts. Files described by @cfts are removed from all * existing cgroups and all future cgroups won't have them either. This * function can be called anytime whether @cfts' subsys is attached or not. * * Returns 0 on successful unregistration, -ENOENT if @cfts is not * registered. */ int cgroup_rm_cftypes(struct cftype *cfts) { int ret; mutex_lock(&cgroup_mutex); ret = cgroup_rm_cftypes_locked(cfts); mutex_unlock(&cgroup_mutex); return ret; } /** * cgroup_add_cftypes - add an array of cftypes to a subsystem * @ss: target cgroup subsystem * @cfts: zero-length name terminated array of cftypes * * Register @cfts to @ss. Files described by @cfts are created for all * existing cgroups to which @ss is attached and all future cgroups will * have them too. This function can be called anytime whether @ss is * attached or not. * * Returns 0 on successful registration, -errno on failure. Note that this * function currently returns 0 as long as @cfts registration is successful * even if some file creation attempts on existing cgroups fail. */ static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { int ret; if (!cgroup_ssid_enabled(ss->id)) return 0; if (!cfts || cfts[0].name[0] == '\0') return 0; ret = cgroup_init_cftypes(ss, cfts); if (ret) return ret; mutex_lock(&cgroup_mutex); list_add_tail(&cfts->node, &ss->cfts); ret = cgroup_apply_cftypes(cfts, true); if (ret) cgroup_rm_cftypes_locked(cfts); mutex_unlock(&cgroup_mutex); return ret; } /** * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy * @ss: target cgroup subsystem * @cfts: zero-length name terminated array of cftypes * * Similar to cgroup_add_cftypes() but the added files are only used for * the default hierarchy. */ int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { struct cftype *cft; for (cft = cfts; cft && cft->name[0] != '\0'; cft++) cft->flags |= __CFTYPE_ONLY_ON_DFL; return cgroup_add_cftypes(ss, cfts); } /** * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies * @ss: target cgroup subsystem * @cfts: zero-length name terminated array of cftypes * * Similar to cgroup_add_cftypes() but the added files are only used for * the legacy hierarchies. */ int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { struct cftype *cft; for (cft = cfts; cft && cft->name[0] != '\0'; cft++) cft->flags |= __CFTYPE_NOT_ON_DFL; return cgroup_add_cftypes(ss, cfts); } /** * cgroup_file_notify - generate a file modified event for a cgroup_file * @cfile: target cgroup_file * * @cfile must have been obtained by setting cftype->file_offset. */ void cgroup_file_notify(struct cgroup_file *cfile) { unsigned long flags; spin_lock_irqsave(&cgroup_file_kn_lock, flags); if (cfile->kn) kernfs_notify(cfile->kn); spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); } /** * cgroup_task_count - count the number of tasks in a cgroup. * @cgrp: the cgroup in question * * Return the number of tasks in the cgroup. The returned number can be * higher than the actual number of tasks due to css_set references from * namespace roots and temporary usages. */ static int cgroup_task_count(const struct cgroup *cgrp) { int count = 0; struct cgrp_cset_link *link; spin_lock_irq(&css_set_lock); list_for_each_entry(link, &cgrp->cset_links, cset_link) count += atomic_read(&link->cset->refcount); spin_unlock_irq(&css_set_lock); return count; } /** * css_next_child - find the next child of a given css * @pos: the current position (%NULL to initiate traversal) * @parent: css whose children to walk * * This function returns the next child of @parent and should be called * under either cgroup_mutex or RCU read lock. The only requirement is * that @parent and @pos are accessible. The next sibling is guaranteed to * be returned regardless of their states. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. */ struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *parent) { struct cgroup_subsys_state *next; cgroup_assert_mutex_or_rcu_locked(); /* * @pos could already have been unlinked from the sibling list. * Once a cgroup is removed, its ->sibling.next is no longer * updated when its next sibling changes. CSS_RELEASED is set when * @pos is taken off list, at which time its next pointer is valid, * and, as releases are serialized, the one pointed to by the next * pointer is guaranteed to not have started release yet. This * implies that if we observe !CSS_RELEASED on @pos in this RCU * critical section, the one pointed to by its next pointer is * guaranteed to not have finished its RCU grace period even if we * have dropped rcu_read_lock() inbetween iterations. * * If @pos has CSS_RELEASED set, its next pointer can't be * dereferenced; however, as each css is given a monotonically * increasing unique serial number and always appended to the * sibling list, the next one can be found by walking the parent's * children until the first css with higher serial number than * @pos's. While this path can be slower, it happens iff iteration * races against release and the race window is very small. */ if (!pos) { next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); } else if (likely(!(pos->flags & CSS_RELEASED))) { next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); } else { list_for_each_entry_rcu(next, &parent->children, sibling) if (next->serial_nr > pos->serial_nr) break; } /* * @next, if not pointing to the head, can be dereferenced and is * the next sibling. */ if (&next->sibling != &parent->children) return next; return NULL; } /** * css_next_descendant_pre - find the next descendant for pre-order walk * @pos: the current position (%NULL to initiate traversal) * @root: css whose descendants to walk * * To be used by css_for_each_descendant_pre(). Find the next descendant * to visit for pre-order traversal of @root's descendants. @root is * included in the iteration and the first node to be visited. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. This function will return the correct next descendant as long * as both @pos and @root are accessible and @pos is a descendant of @root. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. */ struct cgroup_subsys_state * css_next_descendant_pre(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *root) { struct cgroup_subsys_state *next; cgroup_assert_mutex_or_rcu_locked(); /* if first iteration, visit @root */ if (!pos) return root; /* visit the first child if exists */ next = css_next_child(NULL, pos); if (next) return next; /* no child, visit my or the closest ancestor's next sibling */ while (pos != root) { next = css_next_child(pos, pos->parent); if (next) return next; pos = pos->parent; } return NULL; } /** * css_rightmost_descendant - return the rightmost descendant of a css * @pos: css of interest * * Return the rightmost descendant of @pos. If there's no descendant, @pos * is returned. This can be used during pre-order traversal to skip * subtree of @pos. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. This function will return the correct rightmost descendant as * long as @pos is accessible. */ struct cgroup_subsys_state * css_rightmost_descendant(struct cgroup_subsys_state *pos) { struct cgroup_subsys_state *last, *tmp; cgroup_assert_mutex_or_rcu_locked(); do { last = pos; /* ->prev isn't RCU safe, walk ->next till the end */ pos = NULL; css_for_each_child(tmp, last) pos = tmp; } while (pos); return last; } static struct cgroup_subsys_state * css_leftmost_descendant(struct cgroup_subsys_state *pos) { struct cgroup_subsys_state *last; do { last = pos; pos = css_next_child(NULL, pos); } while (pos); return last; } /** * css_next_descendant_post - find the next descendant for post-order walk * @pos: the current position (%NULL to initiate traversal) * @root: css whose descendants to walk * * To be used by css_for_each_descendant_post(). Find the next descendant * to visit for post-order traversal of @root's descendants. @root is * included in the iteration and the last node to be visited. * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical * section. This function will return the correct next descendant as long * as both @pos and @cgroup are accessible and @pos is a descendant of * @cgroup. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. */ struct cgroup_subsys_state * css_next_descendant_post(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *root) { struct cgroup_subsys_state *next; cgroup_assert_mutex_or_rcu_locked(); /* if first iteration, visit leftmost descendant which may be @root */ if (!pos) return css_leftmost_descendant(root); /* if we visited @root, we're done */ if (pos == root) return NULL; /* if there's an unvisited sibling, visit its leftmost descendant */ next = css_next_child(pos, pos->parent); if (next) return css_leftmost_descendant(next); /* no sibling left, visit parent */ return pos->parent; } /** * css_has_online_children - does a css have online children * @css: the target css * * Returns %true if @css has any online children; otherwise, %false. This * function can be called from any context but the caller is responsible * for synchronizing against on/offlining as necessary. */ bool css_has_online_children(struct cgroup_subsys_state *css) { struct cgroup_subsys_state *child; bool ret = false; rcu_read_lock(); css_for_each_child(child, css) { if (child->flags & CSS_ONLINE) { ret = true; break; } } rcu_read_unlock(); return ret; } /** * css_task_iter_advance_css_set - advance a task itererator to the next css_set * @it: the iterator to advance * * Advance @it to the next css_set to walk. */ static void css_task_iter_advance_css_set(struct css_task_iter *it) { struct list_head *l = it->cset_pos; struct cgrp_cset_link *link; struct css_set *cset; lockdep_assert_held(&css_set_lock); /* Advance to the next non-empty css_set */ do { l = l->next; if (l == it->cset_head) { it->cset_pos = NULL; it->task_pos = NULL; return; } if (it->ss) { cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); } else { link = list_entry(l, struct cgrp_cset_link, cset_link); cset = link->cset; } } while (!css_set_populated(cset)); it->cset_pos = l; if (!list_empty(&cset->tasks)) it->task_pos = cset->tasks.next; else it->task_pos = cset->mg_tasks.next; it->tasks_head = &cset->tasks; it->mg_tasks_head = &cset->mg_tasks; /* * We don't keep css_sets locked across iteration steps and thus * need to take steps to ensure that iteration can be resumed after * the lock is re-acquired. Iteration is performed at two levels - * css_sets and tasks in them. * * Once created, a css_set never leaves its cgroup lists, so a * pinned css_set is guaranteed to stay put and we can resume * iteration afterwards. * * Tasks may leave @cset across iteration steps. This is resolved * by registering each iterator with the css_set currently being * walked and making css_set_move_task() advance iterators whose * next task is leaving. */ if (it->cur_cset) { list_del(&it->iters_node); put_css_set_locked(it->cur_cset); } get_css_set(cset); it->cur_cset = cset; list_add(&it->iters_node, &cset->task_iters); } static void css_task_iter_advance(struct css_task_iter *it) { struct list_head *l = it->task_pos; lockdep_assert_held(&css_set_lock); WARN_ON_ONCE(!l); /* * Advance iterator to find next entry. cset->tasks is consumed * first and then ->mg_tasks. After ->mg_tasks, we move onto the * next cset. */ l = l->next; if (l == it->tasks_head) l = it->mg_tasks_head->next; if (l == it->mg_tasks_head) css_task_iter_advance_css_set(it); else it->task_pos = l; } /** * css_task_iter_start - initiate task iteration * @css: the css to walk tasks of * @it: the task iterator to use * * Initiate iteration through the tasks of @css. The caller can call * css_task_iter_next() to walk through the tasks until the function * returns NULL. On completion of iteration, css_task_iter_end() must be * called. */ void css_task_iter_start(struct cgroup_subsys_state *css, struct css_task_iter *it) { /* no one should try to iterate before mounting cgroups */ WARN_ON_ONCE(!use_task_css_set_links); memset(it, 0, sizeof(*it)); spin_lock_irq(&css_set_lock); it->ss = css->ss; if (it->ss) it->cset_pos = &css->cgroup->e_csets[css->ss->id]; else it->cset_pos = &css->cgroup->cset_links; it->cset_head = it->cset_pos; css_task_iter_advance_css_set(it); spin_unlock_irq(&css_set_lock); } /** * css_task_iter_next - return the next task for the iterator * @it: the task iterator being iterated * * The "next" function for task iteration. @it should have been * initialized via css_task_iter_start(). Returns NULL when the iteration * reaches the end. */ struct task_struct *css_task_iter_next(struct css_task_iter *it) { if (it->cur_task) { put_task_struct(it->cur_task); it->cur_task = NULL; } spin_lock_irq(&css_set_lock); if (it->task_pos) { it->cur_task = list_entry(it->task_pos, struct task_struct, cg_list); get_task_struct(it->cur_task); css_task_iter_advance(it); } spin_unlock_irq(&css_set_lock); return it->cur_task; } /** * css_task_iter_end - finish task iteration * @it: the task iterator to finish * * Finish task iteration started by css_task_iter_start(). */ void css_task_iter_end(struct css_task_iter *it) { if (it->cur_cset) { spin_lock_irq(&css_set_lock); list_del(&it->iters_node); put_css_set_locked(it->cur_cset); spin_unlock_irq(&css_set_lock); } if (it->cur_task) put_task_struct(it->cur_task); } /** * cgroup_trasnsfer_tasks - move tasks from one cgroup to another * @to: cgroup to which the tasks will be moved * @from: cgroup in which the tasks currently reside * * Locking rules between cgroup_post_fork() and the migration path * guarantee that, if a task is forking while being migrated, the new child * is guaranteed to be either visible in the source cgroup after the * parent's migration is complete or put into the target cgroup. No task * can slip out of migration through forking. */ int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) { LIST_HEAD(preloaded_csets); struct cgrp_cset_link *link; struct css_task_iter it; struct task_struct *task; int ret; if (!cgroup_may_migrate_to(to)) return -EBUSY; mutex_lock(&cgroup_mutex); percpu_down_write(&cgroup_threadgroup_rwsem); /* all tasks in @from are being moved, all csets are source */ spin_lock_irq(&css_set_lock); list_for_each_entry(link, &from->cset_links, cset_link) cgroup_migrate_add_src(link->cset, to, &preloaded_csets); spin_unlock_irq(&css_set_lock); ret = cgroup_migrate_prepare_dst(&preloaded_csets); if (ret) goto out_err; /* * Migrate tasks one-by-one until @from is empty. This fails iff * ->can_attach() fails. */ do { css_task_iter_start(&from->self, &it); do { task = css_task_iter_next(&it); } while (task && (task->flags & PF_EXITING)); if (task) get_task_struct(task); css_task_iter_end(&it); if (task) { ret = cgroup_migrate(task, false, to->root); if (!ret) trace_cgroup_transfer_tasks(to, task, false); put_task_struct(task); } } while (task && !ret); out_err: cgroup_migrate_finish(&preloaded_csets); percpu_up_write(&cgroup_threadgroup_rwsem); mutex_unlock(&cgroup_mutex); return ret; } /* * Stuff for reading the 'tasks'/'procs' files. * * Reading this file can return large amounts of data if a cgroup has * *lots* of attached tasks. So it may need several calls to read(), * but we cannot guarantee that the information we produce is correct * unless we produce it entirely atomically. * */ /* which pidlist file are we talking about? */ enum cgroup_filetype { CGROUP_FILE_PROCS, CGROUP_FILE_TASKS, }; /* * A pidlist is a list of pids that virtually represents the contents of one * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, * a pair (one each for procs, tasks) for each pid namespace that's relevant * to the cgroup. */ struct cgroup_pidlist { /* * used to find which pidlist is wanted. doesn't change as long as * this particular list stays in the list. */ struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; /* array of xids */ pid_t *list; /* how many elements the above list has */ int length; /* each of these stored in a list by its cgroup */ struct list_head links; /* pointer to the cgroup we belong to, for list removal purposes */ struct cgroup *owner; /* for delayed destruction */ struct delayed_work destroy_dwork; }; /* * The following two functions "fix" the issue where there are more pids * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. * TODO: replace with a kernel-wide solution to this problem */ #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) static void *pidlist_allocate(int count) { if (PIDLIST_TOO_LARGE(count)) return vmalloc(count * sizeof(pid_t)); else return kmalloc(count * sizeof(pid_t), GFP_KERNEL); } static void pidlist_free(void *p) { kvfree(p); } /* * Used to destroy all pidlists lingering waiting for destroy timer. None * should be left afterwards. */ static void cgroup_pidlist_destroy_all(struct cgroup *cgrp) { struct cgroup_pidlist *l, *tmp_l; mutex_lock(&cgrp->pidlist_mutex); list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); mutex_unlock(&cgrp->pidlist_mutex); flush_workqueue(cgroup_pidlist_destroy_wq); BUG_ON(!list_empty(&cgrp->pidlists)); } static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, destroy_dwork); struct cgroup_pidlist *tofree = NULL; mutex_lock(&l->owner->pidlist_mutex); /* * Destroy iff we didn't get queued again. The state won't change * as destroy_dwork can only be queued while locked. */ if (!delayed_work_pending(dwork)) { list_del(&l->links); pidlist_free(l->list); put_pid_ns(l->key.ns); tofree = l; } mutex_unlock(&l->owner->pidlist_mutex); kfree(tofree); } /* * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries * Returns the number of unique elements. */ static int pidlist_uniq(pid_t *list, int length) { int src, dest = 1; /* * we presume the 0th element is unique, so i starts at 1. trivial * edge cases first; no work needs to be done for either */ if (length == 0 || length == 1) return length; /* src and dest walk down the list; dest counts unique elements */ for (src = 1; src < length; src++) { /* find next unique element */ while (list[src] == list[src-1]) { src++; if (src == length) goto after; } /* dest always points to where the next unique element goes */ list[dest] = list[src]; dest++; } after: return dest; } /* * The two pid files - task and cgroup.procs - guaranteed that the result * is sorted, which forced this whole pidlist fiasco. As pid order is * different per namespace, each namespace needs differently sorted list, * making it impossible to use, for example, single rbtree of member tasks * sorted by task pointer. As pidlists can be fairly large, allocating one * per open file is dangerous, so cgroup had to implement shared pool of * pidlists keyed by cgroup and namespace. * * All this extra complexity was caused by the original implementation * committing to an entirely unnecessary property. In the long term, we * want to do away with it. Explicitly scramble sort order if on the * default hierarchy so that no such expectation exists in the new * interface. * * Scrambling is done by swapping every two consecutive bits, which is * non-identity one-to-one mapping which disturbs sort order sufficiently. */ static pid_t pid_fry(pid_t pid) { unsigned a = pid & 0x55555555; unsigned b = pid & 0xAAAAAAAA; return (a << 1) | (b >> 1); } static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid) { if (cgroup_on_dfl(cgrp)) return pid_fry(pid); else return pid; } static int cmppid(const void *a, const void *b) { return *(pid_t *)a - *(pid_t *)b; } static int fried_cmppid(const void *a, const void *b) { return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b); } static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, enum cgroup_filetype type) { struct cgroup_pidlist *l; /* don't need task_nsproxy() if we're looking at ourself */ struct pid_namespace *ns = task_active_pid_ns(current); lockdep_assert_held(&cgrp->pidlist_mutex); list_for_each_entry(l, &cgrp->pidlists, links) if (l->key.type == type && l->key.ns == ns) return l; return NULL; } /* * find the appropriate pidlist for our purpose (given procs vs tasks) * returns with the lock on that pidlist already held, and takes care * of the use count, or returns NULL with no locks held if we're out of * memory. */ static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, enum cgroup_filetype type) { struct cgroup_pidlist *l; lockdep_assert_held(&cgrp->pidlist_mutex); l = cgroup_pidlist_find(cgrp, type); if (l) return l; /* entry not found; create a new one */ l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); if (!l) return l; INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); l->key.type = type; /* don't need task_nsproxy() if we're looking at ourself */ l->key.ns = get_pid_ns(task_active_pid_ns(current)); l->owner = cgrp; list_add(&l->links, &cgrp->pidlists); return l; } /* * Load a cgroup's pidarray with either procs' tgids or tasks' pids */ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, struct cgroup_pidlist **lp) { pid_t *array; int length; int pid, n = 0; /* used for populating the array */ struct css_task_iter it; struct task_struct *tsk; struct cgroup_pidlist *l; lockdep_assert_held(&cgrp->pidlist_mutex); /* * If cgroup gets more users after we read count, we won't have * enough space - tough. This race is indistinguishable to the * caller from the case that the additional cgroup users didn't * show up until sometime later on. */ length = cgroup_task_count(cgrp); array = pidlist_allocate(length); if (!array) return -ENOMEM; /* now, populate the array */ css_task_iter_start(&cgrp->self, &it); while ((tsk = css_task_iter_next(&it))) { if (unlikely(n == length)) break; /* get tgid or pid for procs or tasks file respectively */ if (type == CGROUP_FILE_PROCS) pid = task_tgid_vnr(tsk); else pid = task_pid_vnr(tsk); if (pid > 0) /* make sure to only use valid results */ array[n++] = pid; } css_task_iter_end(&it); length = n; /* now sort & (if procs) strip out duplicates */ if (cgroup_on_dfl(cgrp)) sort(array, length, sizeof(pid_t), fried_cmppid, NULL); else sort(array, length, sizeof(pid_t), cmppid, NULL); if (type == CGROUP_FILE_PROCS) length = pidlist_uniq(array, length); l = cgroup_pidlist_find_create(cgrp, type); if (!l) { pidlist_free(array); return -ENOMEM; } /* store array, freeing old if necessary */ pidlist_free(l->list); l->list = array; l->length = length; *lp = l; return 0; } /** * cgroupstats_build - build and fill cgroupstats * @stats: cgroupstats to fill information into * @dentry: A dentry entry belonging to the cgroup for which stats have * been requested. * * Build and fill cgroupstats so that taskstats can export it to user * space. */ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) { struct kernfs_node *kn = kernfs_node_from_dentry(dentry); struct cgroup *cgrp; struct css_task_iter it; struct task_struct *tsk; /* it should be kernfs_node belonging to cgroupfs and is a directory */ if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || kernfs_type(kn) != KERNFS_DIR) return -EINVAL; mutex_lock(&cgroup_mutex); /* * We aren't being called from kernfs and there's no guarantee on * @kn->priv's validity. For this and css_tryget_online_from_dir(), * @kn->priv is RCU safe. Let's do the RCU dancing. */ rcu_read_lock(); cgrp = rcu_dereference(kn->priv); if (!cgrp || cgroup_is_dead(cgrp)) { rcu_read_unlock(); mutex_unlock(&cgroup_mutex); return -ENOENT; } rcu_read_unlock(); css_task_iter_start(&cgrp->self, &it); while ((tsk = css_task_iter_next(&it))) { switch (tsk->state) { case TASK_RUNNING: stats->nr_running++; break; case TASK_INTERRUPTIBLE: stats->nr_sleeping++; break; case TASK_UNINTERRUPTIBLE: stats->nr_uninterruptible++; break; case TASK_STOPPED: stats->nr_stopped++; break; default: if (delayacct_is_task_waiting_on_io(tsk)) stats->nr_io_wait++; break; } } css_task_iter_end(&it); mutex_unlock(&cgroup_mutex); return 0; } /* * seq_file methods for the tasks/procs files. The seq_file position is the * next pid to display; the seq_file iterator is a pointer to the pid * in the cgroup->l->list array. */ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) { /* * Initially we receive a position value that corresponds to * one more than the last pid shown (or 0 on the first call or * after a seek to the start). Use a binary-search to find the * next pid to display, if any */ struct kernfs_open_file *of = s->private; struct cgroup *cgrp = seq_css(s)->cgroup; struct cgroup_pidlist *l; enum cgroup_filetype type = seq_cft(s)->private; int index = 0, pid = *pos; int *iter, ret; mutex_lock(&cgrp->pidlist_mutex); /* * !NULL @of->priv indicates that this isn't the first start() * after open. If the matching pidlist is around, we can use that. * Look for it. Note that @of->priv can't be used directly. It * could already have been destroyed. */ if (of->priv) of->priv = cgroup_pidlist_find(cgrp, type); /* * Either this is the first start() after open or the matching * pidlist has been destroyed inbetween. Create a new one. */ if (!of->priv) { ret = pidlist_array_load(cgrp, type, (struct cgroup_pidlist **)&of->priv); if (ret) return ERR_PTR(ret); } l = of->priv; if (pid) { int end = l->length; while (index < end) { int mid = (index + end) / 2; if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) { index = mid; break; } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid) index = mid + 1; else end = mid; } } /* If we're off the end of the array, we're done */ if (index >= l->length) return NULL; /* Update the abstract position to be the actual pid that we found */ iter = l->list + index; *pos = cgroup_pid_fry(cgrp, *iter); return iter; } static void cgroup_pidlist_stop(struct seq_file *s, void *v) { struct kernfs_open_file *of = s->private; struct cgroup_pidlist *l = of->priv; if (l) mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, CGROUP_PIDLIST_DESTROY_DELAY); mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); } static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) { struct kernfs_open_file *of = s->private; struct cgroup_pidlist *l = of->priv; pid_t *p = v; pid_t *end = l->list + l->length; /* * Advance to the next pid in the array. If this goes off the * end, we're done */ p++; if (p >= end) { return NULL; } else { *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p); return p; } } static int cgroup_pidlist_show(struct seq_file *s, void *v) { seq_printf(s, "%d\n", *(int *)v); return 0; } static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft) { return notify_on_release(css->cgroup); } static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { if (val) set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); else clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); return 0; } static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, struct cftype *cft) { return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); } static int cgroup_clone_children_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { if (val) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); else clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); return 0; } /* cgroup core interface files for the default hierarchy */ static struct cftype cgroup_dfl_base_files[] = { { .name = "cgroup.procs", .file_offset = offsetof(struct cgroup, procs_file), .seq_start = cgroup_pidlist_start, .seq_next = cgroup_pidlist_next, .seq_stop = cgroup_pidlist_stop, .seq_show = cgroup_pidlist_show, .private = CGROUP_FILE_PROCS, .write = cgroup_procs_write, }, { .name = "cgroup.controllers", .seq_show = cgroup_controllers_show, }, { .name = "cgroup.subtree_control", .seq_show = cgroup_subtree_control_show, .write = cgroup_subtree_control_write, }, { .name = "cgroup.events", .flags = CFTYPE_NOT_ON_ROOT, .file_offset = offsetof(struct cgroup, events_file), .seq_show = cgroup_events_show, }, { } /* terminate */ }; /* cgroup core interface files for the legacy hierarchies */ static struct cftype cgroup_legacy_base_files[] = { { .name = "cgroup.procs", .seq_start = cgroup_pidlist_start, .seq_next = cgroup_pidlist_next, .seq_stop = cgroup_pidlist_stop, .seq_show = cgroup_pidlist_show, .private = CGROUP_FILE_PROCS, .write = cgroup_procs_write, }, { .name = "cgroup.clone_children", .read_u64 = cgroup_clone_children_read, .write_u64 = cgroup_clone_children_write, }, { .name = "cgroup.sane_behavior", .flags = CFTYPE_ONLY_ON_ROOT, .seq_show = cgroup_sane_behavior_show, }, { .name = "tasks", .seq_start = cgroup_pidlist_start, .seq_next = cgroup_pidlist_next, .seq_stop = cgroup_pidlist_stop, .seq_show = cgroup_pidlist_show, .private = CGROUP_FILE_TASKS, .write = cgroup_tasks_write, }, { .name = "notify_on_release", .read_u64 = cgroup_read_notify_on_release, .write_u64 = cgroup_write_notify_on_release, }, { .name = "release_agent", .flags = CFTYPE_ONLY_ON_ROOT, .seq_show = cgroup_release_agent_show, .write = cgroup_release_agent_write, .max_write_len = PATH_MAX - 1, }, { } /* terminate */ }; /* * css destruction is four-stage process. * * 1. Destruction starts. Killing of the percpu_ref is initiated. * Implemented in kill_css(). * * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs * and thus css_tryget_online() is guaranteed to fail, the css can be * offlined by invoking offline_css(). After offlining, the base ref is * put. Implemented in css_killed_work_fn(). * * 3. When the percpu_ref reaches zero, the only possible remaining * accessors are inside RCU read sections. css_release() schedules the * RCU callback. * * 4. After the grace period, the css can be freed. Implemented in * css_free_work_fn(). * * It is actually hairier because both step 2 and 4 require process context * and thus involve punting to css->destroy_work adding two additional * steps to the already complex sequence. */ static void css_free_work_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(work, struct cgroup_subsys_state, destroy_work); struct cgroup_subsys *ss = css->ss; struct cgroup *cgrp = css->cgroup; percpu_ref_exit(&css->refcnt); if (ss) { /* css free path */ struct cgroup_subsys_state *parent = css->parent; int id = css->id; ss->css_free(css); cgroup_idr_remove(&ss->css_idr, id); cgroup_put(cgrp); if (parent) css_put(parent); } else { /* cgroup free path */ atomic_dec(&cgrp->root->nr_cgrps); cgroup_pidlist_destroy_all(cgrp); cancel_work_sync(&cgrp->release_agent_work); if (cgroup_parent(cgrp)) { /* * We get a ref to the parent, and put the ref when * this cgroup is being freed, so it's guaranteed * that the parent won't be destroyed before its * children. */ cgroup_put(cgroup_parent(cgrp)); kernfs_put(cgrp->kn); kfree(cgrp); } else { /* * This is root cgroup's refcnt reaching zero, * which indicates that the root should be * released. */ cgroup_destroy_root(cgrp->root); } } } static void css_free_rcu_fn(struct rcu_head *rcu_head) { struct cgroup_subsys_state *css = container_of(rcu_head, struct cgroup_subsys_state, rcu_head); INIT_WORK(&css->destroy_work, css_free_work_fn); queue_work(cgroup_destroy_wq, &css->destroy_work); } static void css_release_work_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(work, struct cgroup_subsys_state, destroy_work); struct cgroup_subsys *ss = css->ss; struct cgroup *cgrp = css->cgroup; mutex_lock(&cgroup_mutex); css->flags |= CSS_RELEASED; list_del_rcu(&css->sibling); if (ss) { /* css release path */ cgroup_idr_replace(&ss->css_idr, NULL, css->id); if (ss->css_released) ss->css_released(css); } else { /* cgroup release path */ trace_cgroup_release(cgrp); cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); cgrp->id = -1; /* * There are two control paths which try to determine * cgroup from dentry without going through kernfs - * cgroupstats_build() and css_tryget_online_from_dir(). * Those are supported by RCU protecting clearing of * cgrp->kn->priv backpointer. */ if (cgrp->kn) RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL); } mutex_unlock(&cgroup_mutex); call_rcu(&css->rcu_head, css_free_rcu_fn); } static void css_release(struct percpu_ref *ref) { struct cgroup_subsys_state *css = container_of(ref, struct cgroup_subsys_state, refcnt); INIT_WORK(&css->destroy_work, css_release_work_fn); queue_work(cgroup_destroy_wq, &css->destroy_work); } static void init_and_link_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss, struct cgroup *cgrp) { lockdep_assert_held(&cgroup_mutex); cgroup_get(cgrp); memset(css, 0, sizeof(*css)); css->cgroup = cgrp; css->ss = ss; css->id = -1; INIT_LIST_HEAD(&css->sibling); INIT_LIST_HEAD(&css->children); css->serial_nr = css_serial_nr_next++; atomic_set(&css->online_cnt, 0); if (cgroup_parent(cgrp)) { css->parent = cgroup_css(cgroup_parent(cgrp), ss); css_get(css->parent); } BUG_ON(cgroup_css(cgrp, ss)); } /* invoke ->css_online() on a new CSS and mark it online if successful */ static int online_css(struct cgroup_subsys_state *css) { struct cgroup_subsys *ss = css->ss; int ret = 0; lockdep_assert_held(&cgroup_mutex); if (ss->css_online) ret = ss->css_online(css); if (!ret) { css->flags |= CSS_ONLINE; rcu_assign_pointer(css->cgroup->subsys[ss->id], css); atomic_inc(&css->online_cnt); if (css->parent) atomic_inc(&css->parent->online_cnt); } return ret; } /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ static void offline_css(struct cgroup_subsys_state *css) { struct cgroup_subsys *ss = css->ss; lockdep_assert_held(&cgroup_mutex); if (!(css->flags & CSS_ONLINE)) return; if (ss->css_reset) ss->css_reset(css); if (ss->css_offline) ss->css_offline(css); css->flags &= ~CSS_ONLINE; RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); wake_up_all(&css->cgroup->offline_waitq); } /** * css_create - create a cgroup_subsys_state * @cgrp: the cgroup new css will be associated with * @ss: the subsys of new css * * Create a new css associated with @cgrp - @ss pair. On success, the new * css is online and installed in @cgrp. This function doesn't create the * interface files. Returns 0 on success, -errno on failure. */ static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, struct cgroup_subsys *ss) { struct cgroup *parent = cgroup_parent(cgrp); struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); struct cgroup_subsys_state *css; int err; lockdep_assert_held(&cgroup_mutex); css = ss->css_alloc(parent_css); if (!css) css = ERR_PTR(-ENOMEM); if (IS_ERR(css)) return css; init_and_link_css(css, ss, cgrp); err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); if (err) goto err_free_css; err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); if (err < 0) goto err_free_css; css->id = err; /* @css is ready to be brought online now, make it visible */ list_add_tail_rcu(&css->sibling, &parent_css->children); cgroup_idr_replace(&ss->css_idr, css, css->id); err = online_css(css); if (err) goto err_list_del; if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && cgroup_parent(parent)) { pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", current->comm, current->pid, ss->name); if (!strcmp(ss->name, "memory")) pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); ss->warned_broken_hierarchy = true; } return css; err_list_del: list_del_rcu(&css->sibling); err_free_css: call_rcu(&css->rcu_head, css_free_rcu_fn); return ERR_PTR(err); } /* * The returned cgroup is fully initialized including its control mask, but * it isn't associated with its kernfs_node and doesn't have the control * mask applied. */ static struct cgroup *cgroup_create(struct cgroup *parent) { struct cgroup_root *root = parent->root; struct cgroup *cgrp, *tcgrp; int level = parent->level + 1; int ret; /* allocate the cgroup and its ID, 0 is reserved for the root */ cgrp = kzalloc(sizeof(*cgrp) + sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); if (!cgrp) return ERR_PTR(-ENOMEM); ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); if (ret) goto out_free_cgrp; /* * Temporarily set the pointer to NULL, so idr_find() won't return * a half-baked cgroup. */ cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); if (cgrp->id < 0) { ret = -ENOMEM; goto out_cancel_ref; } init_cgroup_housekeeping(cgrp); cgrp->self.parent = &parent->self; cgrp->root = root; cgrp->level = level; for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; if (notify_on_release(parent)) set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); cgrp->self.serial_nr = css_serial_nr_next++; /* allocation complete, commit to creation */ list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); atomic_inc(&root->nr_cgrps); cgroup_get(parent); /* * @cgrp is now fully operational. If something fails after this * point, it'll be released via the normal destruction path. */ cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); /* * On the default hierarchy, a child doesn't automatically inherit * subtree_control from the parent. Each is configured manually. */ if (!cgroup_on_dfl(cgrp)) cgrp->subtree_control = cgroup_control(cgrp); cgroup_propagate_control(cgrp); return cgrp; out_cancel_ref: percpu_ref_exit(&cgrp->self.refcnt); out_free_cgrp: kfree(cgrp); return ERR_PTR(ret); } static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) { struct cgroup *parent, *cgrp; struct kernfs_node *kn; int ret; /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ if (strchr(name, '\n')) return -EINVAL; parent = cgroup_kn_lock_live(parent_kn, false); if (!parent) return -ENODEV; cgrp = cgroup_create(parent); if (IS_ERR(cgrp)) { ret = PTR_ERR(cgrp); goto out_unlock; } /* create the directory */ kn = kernfs_create_dir(parent->kn, name, mode, cgrp); if (IS_ERR(kn)) { ret = PTR_ERR(kn); goto out_destroy; } cgrp->kn = kn; /* * This extra ref will be put in cgroup_free_fn() and guarantees * that @cgrp->kn is always accessible. */ kernfs_get(kn); ret = cgroup_kn_set_ugid(kn); if (ret) goto out_destroy; ret = css_populate_dir(&cgrp->self); if (ret) goto out_destroy; ret = cgroup_apply_control_enable(cgrp); if (ret) goto out_destroy; trace_cgroup_mkdir(cgrp); /* let's create and online css's */ kernfs_activate(kn); ret = 0; goto out_unlock; out_destroy: cgroup_destroy_locked(cgrp); out_unlock: cgroup_kn_unlock(parent_kn); return ret; } /* * This is called when the refcnt of a css is confirmed to be killed. * css_tryget_online() is now guaranteed to fail. Tell the subsystem to * initate destruction and put the css ref from kill_css(). */ static void css_killed_work_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(work, struct cgroup_subsys_state, destroy_work); mutex_lock(&cgroup_mutex); do { offline_css(css); css_put(css); /* @css can't go away while we're holding cgroup_mutex */ css = css->parent; } while (css && atomic_dec_and_test(&css->online_cnt)); mutex_unlock(&cgroup_mutex); } /* css kill confirmation processing requires process context, bounce */ static void css_killed_ref_fn(struct percpu_ref *ref) { struct cgroup_subsys_state *css = container_of(ref, struct cgroup_subsys_state, refcnt); if (atomic_dec_and_test(&css->online_cnt)) { INIT_WORK(&css->destroy_work, css_killed_work_fn); queue_work(cgroup_destroy_wq, &css->destroy_work); } } /** * kill_css - destroy a css * @css: css to destroy * * This function initiates destruction of @css by removing cgroup interface * files and putting its base reference. ->css_offline() will be invoked * asynchronously once css_tryget_online() is guaranteed to fail and when * the reference count reaches zero, @css will be released. */ static void kill_css(struct cgroup_subsys_state *css) { lockdep_assert_held(&cgroup_mutex); if (css->flags & CSS_DYING) return; css->flags |= CSS_DYING; /* * This must happen before css is disassociated with its cgroup. * See seq_css() for details. */ css_clear_dir(css); /* * Killing would put the base ref, but we need to keep it alive * until after ->css_offline(). */ css_get(css); /* * cgroup core guarantees that, by the time ->css_offline() is * invoked, no new css reference will be given out via * css_tryget_online(). We can't simply call percpu_ref_kill() and * proceed to offlining css's because percpu_ref_kill() doesn't * guarantee that the ref is seen as killed on all CPUs on return. * * Use percpu_ref_kill_and_confirm() to get notifications as each * css is confirmed to be seen as killed on all CPUs. */ percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); } /** * cgroup_destroy_locked - the first stage of cgroup destruction * @cgrp: cgroup to be destroyed * * css's make use of percpu refcnts whose killing latency shouldn't be * exposed to userland and are RCU protected. Also, cgroup core needs to * guarantee that css_tryget_online() won't succeed by the time * ->css_offline() is invoked. To satisfy all the requirements, * destruction is implemented in the following two steps. * * s1. Verify @cgrp can be destroyed and mark it dying. Remove all * userland visible parts and start killing the percpu refcnts of * css's. Set up so that the next stage will be kicked off once all * the percpu refcnts are confirmed to be killed. * * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the * rest of destruction. Once all cgroup references are gone, the * cgroup is RCU-freed. * * This function implements s1. After this step, @cgrp is gone as far as * the userland is concerned and a new cgroup with the same name may be * created. As cgroup doesn't care about the names internally, this * doesn't cause any problem. */ static int cgroup_destroy_locked(struct cgroup *cgrp) __releases(&cgroup_mutex) __acquires(&cgroup_mutex) { struct cgroup_subsys_state *css; struct cgrp_cset_link *link; int ssid; lockdep_assert_held(&cgroup_mutex); /* * Only migration can raise populated from zero and we're already * holding cgroup_mutex. */ if (cgroup_is_populated(cgrp)) return -EBUSY; /* * Make sure there's no live children. We can't test emptiness of * ->self.children as dead children linger on it while being * drained; otherwise, "rmdir parent/child parent" may fail. */ if (css_has_online_children(&cgrp->self)) return -EBUSY; /* * Mark @cgrp and the associated csets dead. The former prevents * further task migration and child creation by disabling * cgroup_lock_live_group(). The latter makes the csets ignored by * the migration path. */ cgrp->self.flags &= ~CSS_ONLINE; spin_lock_irq(&css_set_lock); list_for_each_entry(link, &cgrp->cset_links, cset_link) link->cset->dead = true; spin_unlock_irq(&css_set_lock); /* initiate massacre of all css's */ for_each_css(css, ssid, cgrp) kill_css(css); /* * Remove @cgrp directory along with the base files. @cgrp has an * extra ref on its kn. */ kernfs_remove(cgrp->kn); check_for_release(cgroup_parent(cgrp)); /* put the base reference */ percpu_ref_kill(&cgrp->self.refcnt); return 0; }; static int cgroup_rmdir(struct kernfs_node *kn) { struct cgroup *cgrp; int ret = 0; cgrp = cgroup_kn_lock_live(kn, false); if (!cgrp) return 0; ret = cgroup_destroy_locked(cgrp); if (!ret) trace_cgroup_rmdir(cgrp); cgroup_kn_unlock(kn); return ret; } static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { .remount_fs = cgroup_remount, .show_options = cgroup_show_options, .mkdir = cgroup_mkdir, .rmdir = cgroup_rmdir, .rename = cgroup_rename, .show_path = cgroup_show_path, }; static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) { struct cgroup_subsys_state *css; pr_debug("Initializing cgroup subsys %s\n", ss->name); mutex_lock(&cgroup_mutex); idr_init(&ss->css_idr); INIT_LIST_HEAD(&ss->cfts); /* Create the root cgroup state for this subsystem */ ss->root = &cgrp_dfl_root; css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); /* We don't handle early failures gracefully */ BUG_ON(IS_ERR(css)); init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); /* * Root csses are never destroyed and we can't initialize * percpu_ref during early init. Disable refcnting. */ css->flags |= CSS_NO_REF; if (early) { /* allocation can't be done safely during early init */ css->id = 1; } else { css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); BUG_ON(css->id < 0); } /* Update the init_css_set to contain a subsys * pointer to this state - since the subsystem is * newly registered, all tasks and hence the * init_css_set is in the subsystem's root cgroup. */ init_css_set.subsys[ss->id] = css; have_fork_callback |= (bool)ss->fork << ss->id; have_exit_callback |= (bool)ss->exit << ss->id; have_free_callback |= (bool)ss->free << ss->id; have_canfork_callback |= (bool)ss->can_fork << ss->id; /* At system boot, before all subsystems have been * registered, no tasks have been forked, so we don't * need to invoke fork callbacks here. */ BUG_ON(!list_empty(&init_task.tasks)); BUG_ON(online_css(css)); mutex_unlock(&cgroup_mutex); } /** * cgroup_init_early - cgroup initialization at system boot * * Initialize cgroups at system boot, and initialize any * subsystems that request early init. */ int __init cgroup_init_early(void) { static struct cgroup_sb_opts __initdata opts; struct cgroup_subsys *ss; int i; init_cgroup_root(&cgrp_dfl_root, &opts); cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; RCU_INIT_POINTER(init_task.cgroups, &init_css_set); for_each_subsys(ss, i) { WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, ss->id, ss->name); WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); ss->id = i; ss->name = cgroup_subsys_name[i]; if (!ss->legacy_name) ss->legacy_name = cgroup_subsys_name[i]; if (ss->early_init) cgroup_init_subsys(ss, true); } return 0; } static u16 cgroup_disable_mask __initdata; /** * cgroup_init - cgroup initialization * * Register cgroup filesystem and /proc file, and initialize * any subsystems that didn't request early init. */ int __init cgroup_init(void) { struct cgroup_subsys *ss; int ssid; BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files)); BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files)); /* * The latency of the synchronize_sched() is too high for cgroups, * avoid it at the cost of forcing all readers into the slow path. */ rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); get_user_ns(init_cgroup_ns.user_ns); mutex_lock(&cgroup_mutex); /* * Add init_css_set to the hash table so that dfl_root can link to * it during init. */ hash_add(css_set_table, &init_css_set.hlist, css_set_hash(init_css_set.subsys)); BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); mutex_unlock(&cgroup_mutex); for_each_subsys(ss, ssid) { if (ss->early_init) { struct cgroup_subsys_state *css = init_css_set.subsys[ss->id]; css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); BUG_ON(css->id < 0); } else { cgroup_init_subsys(ss, false); } list_add_tail(&init_css_set.e_cset_node[ssid], &cgrp_dfl_root.cgrp.e_csets[ssid]); /* * Setting dfl_root subsys_mask needs to consider the * disabled flag and cftype registration needs kmalloc, * both of which aren't available during early_init. */ if (cgroup_disable_mask & (1 << ssid)) { static_branch_disable(cgroup_subsys_enabled_key[ssid]); printk(KERN_INFO "Disabling %s control group subsystem\n", ss->name); continue; } if (cgroup_ssid_no_v1(ssid)) printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", ss->name); cgrp_dfl_root.subsys_mask |= 1 << ss->id; if (ss->implicit_on_dfl) cgrp_dfl_implicit_ss_mask |= 1 << ss->id; else if (!ss->dfl_cftypes) cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; if (ss->dfl_cftypes == ss->legacy_cftypes) { WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); } else { WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); } if (ss->bind) ss->bind(init_css_set.subsys[ssid]); mutex_lock(&cgroup_mutex); css_populate_dir(init_css_set.subsys[ssid]); mutex_unlock(&cgroup_mutex); } /* init_css_set.subsys[] has been updated, re-hash */ hash_del(&init_css_set.hlist); hash_add(css_set_table, &init_css_set.hlist, css_set_hash(init_css_set.subsys)); WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); WARN_ON(register_filesystem(&cgroup_fs_type)); WARN_ON(register_filesystem(&cgroup2_fs_type)); WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); return 0; } static int __init cgroup_wq_init(void) { /* * There isn't much point in executing destruction path in * parallel. Good chunk is serialized with cgroup_mutex anyway. * Use 1 for @max_active. * * We would prefer to do this in cgroup_init() above, but that * is called before init_workqueues(): so leave this until after. */ cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); BUG_ON(!cgroup_destroy_wq); /* * Used to destroy pidlists and separate to serve as flush domain. * Cap @max_active to 1 too. */ cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 0, 1); BUG_ON(!cgroup_pidlist_destroy_wq); return 0; } core_initcall(cgroup_wq_init); /* * proc_cgroup_show() * - Print task's cgroup paths into seq_file, one line for each hierarchy * - Used for /proc/<pid>/cgroup. */ int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *tsk) { char *buf; int retval; struct cgroup_root *root; retval = -ENOMEM; buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) goto out; mutex_lock(&cgroup_mutex); spin_lock_irq(&css_set_lock); for_each_root(root) { struct cgroup_subsys *ss; struct cgroup *cgrp; int ssid, count = 0; if (root == &cgrp_dfl_root && !cgrp_dfl_visible) continue; seq_printf(m, "%d:", root->hierarchy_id); if (root != &cgrp_dfl_root) for_each_subsys(ss, ssid) if (root->subsys_mask & (1 << ssid)) seq_printf(m, "%s%s", count++ ? "," : "", ss->legacy_name); if (strlen(root->name)) seq_printf(m, "%sname=%s", count ? "," : "", root->name); seq_putc(m, ':'); cgrp = task_cgroup_from_root(tsk, root); /* * On traditional hierarchies, all zombie tasks show up as * belonging to the root cgroup. On the default hierarchy, * while a zombie doesn't show up in "cgroup.procs" and * thus can't be migrated, its /proc/PID/cgroup keeps * reporting the cgroup it belonged to before exiting. If * the cgroup is removed before the zombie is reaped, * " (deleted)" is appended to the cgroup path. */ if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, current->nsproxy->cgroup_ns); if (retval >= PATH_MAX) retval = -ENAMETOOLONG; if (retval < 0) goto out_unlock; seq_puts(m, buf); } else { seq_puts(m, "/"); } if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) seq_puts(m, " (deleted)\n"); else seq_putc(m, '\n'); } retval = 0; out_unlock: spin_unlock_irq(&css_set_lock); mutex_unlock(&cgroup_mutex); kfree(buf); out: return retval; } /* Display information about each subsystem and each hierarchy */ static int proc_cgroupstats_show(struct seq_file *m, void *v) { struct cgroup_subsys *ss; int i; seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); /* * ideally we don't want subsystems moving around while we do this. * cgroup_mutex is also necessary to guarantee an atomic snapshot of * subsys/hierarchy state. */ mutex_lock(&cgroup_mutex); for_each_subsys(ss, i) seq_printf(m, "%s\t%d\t%d\t%d\n", ss->legacy_name, ss->root->hierarchy_id, atomic_read(&ss->root->nr_cgrps), cgroup_ssid_enabled(i)); mutex_unlock(&cgroup_mutex); return 0; } static int cgroupstats_open(struct inode *inode, struct file *file) { return single_open(file, proc_cgroupstats_show, NULL); } static const struct file_operations proc_cgroupstats_operations = { .open = cgroupstats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /** * cgroup_fork - initialize cgroup related fields during copy_process() * @child: pointer to task_struct of forking parent process. * * A task is associated with the init_css_set until cgroup_post_fork() * attaches it to the parent's css_set. Empty cg_list indicates that * @child isn't holding reference to its css_set. */ void cgroup_fork(struct task_struct *child) { RCU_INIT_POINTER(child->cgroups, &init_css_set); INIT_LIST_HEAD(&child->cg_list); } /** * cgroup_can_fork - called on a new task before the process is exposed * @child: the task in question. * * This calls the subsystem can_fork() callbacks. If the can_fork() callback * returns an error, the fork aborts with that error code. This allows for * a cgroup subsystem to conditionally allow or deny new forks. */ int cgroup_can_fork(struct task_struct *child) { struct cgroup_subsys *ss; int i, j, ret; do_each_subsys_mask(ss, i, have_canfork_callback) { ret = ss->can_fork(child); if (ret) goto out_revert; } while_each_subsys_mask(); return 0; out_revert: for_each_subsys(ss, j) { if (j >= i) break; if (ss->cancel_fork) ss->cancel_fork(child); } return ret; } /** * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() * @child: the task in question * * This calls the cancel_fork() callbacks if a fork failed *after* * cgroup_can_fork() succeded. */ void cgroup_cancel_fork(struct task_struct *child) { struct cgroup_subsys *ss; int i; for_each_subsys(ss, i) if (ss->cancel_fork) ss->cancel_fork(child); } /** * cgroup_post_fork - called on a new task after adding it to the task list * @child: the task in question * * Adds the task to the list running through its css_set if necessary and * call the subsystem fork() callbacks. Has to be after the task is * visible on the task list in case we race with the first call to * cgroup_task_iter_start() - to guarantee that the new task ends up on its * list. */ void cgroup_post_fork(struct task_struct *child) { struct cgroup_subsys *ss; int i; /* * This may race against cgroup_enable_task_cg_lists(). As that * function sets use_task_css_set_links before grabbing * tasklist_lock and we just went through tasklist_lock to add * @child, it's guaranteed that either we see the set * use_task_css_set_links or cgroup_enable_task_cg_lists() sees * @child during its iteration. * * If we won the race, @child is associated with %current's * css_set. Grabbing css_set_lock guarantees both that the * association is stable, and, on completion of the parent's * migration, @child is visible in the source of migration or * already in the destination cgroup. This guarantee is necessary * when implementing operations which need to migrate all tasks of * a cgroup to another. * * Note that if we lose to cgroup_enable_task_cg_lists(), @child * will remain in init_css_set. This is safe because all tasks are * in the init_css_set before cg_links is enabled and there's no * operation which transfers all tasks out of init_css_set. */ if (use_task_css_set_links) { struct css_set *cset; spin_lock_irq(&css_set_lock); cset = task_css_set(current); if (list_empty(&child->cg_list)) { get_css_set(cset); css_set_move_task(child, NULL, cset, false); } spin_unlock_irq(&css_set_lock); } /* * Call ss->fork(). This must happen after @child is linked on * css_set; otherwise, @child might change state between ->fork() * and addition to css_set. */ do_each_subsys_mask(ss, i, have_fork_callback) { ss->fork(child); } while_each_subsys_mask(); } /** * cgroup_exit - detach cgroup from exiting task * @tsk: pointer to task_struct of exiting process * * Description: Detach cgroup from @tsk and release it. * * Note that cgroups marked notify_on_release force every task in * them to take the global cgroup_mutex mutex when exiting. * This could impact scaling on very large systems. Be reluctant to * use notify_on_release cgroups where very high task exit scaling * is required on large systems. * * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We * call cgroup_exit() while the task is still competent to handle * notify_on_release(), then leave the task attached to the root cgroup in * each hierarchy for the remainder of its exit. No need to bother with * init_css_set refcnting. init_css_set never goes away and we can't race * with migration path - PF_EXITING is visible to migration path. */ void cgroup_exit(struct task_struct *tsk) { struct cgroup_subsys *ss; struct css_set *cset; int i; /* * Unlink from @tsk from its css_set. As migration path can't race * with us, we can check css_set and cg_list without synchronization. */ cset = task_css_set(tsk); if (!list_empty(&tsk->cg_list)) { spin_lock_irq(&css_set_lock); css_set_move_task(tsk, cset, NULL, false); spin_unlock_irq(&css_set_lock); } else { get_css_set(cset); } /* see cgroup_post_fork() for details */ do_each_subsys_mask(ss, i, have_exit_callback) { ss->exit(tsk); } while_each_subsys_mask(); } void cgroup_free(struct task_struct *task) { struct css_set *cset = task_css_set(task); struct cgroup_subsys *ss; int ssid; do_each_subsys_mask(ss, ssid, have_free_callback) { ss->free(task); } while_each_subsys_mask(); put_css_set(cset); } static void check_for_release(struct cgroup *cgrp) { if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) schedule_work(&cgrp->release_agent_work); } /* * Notify userspace when a cgroup is released, by running the * configured release agent with the name of the cgroup (path * relative to the root of cgroup file system) as the argument. * * Most likely, this user command will try to rmdir this cgroup. * * This races with the possibility that some other task will be * attached to this cgroup before it is removed, or that some other * user task will 'mkdir' a child cgroup of this cgroup. That's ok. * The presumed 'rmdir' will fail quietly if this cgroup is no longer * unused, and this cgroup will be reprieved from its death sentence, * to continue to serve a useful existence. Next time it's released, * we will get notified again, if it still has 'notify_on_release' set. * * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which * means only wait until the task is successfully execve()'d. The * separate release agent task is forked by call_usermodehelper(), * then control in this thread returns here, without waiting for the * release agent task. We don't bother to wait because the caller of * this routine has no use for the exit status of the release agent * task, so no sense holding our caller up for that. */ static void cgroup_release_agent(struct work_struct *work) { struct cgroup *cgrp = container_of(work, struct cgroup, release_agent_work); char *pathbuf = NULL, *agentbuf = NULL; char *argv[3], *envp[3]; int ret; mutex_lock(&cgroup_mutex); pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); if (!pathbuf || !agentbuf) goto out; spin_lock_irq(&css_set_lock); ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); spin_unlock_irq(&css_set_lock); if (ret < 0 || ret >= PATH_MAX) goto out; argv[0] = agentbuf; argv[1] = pathbuf; argv[2] = NULL; /* minimal command environment */ envp[0] = "HOME=/"; envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; envp[2] = NULL; mutex_unlock(&cgroup_mutex); call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); goto out_free; out: mutex_unlock(&cgroup_mutex); out_free: kfree(agentbuf); kfree(pathbuf); } static int __init cgroup_disable(char *str) { struct cgroup_subsys *ss; char *token; int i; while ((token = strsep(&str, ",")) != NULL) { if (!*token) continue; for_each_subsys(ss, i) { if (strcmp(token, ss->name) && strcmp(token, ss->legacy_name)) continue; cgroup_disable_mask |= 1 << i; } } return 1; } __setup("cgroup_disable=", cgroup_disable); static int __init cgroup_no_v1(char *str) { struct cgroup_subsys *ss; char *token; int i; while ((token = strsep(&str, ",")) != NULL) { if (!*token) continue; if (!strcmp(token, "all")) { cgroup_no_v1_mask = U16_MAX; break; } for_each_subsys(ss, i) { if (strcmp(token, ss->name) && strcmp(token, ss->legacy_name)) continue; cgroup_no_v1_mask |= 1 << i; } } return 1; } __setup("cgroup_no_v1=", cgroup_no_v1); /** * css_tryget_online_from_dir - get corresponding css from a cgroup dentry * @dentry: directory dentry of interest * @ss: subsystem of interest * * If @dentry is a directory for a cgroup which has @ss enabled on it, try * to get the corresponding css and return it. If such css doesn't exist * or can't be pinned, an ERR_PTR value is returned. */ struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, struct cgroup_subsys *ss) { struct kernfs_node *kn = kernfs_node_from_dentry(dentry); struct file_system_type *s_type = dentry->d_sb->s_type; struct cgroup_subsys_state *css = NULL; struct cgroup *cgrp; /* is @dentry a cgroup dir? */ if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || !kn || kernfs_type(kn) != KERNFS_DIR) return ERR_PTR(-EBADF); rcu_read_lock(); /* * This path doesn't originate from kernfs and @kn could already * have been or be removed at any point. @kn->priv is RCU * protected for this access. See css_release_work_fn() for details. */ cgrp = rcu_dereference(kn->priv); if (cgrp) css = cgroup_css(cgrp, ss); if (!css || !css_tryget_online(css)) css = ERR_PTR(-ENOENT); rcu_read_unlock(); return css; } /** * css_from_id - lookup css by id * @id: the cgroup id * @ss: cgroup subsys to be looked into * * Returns the css if there's valid one with @id, otherwise returns NULL. * Should be called under rcu_read_lock(). */ struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) { WARN_ON_ONCE(!rcu_read_lock_held()); return idr_find(&ss->css_idr, id); } /** * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path * @path: path on the default hierarchy * * Find the cgroup at @path on the default hierarchy, increment its * reference count and return it. Returns pointer to the found cgroup on * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) * if @path points to a non-directory. */ struct cgroup *cgroup_get_from_path(const char *path) { struct kernfs_node *kn; struct cgroup *cgrp; mutex_lock(&cgroup_mutex); kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); if (kn) { if (kernfs_type(kn) == KERNFS_DIR) { cgrp = kn->priv; cgroup_get(cgrp); } else { cgrp = ERR_PTR(-ENOTDIR); } kernfs_put(kn); } else { cgrp = ERR_PTR(-ENOENT); } mutex_unlock(&cgroup_mutex); return cgrp; } EXPORT_SYMBOL_GPL(cgroup_get_from_path); /** * cgroup_get_from_fd - get a cgroup pointer from a fd * @fd: fd obtained by open(cgroup2_dir) * * Find the cgroup from a fd which should be obtained * by opening a cgroup directory. Returns a pointer to the * cgroup on success. ERR_PTR is returned if the cgroup * cannot be found. */ struct cgroup *cgroup_get_from_fd(int fd) { struct cgroup_subsys_state *css; struct cgroup *cgrp; struct file *f; f = fget_raw(fd); if (!f) return ERR_PTR(-EBADF); css = css_tryget_online_from_dir(f->f_path.dentry, NULL); fput(f); if (IS_ERR(css)) return ERR_CAST(css); cgrp = css->cgroup; if (!cgroup_on_dfl(cgrp)) { cgroup_put(cgrp); return ERR_PTR(-EBADF); } return cgrp; } EXPORT_SYMBOL_GPL(cgroup_get_from_fd); /* * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data * definition in cgroup-defs.h. */ #ifdef CONFIG_SOCK_CGROUP_DATA #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) DEFINE_SPINLOCK(cgroup_sk_update_lock); static bool cgroup_sk_alloc_disabled __read_mostly; void cgroup_sk_alloc_disable(void) { if (cgroup_sk_alloc_disabled) return; pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); cgroup_sk_alloc_disabled = true; } #else #define cgroup_sk_alloc_disabled false #endif void cgroup_sk_alloc(struct sock_cgroup_data *skcd) { if (cgroup_sk_alloc_disabled) return; /* Socket clone path */ if (skcd->val) { cgroup_get(sock_cgroup_ptr(skcd)); return; } /* Don't associate the sock with unrelated interrupted task's cgroup. */ if (in_interrupt()) return; rcu_read_lock(); while (true) { struct css_set *cset; cset = task_css_set(current); if (likely(cgroup_tryget(cset->dfl_cgrp))) { skcd->val = (unsigned long)cset->dfl_cgrp; break; } cpu_relax(); } rcu_read_unlock(); } void cgroup_sk_free(struct sock_cgroup_data *skcd) { cgroup_put(sock_cgroup_ptr(skcd)); } #endif /* CONFIG_SOCK_CGROUP_DATA */ /* cgroup namespaces */ static struct ucounts *inc_cgroup_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_CGROUP_NAMESPACES); } static void dec_cgroup_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_CGROUP_NAMESPACES); } static struct cgroup_namespace *alloc_cgroup_ns(void) { struct cgroup_namespace *new_ns; int ret; new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL); if (!new_ns) return ERR_PTR(-ENOMEM); ret = ns_alloc_inum(&new_ns->ns); if (ret) { kfree(new_ns); return ERR_PTR(ret); } atomic_set(&new_ns->count, 1); new_ns->ns.ops = &cgroupns_operations; return new_ns; } void free_cgroup_ns(struct cgroup_namespace *ns) { put_css_set(ns->root_cset); dec_cgroup_namespaces(ns->ucounts); put_user_ns(ns->user_ns); ns_free_inum(&ns->ns); kfree(ns); } EXPORT_SYMBOL(free_cgroup_ns); struct cgroup_namespace *copy_cgroup_ns(unsigned long flags, struct user_namespace *user_ns, struct cgroup_namespace *old_ns) { struct cgroup_namespace *new_ns; struct ucounts *ucounts; struct css_set *cset; BUG_ON(!old_ns); if (!(flags & CLONE_NEWCGROUP)) { get_cgroup_ns(old_ns); return old_ns; } /* Allow only sysadmin to create cgroup namespace. */ if (!ns_capable(user_ns, CAP_SYS_ADMIN)) return ERR_PTR(-EPERM); ucounts = inc_cgroup_namespaces(user_ns); if (!ucounts) return ERR_PTR(-ENOSPC); /* It is not safe to take cgroup_mutex here */ spin_lock_irq(&css_set_lock); cset = task_css_set(current); get_css_set(cset); spin_unlock_irq(&css_set_lock); new_ns = alloc_cgroup_ns(); if (IS_ERR(new_ns)) { put_css_set(cset); dec_cgroup_namespaces(ucounts); return new_ns; } new_ns->user_ns = get_user_ns(user_ns); new_ns->ucounts = ucounts; new_ns->root_cset = cset; return new_ns; } static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns) { return container_of(ns, struct cgroup_namespace, ns); } static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns) { struct cgroup_namespace *cgroup_ns = to_cg_ns(ns); if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) || !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; /* Don't need to do anything if we are attaching to our own cgroupns. */ if (cgroup_ns == nsproxy->cgroup_ns) return 0; get_cgroup_ns(cgroup_ns); put_cgroup_ns(nsproxy->cgroup_ns); nsproxy->cgroup_ns = cgroup_ns; return 0; } static struct ns_common *cgroupns_get(struct task_struct *task) { struct cgroup_namespace *ns = NULL; struct nsproxy *nsproxy; task_lock(task); nsproxy = task->nsproxy; if (nsproxy) { ns = nsproxy->cgroup_ns; get_cgroup_ns(ns); } task_unlock(task); return ns ? &ns->ns : NULL; } static void cgroupns_put(struct ns_common *ns) { put_cgroup_ns(to_cg_ns(ns)); } static struct user_namespace *cgroupns_owner(struct ns_common *ns) { return to_cg_ns(ns)->user_ns; } const struct proc_ns_operations cgroupns_operations = { .name = "cgroup", .type = CLONE_NEWCGROUP, .get = cgroupns_get, .put = cgroupns_put, .install = cgroupns_install, .owner = cgroupns_owner, }; static __init int cgroup_namespaces_init(void) { return 0; } subsys_initcall(cgroup_namespaces_init); #ifdef CONFIG_CGROUP_DEBUG static struct cgroup_subsys_state * debug_css_alloc(struct cgroup_subsys_state *parent_css) { struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); if (!css) return ERR_PTR(-ENOMEM); return css; } static void debug_css_free(struct cgroup_subsys_state *css) { kfree(css); } static u64 debug_taskcount_read(struct cgroup_subsys_state *css, struct cftype *cft) { return cgroup_task_count(css->cgroup); } static u64 current_css_set_read(struct cgroup_subsys_state *css, struct cftype *cft) { return (u64)(unsigned long)current->cgroups; } static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css, struct cftype *cft) { u64 count; rcu_read_lock(); count = atomic_read(&task_css_set(current)->refcount); rcu_read_unlock(); return count; } static int current_css_set_cg_links_read(struct seq_file *seq, void *v) { struct cgrp_cset_link *link; struct css_set *cset; char *name_buf; name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL); if (!name_buf) return -ENOMEM; spin_lock_irq(&css_set_lock); rcu_read_lock(); cset = rcu_dereference(current->cgroups); list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; cgroup_name(c, name_buf, NAME_MAX + 1); seq_printf(seq, "Root %d group %s\n", c->root->hierarchy_id, name_buf); } rcu_read_unlock(); spin_unlock_irq(&css_set_lock); kfree(name_buf); return 0; } #define MAX_TASKS_SHOWN_PER_CSS 25 static int cgroup_css_links_read(struct seq_file *seq, void *v) { struct cgroup_subsys_state *css = seq_css(seq); struct cgrp_cset_link *link; spin_lock_irq(&css_set_lock); list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { struct css_set *cset = link->cset; struct task_struct *task; int count = 0; seq_printf(seq, "css_set %p\n", cset); list_for_each_entry(task, &cset->tasks, cg_list) { if (count++ > MAX_TASKS_SHOWN_PER_CSS) goto overflow; seq_printf(seq, " task %d\n", task_pid_vnr(task)); } list_for_each_entry(task, &cset->mg_tasks, cg_list) { if (count++ > MAX_TASKS_SHOWN_PER_CSS) goto overflow; seq_printf(seq, " task %d\n", task_pid_vnr(task)); } continue; overflow: seq_puts(seq, " ...\n"); } spin_unlock_irq(&css_set_lock); return 0; } static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft) { return (!cgroup_is_populated(css->cgroup) && !css_has_online_children(&css->cgroup->self)); } static struct cftype debug_files[] = { { .name = "taskcount", .read_u64 = debug_taskcount_read, }, { .name = "current_css_set", .read_u64 = current_css_set_read, }, { .name = "current_css_set_refcount", .read_u64 = current_css_set_refcount_read, }, { .name = "current_css_set_cg_links", .seq_show = current_css_set_cg_links_read, }, { .name = "cgroup_css_links", .seq_show = cgroup_css_links_read, }, { .name = "releasable", .read_u64 = releasable_read, }, { } /* terminate */ }; struct cgroup_subsys debug_cgrp_subsys = { .css_alloc = debug_css_alloc, .css_free = debug_css_free, .legacy_cftypes = debug_files, }; #endif /* CONFIG_CGROUP_DEBUG */ |