Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | /* * Copyright (C) 2011 STRATO AG * written by Arne Jansen <sensille@gmx.net> * Distributed under the GNU GPL license version 2. */ #include <linux/slab.h> #include "ulist.h" #include "ctree.h" /* * ulist is a generic data structure to hold a collection of unique u64 * values. The only operations it supports is adding to the list and * enumerating it. * It is possible to store an auxiliary value along with the key. * * A sample usage for ulists is the enumeration of directed graphs without * visiting a node twice. The pseudo-code could look like this: * * ulist = ulist_alloc(); * ulist_add(ulist, root); * ULIST_ITER_INIT(&uiter); * * while ((elem = ulist_next(ulist, &uiter)) { * for (all child nodes n in elem) * ulist_add(ulist, n); * do something useful with the node; * } * ulist_free(ulist); * * This assumes the graph nodes are addressable by u64. This stems from the * usage for tree enumeration in btrfs, where the logical addresses are * 64 bit. * * It is also useful for tree enumeration which could be done elegantly * recursively, but is not possible due to kernel stack limitations. The * loop would be similar to the above. */ /** * ulist_init - freshly initialize a ulist * @ulist: the ulist to initialize * * Note: don't use this function to init an already used ulist, use * ulist_reinit instead. */ void ulist_init(struct ulist *ulist) { INIT_LIST_HEAD(&ulist->nodes); ulist->root = RB_ROOT; ulist->nnodes = 0; } /** * ulist_fini - free up additionally allocated memory for the ulist * @ulist: the ulist from which to free the additional memory * * This is useful in cases where the base 'struct ulist' has been statically * allocated. */ static void ulist_fini(struct ulist *ulist) { struct ulist_node *node; struct ulist_node *next; list_for_each_entry_safe(node, next, &ulist->nodes, list) { kfree(node); } ulist->root = RB_ROOT; INIT_LIST_HEAD(&ulist->nodes); } /** * ulist_reinit - prepare a ulist for reuse * @ulist: ulist to be reused * * Free up all additional memory allocated for the list elements and reinit * the ulist. */ void ulist_reinit(struct ulist *ulist) { ulist_fini(ulist); ulist_init(ulist); } /** * ulist_alloc - dynamically allocate a ulist * @gfp_mask: allocation flags to for base allocation * * The allocated ulist will be returned in an initialized state. */ struct ulist *ulist_alloc(gfp_t gfp_mask) { struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask); if (!ulist) return NULL; ulist_init(ulist); return ulist; } /** * ulist_free - free dynamically allocated ulist * @ulist: ulist to free * * It is not necessary to call ulist_fini before. */ void ulist_free(struct ulist *ulist) { if (!ulist) return; ulist_fini(ulist); kfree(ulist); } static struct ulist_node *ulist_rbtree_search(struct ulist *ulist, u64 val) { struct rb_node *n = ulist->root.rb_node; struct ulist_node *u = NULL; while (n) { u = rb_entry(n, struct ulist_node, rb_node); if (u->val < val) n = n->rb_right; else if (u->val > val) n = n->rb_left; else return u; } return NULL; } static void ulist_rbtree_erase(struct ulist *ulist, struct ulist_node *node) { rb_erase(&node->rb_node, &ulist->root); list_del(&node->list); kfree(node); BUG_ON(ulist->nnodes == 0); ulist->nnodes--; } static int ulist_rbtree_insert(struct ulist *ulist, struct ulist_node *ins) { struct rb_node **p = &ulist->root.rb_node; struct rb_node *parent = NULL; struct ulist_node *cur = NULL; while (*p) { parent = *p; cur = rb_entry(parent, struct ulist_node, rb_node); if (cur->val < ins->val) p = &(*p)->rb_right; else if (cur->val > ins->val) p = &(*p)->rb_left; else return -EEXIST; } rb_link_node(&ins->rb_node, parent, p); rb_insert_color(&ins->rb_node, &ulist->root); return 0; } /** * ulist_add - add an element to the ulist * @ulist: ulist to add the element to * @val: value to add to ulist * @aux: auxiliary value to store along with val * @gfp_mask: flags to use for allocation * * Note: locking must be provided by the caller. In case of rwlocks write * locking is needed * * Add an element to a ulist. The @val will only be added if it doesn't * already exist. If it is added, the auxiliary value @aux is stored along with * it. In case @val already exists in the ulist, @aux is ignored, even if * it differs from the already stored value. * * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been * inserted. * In case of allocation failure -ENOMEM is returned and the ulist stays * unaltered. */ int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask) { return ulist_add_merge(ulist, val, aux, NULL, gfp_mask); } int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux, u64 *old_aux, gfp_t gfp_mask) { int ret; struct ulist_node *node; node = ulist_rbtree_search(ulist, val); if (node) { if (old_aux) *old_aux = node->aux; return 0; } node = kmalloc(sizeof(*node), gfp_mask); if (!node) return -ENOMEM; node->val = val; node->aux = aux; ret = ulist_rbtree_insert(ulist, node); ASSERT(!ret); list_add_tail(&node->list, &ulist->nodes); ulist->nnodes++; return 1; } /* * ulist_del - delete one node from ulist * @ulist: ulist to remove node from * @val: value to delete * @aux: aux to delete * * The deletion will only be done when *BOTH* val and aux matches. * Return 0 for successful delete. * Return > 0 for not found. */ int ulist_del(struct ulist *ulist, u64 val, u64 aux) { struct ulist_node *node; node = ulist_rbtree_search(ulist, val); /* Not found */ if (!node) return 1; if (node->aux != aux) return 1; /* Found and delete */ ulist_rbtree_erase(ulist, node); return 0; } /** * ulist_next - iterate ulist * @ulist: ulist to iterate * @uiter: iterator variable, initialized with ULIST_ITER_INIT(&iterator) * * Note: locking must be provided by the caller. In case of rwlocks only read * locking is needed * * This function is used to iterate an ulist. * It returns the next element from the ulist or %NULL when the * end is reached. No guarantee is made with respect to the order in which * the elements are returned. They might neither be returned in order of * addition nor in ascending order. * It is allowed to call ulist_add during an enumeration. Newly added items * are guaranteed to show up in the running enumeration. */ struct ulist_node *ulist_next(struct ulist *ulist, struct ulist_iterator *uiter) { struct ulist_node *node; if (list_empty(&ulist->nodes)) return NULL; if (uiter->cur_list && uiter->cur_list->next == &ulist->nodes) return NULL; if (uiter->cur_list) { uiter->cur_list = uiter->cur_list->next; } else { uiter->cur_list = ulist->nodes.next; } node = list_entry(uiter->cur_list, struct ulist_node, list); return node; } |