Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | /* * i8253 PIT clocksource */ #include <linux/clockchips.h> #include <linux/init.h> #include <linux/io.h> #include <linux/spinlock.h> #include <linux/timex.h> #include <linux/module.h> #include <linux/i8253.h> #include <linux/smp.h> /* * Protects access to I/O ports * * 0040-0043 : timer0, i8253 / i8254 * 0061-0061 : NMI Control Register which contains two speaker control bits. */ DEFINE_RAW_SPINLOCK(i8253_lock); EXPORT_SYMBOL(i8253_lock); /* * Handle PIT quirk in pit_shutdown() where zeroing the counter register * restarts the PIT, negating the shutdown. On platforms with the quirk, * platform specific code can set this to false. */ bool i8253_clear_counter_on_shutdown __ro_after_init = true; #ifdef CONFIG_CLKSRC_I8253 /* * Since the PIT overflows every tick, its not very useful * to just read by itself. So use jiffies to emulate a free * running counter: */ static cycle_t i8253_read(struct clocksource *cs) { static int old_count; static u32 old_jifs; unsigned long flags; int count; u32 jifs; raw_spin_lock_irqsave(&i8253_lock, flags); /* * Although our caller may have the read side of jiffies_lock, * this is now a seqlock, and we are cheating in this routine * by having side effects on state that we cannot undo if * there is a collision on the seqlock and our caller has to * retry. (Namely, old_jifs and old_count.) So we must treat * jiffies as volatile despite the lock. We read jiffies * before latching the timer count to guarantee that although * the jiffies value might be older than the count (that is, * the counter may underflow between the last point where * jiffies was incremented and the point where we latch the * count), it cannot be newer. */ jifs = jiffies; outb_p(0x00, PIT_MODE); /* latch the count ASAP */ count = inb_p(PIT_CH0); /* read the latched count */ count |= inb_p(PIT_CH0) << 8; /* VIA686a test code... reset the latch if count > max + 1 */ if (count > PIT_LATCH) { outb_p(0x34, PIT_MODE); outb_p(PIT_LATCH & 0xff, PIT_CH0); outb_p(PIT_LATCH >> 8, PIT_CH0); count = PIT_LATCH - 1; } /* * It's possible for count to appear to go the wrong way for a * couple of reasons: * * 1. The timer counter underflows, but we haven't handled the * resulting interrupt and incremented jiffies yet. * 2. Hardware problem with the timer, not giving us continuous time, * the counter does small "jumps" upwards on some Pentium systems, * (see c't 95/10 page 335 for Neptun bug.) * * Previous attempts to handle these cases intelligently were * buggy, so we just do the simple thing now. */ if (count > old_count && jifs == old_jifs) count = old_count; old_count = count; old_jifs = jifs; raw_spin_unlock_irqrestore(&i8253_lock, flags); count = (PIT_LATCH - 1) - count; return (cycle_t)(jifs * PIT_LATCH) + count; } static struct clocksource i8253_cs = { .name = "pit", .rating = 110, .read = i8253_read, .mask = CLOCKSOURCE_MASK(32), }; int __init clocksource_i8253_init(void) { return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE); } #endif #ifdef CONFIG_CLKEVT_I8253 static int pit_shutdown(struct clock_event_device *evt) { if (!clockevent_state_oneshot(evt) && !clockevent_state_periodic(evt)) return 0; raw_spin_lock(&i8253_lock); outb_p(0x30, PIT_MODE); if (i8253_clear_counter_on_shutdown) { outb_p(0, PIT_CH0); outb_p(0, PIT_CH0); } raw_spin_unlock(&i8253_lock); return 0; } static int pit_set_oneshot(struct clock_event_device *evt) { raw_spin_lock(&i8253_lock); outb_p(0x38, PIT_MODE); raw_spin_unlock(&i8253_lock); return 0; } static int pit_set_periodic(struct clock_event_device *evt) { raw_spin_lock(&i8253_lock); /* binary, mode 2, LSB/MSB, ch 0 */ outb_p(0x34, PIT_MODE); outb_p(PIT_LATCH & 0xff, PIT_CH0); /* LSB */ outb_p(PIT_LATCH >> 8, PIT_CH0); /* MSB */ raw_spin_unlock(&i8253_lock); return 0; } /* * Program the next event in oneshot mode * * Delta is given in PIT ticks */ static int pit_next_event(unsigned long delta, struct clock_event_device *evt) { raw_spin_lock(&i8253_lock); outb_p(delta & 0xff , PIT_CH0); /* LSB */ outb_p(delta >> 8 , PIT_CH0); /* MSB */ raw_spin_unlock(&i8253_lock); return 0; } /* * On UP the PIT can serve all of the possible timer functions. On SMP systems * it can be solely used for the global tick. */ struct clock_event_device i8253_clockevent = { .name = "pit", .features = CLOCK_EVT_FEAT_PERIODIC, .set_state_shutdown = pit_shutdown, .set_state_periodic = pit_set_periodic, .set_next_event = pit_next_event, }; /* * Initialize the conversion factor and the min/max deltas of the clock event * structure and register the clock event source with the framework. */ void __init clockevent_i8253_init(bool oneshot) { if (oneshot) { i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT; i8253_clockevent.set_state_oneshot = pit_set_oneshot; } /* * Start pit with the boot cpu mask. x86 might make it global * when it is used as broadcast device later. */ i8253_clockevent.cpumask = cpumask_of(smp_processor_id()); clockevents_config_and_register(&i8253_clockevent, PIT_TICK_RATE, 0xF, 0x7FFF); } #endif |