Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 | /* * Copyright (C) 2009 Red Hat, Inc. * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/mm.h> #include <linux/sched.h> #include <linux/highmem.h> #include <linux/hugetlb.h> #include <linux/mmu_notifier.h> #include <linux/rmap.h> #include <linux/swap.h> #include <linux/shrinker.h> #include <linux/mm_inline.h> #include <linux/swapops.h> #include <linux/dax.h> #include <linux/khugepaged.h> #include <linux/freezer.h> #include <linux/pfn_t.h> #include <linux/mman.h> #include <linux/memremap.h> #include <linux/pagemap.h> #include <linux/debugfs.h> #include <linux/migrate.h> #include <linux/hashtable.h> #include <linux/userfaultfd_k.h> #include <linux/page_idle.h> #include <linux/shmem_fs.h> #include <linux/page_owner.h> #include <asm/tlb.h> #include <asm/pgalloc.h> #include "internal.h" /* * By default transparent hugepage support is disabled in order that avoid * to risk increase the memory footprint of applications without a guaranteed * benefit. When transparent hugepage support is enabled, is for all mappings, * and khugepaged scans all mappings. * Defrag is invoked by khugepaged hugepage allocations and by page faults * for all hugepage allocations. */ unsigned long transparent_hugepage_flags __read_mostly = #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS (1<<TRANSPARENT_HUGEPAGE_FLAG)| #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| #endif (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); static struct shrinker deferred_split_shrinker; static atomic_t huge_zero_refcount; struct page *huge_zero_page __read_mostly; static struct page *get_huge_zero_page(void) { struct page *zero_page; retry: if (likely(atomic_inc_not_zero(&huge_zero_refcount))) return READ_ONCE(huge_zero_page); zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, HPAGE_PMD_ORDER); if (!zero_page) { count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); return NULL; } count_vm_event(THP_ZERO_PAGE_ALLOC); preempt_disable(); if (cmpxchg(&huge_zero_page, NULL, zero_page)) { preempt_enable(); __free_pages(zero_page, compound_order(zero_page)); goto retry; } /* We take additional reference here. It will be put back by shrinker */ atomic_set(&huge_zero_refcount, 2); preempt_enable(); return READ_ONCE(huge_zero_page); } static void put_huge_zero_page(void) { /* * Counter should never go to zero here. Only shrinker can put * last reference. */ BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); } struct page *mm_get_huge_zero_page(struct mm_struct *mm) { if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) return READ_ONCE(huge_zero_page); if (!get_huge_zero_page()) return NULL; if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) put_huge_zero_page(); return READ_ONCE(huge_zero_page); } void mm_put_huge_zero_page(struct mm_struct *mm) { if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) put_huge_zero_page(); } static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, struct shrink_control *sc) { /* we can free zero page only if last reference remains */ return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; } static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, struct shrink_control *sc) { if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { struct page *zero_page = xchg(&huge_zero_page, NULL); BUG_ON(zero_page == NULL); __free_pages(zero_page, compound_order(zero_page)); return HPAGE_PMD_NR; } return 0; } static struct shrinker huge_zero_page_shrinker = { .count_objects = shrink_huge_zero_page_count, .scan_objects = shrink_huge_zero_page_scan, .seeks = DEFAULT_SEEKS, }; #ifdef CONFIG_SYSFS static ssize_t triple_flag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count, enum transparent_hugepage_flag enabled, enum transparent_hugepage_flag deferred, enum transparent_hugepage_flag req_madv) { if (!memcmp("defer", buf, min(sizeof("defer")-1, count))) { if (enabled == deferred) return -EINVAL; clear_bit(enabled, &transparent_hugepage_flags); clear_bit(req_madv, &transparent_hugepage_flags); set_bit(deferred, &transparent_hugepage_flags); } else if (!memcmp("always", buf, min(sizeof("always")-1, count))) { clear_bit(deferred, &transparent_hugepage_flags); clear_bit(req_madv, &transparent_hugepage_flags); set_bit(enabled, &transparent_hugepage_flags); } else if (!memcmp("madvise", buf, min(sizeof("madvise")-1, count))) { clear_bit(enabled, &transparent_hugepage_flags); clear_bit(deferred, &transparent_hugepage_flags); set_bit(req_madv, &transparent_hugepage_flags); } else if (!memcmp("never", buf, min(sizeof("never")-1, count))) { clear_bit(enabled, &transparent_hugepage_flags); clear_bit(req_madv, &transparent_hugepage_flags); clear_bit(deferred, &transparent_hugepage_flags); } else return -EINVAL; return count; } static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) return sprintf(buf, "[always] madvise never\n"); else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) return sprintf(buf, "always [madvise] never\n"); else return sprintf(buf, "always madvise [never]\n"); } static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { ssize_t ret; ret = triple_flag_store(kobj, attr, buf, count, TRANSPARENT_HUGEPAGE_FLAG, TRANSPARENT_HUGEPAGE_FLAG, TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); if (ret > 0) { int err = start_stop_khugepaged(); if (err) ret = err; } return ret; } static struct kobj_attribute enabled_attr = __ATTR(enabled, 0644, enabled_show, enabled_store); ssize_t single_hugepage_flag_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf, enum transparent_hugepage_flag flag) { return sprintf(buf, "%d\n", !!test_bit(flag, &transparent_hugepage_flags)); } ssize_t single_hugepage_flag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count, enum transparent_hugepage_flag flag) { unsigned long value; int ret; ret = kstrtoul(buf, 10, &value); if (ret < 0) return ret; if (value > 1) return -EINVAL; if (value) set_bit(flag, &transparent_hugepage_flags); else clear_bit(flag, &transparent_hugepage_flags); return count; } /* * Currently defrag only disables __GFP_NOWAIT for allocation. A blind * __GFP_REPEAT is too aggressive, it's never worth swapping tons of * memory just to allocate one more hugepage. */ static ssize_t defrag_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) return sprintf(buf, "[always] defer madvise never\n"); if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) return sprintf(buf, "always [defer] madvise never\n"); else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) return sprintf(buf, "always defer [madvise] never\n"); else return sprintf(buf, "always defer madvise [never]\n"); } static ssize_t defrag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { return triple_flag_store(kobj, attr, buf, count, TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); } static struct kobj_attribute defrag_attr = __ATTR(defrag, 0644, defrag_show, defrag_store); static ssize_t use_zero_page_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return single_hugepage_flag_show(kobj, attr, buf, TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); } static ssize_t use_zero_page_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { return single_hugepage_flag_store(kobj, attr, buf, count, TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); } static struct kobj_attribute use_zero_page_attr = __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); #ifdef CONFIG_DEBUG_VM static ssize_t debug_cow_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return single_hugepage_flag_show(kobj, attr, buf, TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); } static ssize_t debug_cow_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { return single_hugepage_flag_store(kobj, attr, buf, count, TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); } static struct kobj_attribute debug_cow_attr = __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); #endif /* CONFIG_DEBUG_VM */ static struct attribute *hugepage_attr[] = { &enabled_attr.attr, &defrag_attr.attr, &use_zero_page_attr.attr, #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &shmem_enabled_attr.attr, #endif #ifdef CONFIG_DEBUG_VM &debug_cow_attr.attr, #endif NULL, }; static struct attribute_group hugepage_attr_group = { .attrs = hugepage_attr, }; static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) { int err; *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); if (unlikely(!*hugepage_kobj)) { pr_err("failed to create transparent hugepage kobject\n"); return -ENOMEM; } err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); if (err) { pr_err("failed to register transparent hugepage group\n"); goto delete_obj; } err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); if (err) { pr_err("failed to register transparent hugepage group\n"); goto remove_hp_group; } return 0; remove_hp_group: sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); delete_obj: kobject_put(*hugepage_kobj); return err; } static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) { sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); kobject_put(hugepage_kobj); } #else static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) { return 0; } static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) { } #endif /* CONFIG_SYSFS */ static int __init hugepage_init(void) { int err; struct kobject *hugepage_kobj; if (!has_transparent_hugepage()) { transparent_hugepage_flags = 0; return -EINVAL; } /* * hugepages can't be allocated by the buddy allocator */ MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); /* * we use page->mapping and page->index in second tail page * as list_head: assuming THP order >= 2 */ MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); err = hugepage_init_sysfs(&hugepage_kobj); if (err) goto err_sysfs; err = khugepaged_init(); if (err) goto err_slab; err = register_shrinker(&huge_zero_page_shrinker); if (err) goto err_hzp_shrinker; err = register_shrinker(&deferred_split_shrinker); if (err) goto err_split_shrinker; /* * By default disable transparent hugepages on smaller systems, * where the extra memory used could hurt more than TLB overhead * is likely to save. The admin can still enable it through /sys. */ if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { transparent_hugepage_flags = 0; return 0; } err = start_stop_khugepaged(); if (err) goto err_khugepaged; return 0; err_khugepaged: unregister_shrinker(&deferred_split_shrinker); err_split_shrinker: unregister_shrinker(&huge_zero_page_shrinker); err_hzp_shrinker: khugepaged_destroy(); err_slab: hugepage_exit_sysfs(hugepage_kobj); err_sysfs: return err; } subsys_initcall(hugepage_init); static int __init setup_transparent_hugepage(char *str) { int ret = 0; if (!str) goto out; if (!strcmp(str, "always")) { set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); ret = 1; } else if (!strcmp(str, "madvise")) { clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); ret = 1; } else if (!strcmp(str, "never")) { clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); ret = 1; } out: if (!ret) pr_warn("transparent_hugepage= cannot parse, ignored\n"); return ret; } __setup("transparent_hugepage=", setup_transparent_hugepage); pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) { if (likely(vma->vm_flags & VM_WRITE)) pmd = pmd_mkwrite(pmd); return pmd; } static inline struct list_head *page_deferred_list(struct page *page) { /* * ->lru in the tail pages is occupied by compound_head. * Let's use ->mapping + ->index in the second tail page as list_head. */ return (struct list_head *)&page[2].mapping; } void prep_transhuge_page(struct page *page) { /* * we use page->mapping and page->indexlru in second tail page * as list_head: assuming THP order >= 2 */ INIT_LIST_HEAD(page_deferred_list(page)); set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); } unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, loff_t off, unsigned long flags, unsigned long size) { unsigned long addr; loff_t off_end = off + len; loff_t off_align = round_up(off, size); unsigned long len_pad; if (off_end <= off_align || (off_end - off_align) < size) return 0; len_pad = len + size; if (len_pad < len || (off + len_pad) < off) return 0; addr = current->mm->get_unmapped_area(filp, 0, len_pad, off >> PAGE_SHIFT, flags); if (IS_ERR_VALUE(addr)) return 0; addr += (off - addr) & (size - 1); return addr; } unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { loff_t off = (loff_t)pgoff << PAGE_SHIFT; if (addr) goto out; if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) goto out; addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE); if (addr) return addr; out: return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); } EXPORT_SYMBOL_GPL(thp_get_unmapped_area); static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page, gfp_t gfp) { struct vm_area_struct *vma = fe->vma; struct mem_cgroup *memcg; pgtable_t pgtable; unsigned long haddr = fe->address & HPAGE_PMD_MASK; VM_BUG_ON_PAGE(!PageCompound(page), page); if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg, true)) { put_page(page); count_vm_event(THP_FAULT_FALLBACK); return VM_FAULT_FALLBACK; } pgtable = pte_alloc_one(vma->vm_mm, haddr); if (unlikely(!pgtable)) { mem_cgroup_cancel_charge(page, memcg, true); put_page(page); return VM_FAULT_OOM; } clear_huge_page(page, haddr, HPAGE_PMD_NR); /* * The memory barrier inside __SetPageUptodate makes sure that * clear_huge_page writes become visible before the set_pmd_at() * write. */ __SetPageUptodate(page); fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); if (unlikely(!pmd_none(*fe->pmd))) { spin_unlock(fe->ptl); mem_cgroup_cancel_charge(page, memcg, true); put_page(page); pte_free(vma->vm_mm, pgtable); } else { pmd_t entry; /* Deliver the page fault to userland */ if (userfaultfd_missing(vma)) { int ret; spin_unlock(fe->ptl); mem_cgroup_cancel_charge(page, memcg, true); put_page(page); pte_free(vma->vm_mm, pgtable); ret = handle_userfault(fe, VM_UFFD_MISSING); VM_BUG_ON(ret & VM_FAULT_FALLBACK); return ret; } entry = mk_huge_pmd(page, vma->vm_page_prot); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); page_add_new_anon_rmap(page, vma, haddr, true); mem_cgroup_commit_charge(page, memcg, false, true); lru_cache_add_active_or_unevictable(page, vma); pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable); set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); atomic_long_inc(&vma->vm_mm->nr_ptes); spin_unlock(fe->ptl); count_vm_event(THP_FAULT_ALLOC); } return 0; } /* * If THP defrag is set to always then directly reclaim/compact as necessary * If set to defer then do only background reclaim/compact and defer to khugepaged * If set to madvise and the VMA is flagged then directly reclaim/compact * When direct reclaim/compact is allowed, don't retry except for flagged VMA's */ static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) { bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) && vma_madvised) return GFP_TRANSHUGE; else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); return GFP_TRANSHUGE_LIGHT; } /* Caller must hold page table lock. */ static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, struct page *zero_page) { pmd_t entry; if (!pmd_none(*pmd)) return false; entry = mk_pmd(zero_page, vma->vm_page_prot); entry = pmd_mkhuge(entry); if (pgtable) pgtable_trans_huge_deposit(mm, pmd, pgtable); set_pmd_at(mm, haddr, pmd, entry); atomic_long_inc(&mm->nr_ptes); return true; } int do_huge_pmd_anonymous_page(struct fault_env *fe) { struct vm_area_struct *vma = fe->vma; gfp_t gfp; struct page *page; unsigned long haddr = fe->address & HPAGE_PMD_MASK; if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) return VM_FAULT_FALLBACK; if (unlikely(anon_vma_prepare(vma))) return VM_FAULT_OOM; if (unlikely(khugepaged_enter(vma, vma->vm_flags))) return VM_FAULT_OOM; if (!(fe->flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(vma->vm_mm) && transparent_hugepage_use_zero_page()) { pgtable_t pgtable; struct page *zero_page; bool set; int ret; pgtable = pte_alloc_one(vma->vm_mm, haddr); if (unlikely(!pgtable)) return VM_FAULT_OOM; zero_page = mm_get_huge_zero_page(vma->vm_mm); if (unlikely(!zero_page)) { pte_free(vma->vm_mm, pgtable); count_vm_event(THP_FAULT_FALLBACK); return VM_FAULT_FALLBACK; } fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); ret = 0; set = false; if (pmd_none(*fe->pmd)) { if (userfaultfd_missing(vma)) { spin_unlock(fe->ptl); ret = handle_userfault(fe, VM_UFFD_MISSING); VM_BUG_ON(ret & VM_FAULT_FALLBACK); } else { set_huge_zero_page(pgtable, vma->vm_mm, vma, haddr, fe->pmd, zero_page); spin_unlock(fe->ptl); set = true; } } else spin_unlock(fe->ptl); if (!set) pte_free(vma->vm_mm, pgtable); return ret; } gfp = alloc_hugepage_direct_gfpmask(vma); page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); if (unlikely(!page)) { count_vm_event(THP_FAULT_FALLBACK); return VM_FAULT_FALLBACK; } prep_transhuge_page(page); return __do_huge_pmd_anonymous_page(fe, page, gfp); } static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write) { struct mm_struct *mm = vma->vm_mm; pmd_t entry; spinlock_t *ptl; ptl = pmd_lock(mm, pmd); entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); if (pfn_t_devmap(pfn)) entry = pmd_mkdevmap(entry); if (write) { entry = pmd_mkyoung(pmd_mkdirty(entry)); entry = maybe_pmd_mkwrite(entry, vma); } set_pmd_at(mm, addr, pmd, entry); update_mmu_cache_pmd(vma, addr, pmd); spin_unlock(ptl); } int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, pfn_t pfn, bool write) { pgprot_t pgprot = vma->vm_page_prot; /* * If we had pmd_special, we could avoid all these restrictions, * but we need to be consistent with PTEs and architectures that * can't support a 'special' bit. */ BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == (VM_PFNMAP|VM_MIXEDMAP)); BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); BUG_ON(!pfn_t_devmap(pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; if (track_pfn_insert(vma, &pgprot, pfn)) return VM_FAULT_SIGBUS; insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write); return VM_FAULT_NOPAGE; } EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, int flags) { pmd_t _pmd; _pmd = pmd_mkyoung(*pmd); if (flags & FOLL_WRITE) _pmd = pmd_mkdirty(_pmd); if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, pmd, _pmd, flags & FOLL_WRITE)) update_mmu_cache_pmd(vma, addr, pmd); } struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, int flags) { unsigned long pfn = pmd_pfn(*pmd); struct mm_struct *mm = vma->vm_mm; struct dev_pagemap *pgmap; struct page *page; assert_spin_locked(pmd_lockptr(mm, pmd)); /* * When we COW a devmap PMD entry, we split it into PTEs, so we should * not be in this function with `flags & FOLL_COW` set. */ WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); if (flags & FOLL_WRITE && !pmd_write(*pmd)) return NULL; if (pmd_present(*pmd) && pmd_devmap(*pmd)) /* pass */; else return NULL; if (flags & FOLL_TOUCH) touch_pmd(vma, addr, pmd, flags); /* * device mapped pages can only be returned if the * caller will manage the page reference count. */ if (!(flags & FOLL_GET)) return ERR_PTR(-EEXIST); pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; pgmap = get_dev_pagemap(pfn, NULL); if (!pgmap) return ERR_PTR(-EFAULT); page = pfn_to_page(pfn); get_page(page); put_dev_pagemap(pgmap); return page; } int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, struct vm_area_struct *vma) { spinlock_t *dst_ptl, *src_ptl; struct page *src_page; pmd_t pmd; pgtable_t pgtable = NULL; int ret = -ENOMEM; /* Skip if can be re-fill on fault */ if (!vma_is_anonymous(vma)) return 0; pgtable = pte_alloc_one(dst_mm, addr); if (unlikely(!pgtable)) goto out; dst_ptl = pmd_lock(dst_mm, dst_pmd); src_ptl = pmd_lockptr(src_mm, src_pmd); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); ret = -EAGAIN; pmd = *src_pmd; if (unlikely(!pmd_trans_huge(pmd))) { pte_free(dst_mm, pgtable); goto out_unlock; } /* * When page table lock is held, the huge zero pmd should not be * under splitting since we don't split the page itself, only pmd to * a page table. */ if (is_huge_zero_pmd(pmd)) { struct page *zero_page; /* * get_huge_zero_page() will never allocate a new page here, * since we already have a zero page to copy. It just takes a * reference. */ zero_page = mm_get_huge_zero_page(dst_mm); set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, zero_page); ret = 0; goto out_unlock; } src_page = pmd_page(pmd); VM_BUG_ON_PAGE(!PageHead(src_page), src_page); get_page(src_page); page_dup_rmap(src_page, true); add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); atomic_long_inc(&dst_mm->nr_ptes); pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); pmdp_set_wrprotect(src_mm, addr, src_pmd); pmd = pmd_mkold(pmd_wrprotect(pmd)); set_pmd_at(dst_mm, addr, dst_pmd, pmd); ret = 0; out_unlock: spin_unlock(src_ptl); spin_unlock(dst_ptl); out: return ret; } void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd) { pmd_t entry; unsigned long haddr; bool write = fe->flags & FAULT_FLAG_WRITE; fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd); if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) goto unlock; entry = pmd_mkyoung(orig_pmd); if (write) entry = pmd_mkdirty(entry); haddr = fe->address & HPAGE_PMD_MASK; if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry, write)) update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd); unlock: spin_unlock(fe->ptl); } static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd, struct page *page) { struct vm_area_struct *vma = fe->vma; unsigned long haddr = fe->address & HPAGE_PMD_MASK; struct mem_cgroup *memcg; pgtable_t pgtable; pmd_t _pmd; int ret = 0, i; struct page **pages; unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, GFP_KERNEL); if (unlikely(!pages)) { ret |= VM_FAULT_OOM; goto out; } for (i = 0; i < HPAGE_PMD_NR; i++) { pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | __GFP_OTHER_NODE, vma, fe->address, page_to_nid(page)); if (unlikely(!pages[i] || mem_cgroup_try_charge(pages[i], vma->vm_mm, GFP_KERNEL, &memcg, false))) { if (pages[i]) put_page(pages[i]); while (--i >= 0) { memcg = (void *)page_private(pages[i]); set_page_private(pages[i], 0); mem_cgroup_cancel_charge(pages[i], memcg, false); put_page(pages[i]); } kfree(pages); ret |= VM_FAULT_OOM; goto out; } set_page_private(pages[i], (unsigned long)memcg); } for (i = 0; i < HPAGE_PMD_NR; i++) { copy_user_highpage(pages[i], page + i, haddr + PAGE_SIZE * i, vma); __SetPageUptodate(pages[i]); cond_resched(); } mmun_start = haddr; mmun_end = haddr + HPAGE_PMD_SIZE; mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) goto out_free_pages; VM_BUG_ON_PAGE(!PageHead(page), page); pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd); /* leave pmd empty until pte is filled */ pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd); pmd_populate(vma->vm_mm, &_pmd, pgtable); for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { pte_t entry; entry = mk_pte(pages[i], vma->vm_page_prot); entry = maybe_mkwrite(pte_mkdirty(entry), vma); memcg = (void *)page_private(pages[i]); set_page_private(pages[i], 0); page_add_new_anon_rmap(pages[i], fe->vma, haddr, false); mem_cgroup_commit_charge(pages[i], memcg, false, false); lru_cache_add_active_or_unevictable(pages[i], vma); fe->pte = pte_offset_map(&_pmd, haddr); VM_BUG_ON(!pte_none(*fe->pte)); set_pte_at(vma->vm_mm, haddr, fe->pte, entry); pte_unmap(fe->pte); } kfree(pages); smp_wmb(); /* make pte visible before pmd */ pmd_populate(vma->vm_mm, fe->pmd, pgtable); page_remove_rmap(page, true); spin_unlock(fe->ptl); mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); ret |= VM_FAULT_WRITE; put_page(page); out: return ret; out_free_pages: spin_unlock(fe->ptl); mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); for (i = 0; i < HPAGE_PMD_NR; i++) { memcg = (void *)page_private(pages[i]); set_page_private(pages[i], 0); mem_cgroup_cancel_charge(pages[i], memcg, false); put_page(pages[i]); } kfree(pages); goto out; } int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd) { struct vm_area_struct *vma = fe->vma; struct page *page = NULL, *new_page; struct mem_cgroup *memcg; unsigned long haddr = fe->address & HPAGE_PMD_MASK; unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ gfp_t huge_gfp; /* for allocation and charge */ int ret = 0; fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd); VM_BUG_ON_VMA(!vma->anon_vma, vma); if (is_huge_zero_pmd(orig_pmd)) goto alloc; spin_lock(fe->ptl); if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) goto out_unlock; page = pmd_page(orig_pmd); VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); /* * We can only reuse the page if nobody else maps the huge page or it's * part. */ if (page_trans_huge_mapcount(page, NULL) == 1) { pmd_t entry; entry = pmd_mkyoung(orig_pmd); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1)) update_mmu_cache_pmd(vma, fe->address, fe->pmd); ret |= VM_FAULT_WRITE; goto out_unlock; } get_page(page); spin_unlock(fe->ptl); alloc: if (transparent_hugepage_enabled(vma) && !transparent_hugepage_debug_cow()) { huge_gfp = alloc_hugepage_direct_gfpmask(vma); new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); } else new_page = NULL; if (likely(new_page)) { prep_transhuge_page(new_page); } else { if (!page) { split_huge_pmd(vma, fe->pmd, fe->address); ret |= VM_FAULT_FALLBACK; } else { ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page); if (ret & VM_FAULT_OOM) { split_huge_pmd(vma, fe->pmd, fe->address); ret |= VM_FAULT_FALLBACK; } put_page(page); } count_vm_event(THP_FAULT_FALLBACK); goto out; } if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, huge_gfp | __GFP_NORETRY, &memcg, true))) { put_page(new_page); split_huge_pmd(vma, fe->pmd, fe->address); if (page) put_page(page); ret |= VM_FAULT_FALLBACK; count_vm_event(THP_FAULT_FALLBACK); goto out; } count_vm_event(THP_FAULT_ALLOC); if (!page) clear_huge_page(new_page, haddr, HPAGE_PMD_NR); else copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); __SetPageUptodate(new_page); mmun_start = haddr; mmun_end = haddr + HPAGE_PMD_SIZE; mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); spin_lock(fe->ptl); if (page) put_page(page); if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) { spin_unlock(fe->ptl); mem_cgroup_cancel_charge(new_page, memcg, true); put_page(new_page); goto out_mn; } else { pmd_t entry; entry = mk_huge_pmd(new_page, vma->vm_page_prot); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd); page_add_new_anon_rmap(new_page, vma, haddr, true); mem_cgroup_commit_charge(new_page, memcg, false, true); lru_cache_add_active_or_unevictable(new_page, vma); set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); update_mmu_cache_pmd(vma, fe->address, fe->pmd); if (!page) { add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); } else { VM_BUG_ON_PAGE(!PageHead(page), page); page_remove_rmap(page, true); put_page(page); } ret |= VM_FAULT_WRITE; } spin_unlock(fe->ptl); out_mn: mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); out: return ret; out_unlock: spin_unlock(fe->ptl); return ret; } /* * FOLL_FORCE can write to even unwritable pmd's, but only * after we've gone through a COW cycle and they are dirty. */ static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) { return pmd_write(pmd) || ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); } struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, unsigned int flags) { struct mm_struct *mm = vma->vm_mm; struct page *page = NULL; assert_spin_locked(pmd_lockptr(mm, pmd)); if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) goto out; /* Avoid dumping huge zero page */ if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) return ERR_PTR(-EFAULT); /* Full NUMA hinting faults to serialise migration in fault paths */ if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) goto out; page = pmd_page(*pmd); VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); if (flags & FOLL_TOUCH) touch_pmd(vma, addr, pmd, flags); if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { /* * We don't mlock() pte-mapped THPs. This way we can avoid * leaking mlocked pages into non-VM_LOCKED VMAs. * * For anon THP: * * In most cases the pmd is the only mapping of the page as we * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for * writable private mappings in populate_vma_page_range(). * * The only scenario when we have the page shared here is if we * mlocking read-only mapping shared over fork(). We skip * mlocking such pages. * * For file THP: * * We can expect PageDoubleMap() to be stable under page lock: * for file pages we set it in page_add_file_rmap(), which * requires page to be locked. */ if (PageAnon(page) && compound_mapcount(page) != 1) goto skip_mlock; if (PageDoubleMap(page) || !page->mapping) goto skip_mlock; if (!trylock_page(page)) goto skip_mlock; lru_add_drain(); if (page->mapping && !PageDoubleMap(page)) mlock_vma_page(page); unlock_page(page); } skip_mlock: page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); if (flags & FOLL_GET) get_page(page); out: return page; } /* NUMA hinting page fault entry point for trans huge pmds */ int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd) { struct vm_area_struct *vma = fe->vma; struct anon_vma *anon_vma = NULL; struct page *page; unsigned long haddr = fe->address & HPAGE_PMD_MASK; int page_nid = -1, this_nid = numa_node_id(); int target_nid, last_cpupid = -1; bool page_locked; bool migrated = false; bool was_writable; int flags = 0; fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); if (unlikely(!pmd_same(pmd, *fe->pmd))) goto out_unlock; /* * If there are potential migrations, wait for completion and retry * without disrupting NUMA hinting information. Do not relock and * check_same as the page may no longer be mapped. */ if (unlikely(pmd_trans_migrating(*fe->pmd))) { page = pmd_page(*fe->pmd); if (!get_page_unless_zero(page)) goto out_unlock; spin_unlock(fe->ptl); wait_on_page_locked(page); put_page(page); goto out; } page = pmd_page(pmd); BUG_ON(is_huge_zero_page(page)); page_nid = page_to_nid(page); last_cpupid = page_cpupid_last(page); count_vm_numa_event(NUMA_HINT_FAULTS); if (page_nid == this_nid) { count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); flags |= TNF_FAULT_LOCAL; } /* See similar comment in do_numa_page for explanation */ if (!pmd_write(pmd)) flags |= TNF_NO_GROUP; /* * Acquire the page lock to serialise THP migrations but avoid dropping * page_table_lock if at all possible */ page_locked = trylock_page(page); target_nid = mpol_misplaced(page, vma, haddr); if (target_nid == -1) { /* If the page was locked, there are no parallel migrations */ if (page_locked) goto clear_pmdnuma; } /* Migration could have started since the pmd_trans_migrating check */ if (!page_locked) { page_nid = -1; if (!get_page_unless_zero(page)) goto out_unlock; spin_unlock(fe->ptl); wait_on_page_locked(page); put_page(page); goto out; } /* * Page is misplaced. Page lock serialises migrations. Acquire anon_vma * to serialises splits */ get_page(page); spin_unlock(fe->ptl); anon_vma = page_lock_anon_vma_read(page); /* Confirm the PMD did not change while page_table_lock was released */ spin_lock(fe->ptl); if (unlikely(!pmd_same(pmd, *fe->pmd))) { unlock_page(page); put_page(page); page_nid = -1; goto out_unlock; } /* Bail if we fail to protect against THP splits for any reason */ if (unlikely(!anon_vma)) { put_page(page); page_nid = -1; goto clear_pmdnuma; } /* * Migrate the THP to the requested node, returns with page unlocked * and access rights restored. */ spin_unlock(fe->ptl); migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, fe->pmd, pmd, fe->address, page, target_nid); if (migrated) { flags |= TNF_MIGRATED; page_nid = target_nid; } else flags |= TNF_MIGRATE_FAIL; goto out; clear_pmdnuma: BUG_ON(!PageLocked(page)); was_writable = pmd_write(pmd); pmd = pmd_modify(pmd, vma->vm_page_prot); pmd = pmd_mkyoung(pmd); if (was_writable) pmd = pmd_mkwrite(pmd); set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd); update_mmu_cache_pmd(vma, fe->address, fe->pmd); unlock_page(page); out_unlock: spin_unlock(fe->ptl); out: if (anon_vma) page_unlock_anon_vma_read(anon_vma); if (page_nid != -1) task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags); return 0; } /* * Return true if we do MADV_FREE successfully on entire pmd page. * Otherwise, return false. */ bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long next) { spinlock_t *ptl; pmd_t orig_pmd; struct page *page; struct mm_struct *mm = tlb->mm; bool ret = false; ptl = pmd_trans_huge_lock(pmd, vma); if (!ptl) goto out_unlocked; orig_pmd = *pmd; if (is_huge_zero_pmd(orig_pmd)) goto out; page = pmd_page(orig_pmd); /* * If other processes are mapping this page, we couldn't discard * the page unless they all do MADV_FREE so let's skip the page. */ if (page_mapcount(page) != 1) goto out; if (!trylock_page(page)) goto out; /* * If user want to discard part-pages of THP, split it so MADV_FREE * will deactivate only them. */ if (next - addr != HPAGE_PMD_SIZE) { get_page(page); spin_unlock(ptl); split_huge_page(page); unlock_page(page); put_page(page); goto out_unlocked; } if (PageDirty(page)) ClearPageDirty(page); unlock_page(page); if (PageActive(page)) deactivate_page(page); if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { pmdp_invalidate(vma, addr, pmd); orig_pmd = pmd_mkold(orig_pmd); orig_pmd = pmd_mkclean(orig_pmd); set_pmd_at(mm, addr, pmd, orig_pmd); tlb_remove_pmd_tlb_entry(tlb, pmd, addr); } ret = true; out: spin_unlock(ptl); out_unlocked: return ret; } int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr) { pmd_t orig_pmd; spinlock_t *ptl; ptl = __pmd_trans_huge_lock(pmd, vma); if (!ptl) return 0; /* * For architectures like ppc64 we look at deposited pgtable * when calling pmdp_huge_get_and_clear. So do the * pgtable_trans_huge_withdraw after finishing pmdp related * operations. */ orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, tlb->fullmm); tlb_remove_pmd_tlb_entry(tlb, pmd, addr); if (vma_is_dax(vma)) { spin_unlock(ptl); if (is_huge_zero_pmd(orig_pmd)) tlb_remove_page(tlb, pmd_page(orig_pmd)); } else if (is_huge_zero_pmd(orig_pmd)) { pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd)); atomic_long_dec(&tlb->mm->nr_ptes); spin_unlock(ptl); tlb_remove_page(tlb, pmd_page(orig_pmd)); } else { struct page *page = pmd_page(orig_pmd); page_remove_rmap(page, true); VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); VM_BUG_ON_PAGE(!PageHead(page), page); if (PageAnon(page)) { pgtable_t pgtable; pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); pte_free(tlb->mm, pgtable); atomic_long_dec(&tlb->mm->nr_ptes); add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); } else { add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); } spin_unlock(ptl); tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); } return 1; } bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, unsigned long old_end, pmd_t *old_pmd, pmd_t *new_pmd) { spinlock_t *old_ptl, *new_ptl; pmd_t pmd; struct mm_struct *mm = vma->vm_mm; bool force_flush = false; if ((old_addr & ~HPAGE_PMD_MASK) || (new_addr & ~HPAGE_PMD_MASK) || old_end - old_addr < HPAGE_PMD_SIZE) return false; /* * The destination pmd shouldn't be established, free_pgtables() * should have release it. */ if (WARN_ON(!pmd_none(*new_pmd))) { VM_BUG_ON(pmd_trans_huge(*new_pmd)); return false; } /* * We don't have to worry about the ordering of src and dst * ptlocks because exclusive mmap_sem prevents deadlock. */ old_ptl = __pmd_trans_huge_lock(old_pmd, vma); if (old_ptl) { new_ptl = pmd_lockptr(mm, new_pmd); if (new_ptl != old_ptl) spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); if (pmd_present(pmd)) force_flush = true; VM_BUG_ON(!pmd_none(*new_pmd)); if (pmd_move_must_withdraw(new_ptl, old_ptl) && vma_is_anonymous(vma)) { pgtable_t pgtable; pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); pgtable_trans_huge_deposit(mm, new_pmd, pgtable); } set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); if (force_flush) flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); if (new_ptl != old_ptl) spin_unlock(new_ptl); spin_unlock(old_ptl); return true; } return false; } /* * Returns * - 0 if PMD could not be locked * - 1 if PMD was locked but protections unchange and TLB flush unnecessary * - HPAGE_PMD_NR is protections changed and TLB flush necessary */ int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, pgprot_t newprot, int prot_numa) { struct mm_struct *mm = vma->vm_mm; spinlock_t *ptl; pmd_t entry; bool preserve_write; int ret; ptl = __pmd_trans_huge_lock(pmd, vma); if (!ptl) return 0; preserve_write = prot_numa && pmd_write(*pmd); ret = 1; /* * Avoid trapping faults against the zero page. The read-only * data is likely to be read-cached on the local CPU and * local/remote hits to the zero page are not interesting. */ if (prot_numa && is_huge_zero_pmd(*pmd)) goto unlock; if (prot_numa && pmd_protnone(*pmd)) goto unlock; /* * In case prot_numa, we are under down_read(mmap_sem). It's critical * to not clear pmd intermittently to avoid race with MADV_DONTNEED * which is also under down_read(mmap_sem): * * CPU0: CPU1: * change_huge_pmd(prot_numa=1) * pmdp_huge_get_and_clear_notify() * madvise_dontneed() * zap_pmd_range() * pmd_trans_huge(*pmd) == 0 (without ptl) * // skip the pmd * set_pmd_at(); * // pmd is re-established * * The race makes MADV_DONTNEED miss the huge pmd and don't clear it * which may break userspace. * * pmdp_invalidate() is required to make sure we don't miss * dirty/young flags set by hardware. */ entry = *pmd; pmdp_invalidate(vma, addr, pmd); /* * Recover dirty/young flags. It relies on pmdp_invalidate to not * corrupt them. */ if (pmd_dirty(*pmd)) entry = pmd_mkdirty(entry); if (pmd_young(*pmd)) entry = pmd_mkyoung(entry); entry = pmd_modify(entry, newprot); if (preserve_write) entry = pmd_mkwrite(entry); ret = HPAGE_PMD_NR; set_pmd_at(mm, addr, pmd, entry); BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); unlock: spin_unlock(ptl); return ret; } /* * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. * * Note that if it returns page table lock pointer, this routine returns without * unlocking page table lock. So callers must unlock it. */ spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) { spinlock_t *ptl; ptl = pmd_lock(vma->vm_mm, pmd); if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) return ptl; spin_unlock(ptl); return NULL; } static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd) { struct mm_struct *mm = vma->vm_mm; pgtable_t pgtable; pmd_t _pmd; int i; /* leave pmd empty until pte is filled */ pmdp_huge_clear_flush_notify(vma, haddr, pmd); pgtable = pgtable_trans_huge_withdraw(mm, pmd); pmd_populate(mm, &_pmd, pgtable); for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { pte_t *pte, entry; entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); entry = pte_mkspecial(entry); pte = pte_offset_map(&_pmd, haddr); VM_BUG_ON(!pte_none(*pte)); set_pte_at(mm, haddr, pte, entry); pte_unmap(pte); } smp_wmb(); /* make pte visible before pmd */ pmd_populate(mm, pmd, pgtable); } static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, unsigned long haddr, bool freeze) { struct mm_struct *mm = vma->vm_mm; struct page *page; pgtable_t pgtable; pmd_t _pmd; bool young, write, dirty, soft_dirty; unsigned long addr; int i; VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); VM_BUG_ON_VMA(vma->vm_start > haddr, vma); VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); count_vm_event(THP_SPLIT_PMD); if (!vma_is_anonymous(vma)) { _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); if (vma_is_dax(vma)) return; page = pmd_page(_pmd); if (!PageDirty(page) && pmd_dirty(_pmd)) set_page_dirty(page); if (!PageReferenced(page) && pmd_young(_pmd)) SetPageReferenced(page); page_remove_rmap(page, true); put_page(page); add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); return; } else if (is_huge_zero_pmd(*pmd)) { return __split_huge_zero_page_pmd(vma, haddr, pmd); } page = pmd_page(*pmd); VM_BUG_ON_PAGE(!page_count(page), page); page_ref_add(page, HPAGE_PMD_NR - 1); write = pmd_write(*pmd); young = pmd_young(*pmd); dirty = pmd_dirty(*pmd); soft_dirty = pmd_soft_dirty(*pmd); pmdp_huge_split_prepare(vma, haddr, pmd); pgtable = pgtable_trans_huge_withdraw(mm, pmd); pmd_populate(mm, &_pmd, pgtable); for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { pte_t entry, *pte; /* * Note that NUMA hinting access restrictions are not * transferred to avoid any possibility of altering * permissions across VMAs. */ if (freeze) { swp_entry_t swp_entry; swp_entry = make_migration_entry(page + i, write); entry = swp_entry_to_pte(swp_entry); if (soft_dirty) entry = pte_swp_mksoft_dirty(entry); } else { entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); entry = maybe_mkwrite(entry, vma); if (!write) entry = pte_wrprotect(entry); if (!young) entry = pte_mkold(entry); if (soft_dirty) entry = pte_mksoft_dirty(entry); } if (dirty) SetPageDirty(page + i); pte = pte_offset_map(&_pmd, addr); BUG_ON(!pte_none(*pte)); set_pte_at(mm, addr, pte, entry); atomic_inc(&page[i]._mapcount); pte_unmap(pte); } /* * Set PG_double_map before dropping compound_mapcount to avoid * false-negative page_mapped(). */ if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { for (i = 0; i < HPAGE_PMD_NR; i++) atomic_inc(&page[i]._mapcount); } if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { /* Last compound_mapcount is gone. */ __dec_node_page_state(page, NR_ANON_THPS); if (TestClearPageDoubleMap(page)) { /* No need in mapcount reference anymore */ for (i = 0; i < HPAGE_PMD_NR; i++) atomic_dec(&page[i]._mapcount); } } smp_wmb(); /* make pte visible before pmd */ /* * Up to this point the pmd is present and huge and userland has the * whole access to the hugepage during the split (which happens in * place). If we overwrite the pmd with the not-huge version pointing * to the pte here (which of course we could if all CPUs were bug * free), userland could trigger a small page size TLB miss on the * small sized TLB while the hugepage TLB entry is still established in * the huge TLB. Some CPU doesn't like that. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum * 383 on page 93. Intel should be safe but is also warns that it's * only safe if the permission and cache attributes of the two entries * loaded in the two TLB is identical (which should be the case here). * But it is generally safer to never allow small and huge TLB entries * for the same virtual address to be loaded simultaneously. So instead * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the * current pmd notpresent (atomically because here the pmd_trans_huge * and pmd_trans_splitting must remain set at all times on the pmd * until the split is complete for this pmd), then we flush the SMP TLB * and finally we write the non-huge version of the pmd entry with * pmd_populate. */ pmdp_invalidate(vma, haddr, pmd); pmd_populate(mm, pmd, pgtable); if (freeze) { for (i = 0; i < HPAGE_PMD_NR; i++) { page_remove_rmap(page + i, false); put_page(page + i); } } } void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long address, bool freeze, struct page *page) { spinlock_t *ptl; struct mm_struct *mm = vma->vm_mm; unsigned long haddr = address & HPAGE_PMD_MASK; mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); ptl = pmd_lock(mm, pmd); /* * If caller asks to setup a migration entries, we need a page to check * pmd against. Otherwise we can end up replacing wrong page. */ VM_BUG_ON(freeze && !page); if (page && page != pmd_page(*pmd)) goto out; if (pmd_trans_huge(*pmd)) { page = pmd_page(*pmd); if (PageMlocked(page)) clear_page_mlock(page); } else if (!pmd_devmap(*pmd)) goto out; __split_huge_pmd_locked(vma, pmd, haddr, freeze); out: spin_unlock(ptl); mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); } void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, bool freeze, struct page *page) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pgd = pgd_offset(vma->vm_mm, address); if (!pgd_present(*pgd)) return; pud = pud_offset(pgd, address); if (!pud_present(*pud)) return; pmd = pmd_offset(pud, address); __split_huge_pmd(vma, pmd, address, freeze, page); } void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, unsigned long end, long adjust_next) { /* * If the new start address isn't hpage aligned and it could * previously contain an hugepage: check if we need to split * an huge pmd. */ if (start & ~HPAGE_PMD_MASK && (start & HPAGE_PMD_MASK) >= vma->vm_start && (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) split_huge_pmd_address(vma, start, false, NULL); /* * If the new end address isn't hpage aligned and it could * previously contain an hugepage: check if we need to split * an huge pmd. */ if (end & ~HPAGE_PMD_MASK && (end & HPAGE_PMD_MASK) >= vma->vm_start && (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) split_huge_pmd_address(vma, end, false, NULL); /* * If we're also updating the vma->vm_next->vm_start, if the new * vm_next->vm_start isn't page aligned and it could previously * contain an hugepage: check if we need to split an huge pmd. */ if (adjust_next > 0) { struct vm_area_struct *next = vma->vm_next; unsigned long nstart = next->vm_start; nstart += adjust_next << PAGE_SHIFT; if (nstart & ~HPAGE_PMD_MASK && (nstart & HPAGE_PMD_MASK) >= next->vm_start && (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) split_huge_pmd_address(next, nstart, false, NULL); } } static void unmap_page(struct page *page) { enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED; int i, ret; VM_BUG_ON_PAGE(!PageHead(page), page); if (PageAnon(page)) ttu_flags |= TTU_MIGRATION; /* We only need TTU_SPLIT_HUGE_PMD once */ ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD); for (i = 1; !ret && i < HPAGE_PMD_NR; i++) { /* Cut short if the page is unmapped */ if (page_count(page) == 1) return; ret = try_to_unmap(page + i, ttu_flags); } VM_BUG_ON_PAGE(ret, page + i - 1); } static void remap_page(struct page *page) { int i; for (i = 0; i < HPAGE_PMD_NR; i++) remove_migration_ptes(page + i, page + i, true); } static void __split_huge_page_tail(struct page *head, int tail, struct lruvec *lruvec, struct list_head *list) { struct page *page_tail = head + tail; VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); /* * Clone page flags before unfreezing refcount. * * After successful get_page_unless_zero() might follow flags change, * for exmaple lock_page() which set PG_waiters. */ page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; page_tail->flags |= (head->flags & ((1L << PG_referenced) | (1L << PG_swapbacked) | (1L << PG_mlocked) | (1L << PG_uptodate) | (1L << PG_active) | (1L << PG_locked) | (1L << PG_unevictable) | (1L << PG_dirty))); /* ->mapping in first tail page is compound_mapcount */ VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, page_tail); page_tail->mapping = head->mapping; page_tail->index = head->index + tail; /* Page flags must be visible before we make the page non-compound. */ smp_wmb(); /* * Clear PageTail before unfreezing page refcount. * * After successful get_page_unless_zero() might follow put_page() * which needs correct compound_head(). */ clear_compound_head(page_tail); /* Finally unfreeze refcount. Additional reference from page cache. */ page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || PageSwapCache(head))); if (page_is_young(head)) set_page_young(page_tail); if (page_is_idle(head)) set_page_idle(page_tail); page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); lru_add_page_tail(head, page_tail, lruvec, list); } static void __split_huge_page(struct page *page, struct list_head *list, pgoff_t end, unsigned long flags) { struct page *head = compound_head(page); struct zone *zone = page_zone(head); struct lruvec *lruvec; int i; lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); /* complete memcg works before add pages to LRU */ mem_cgroup_split_huge_fixup(head); for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { __split_huge_page_tail(head, i, lruvec, list); /* Some pages can be beyond i_size: drop them from page cache */ if (head[i].index >= end) { __ClearPageDirty(head + i); __delete_from_page_cache(head + i, NULL); if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) shmem_uncharge(head->mapping->host, 1); put_page(head + i); } } ClearPageCompound(head); split_page_owner(head, HPAGE_PMD_ORDER); /* See comment in __split_huge_page_tail() */ if (PageAnon(head)) { page_ref_inc(head); } else { /* Additional pin to radix tree */ page_ref_add(head, 2); spin_unlock(&head->mapping->tree_lock); } spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); remap_page(head); for (i = 0; i < HPAGE_PMD_NR; i++) { struct page *subpage = head + i; if (subpage == page) continue; unlock_page(subpage); /* * Subpages may be freed if there wasn't any mapping * like if add_to_swap() is running on a lru page that * had its mapping zapped. And freeing these pages * requires taking the lru_lock so we do the put_page * of the tail pages after the split is complete. */ put_page(subpage); } } int total_mapcount(struct page *page) { int i, compound, ret; VM_BUG_ON_PAGE(PageTail(page), page); if (likely(!PageCompound(page))) return atomic_read(&page->_mapcount) + 1; compound = compound_mapcount(page); if (PageHuge(page)) return compound; ret = compound; for (i = 0; i < HPAGE_PMD_NR; i++) ret += atomic_read(&page[i]._mapcount) + 1; /* File pages has compound_mapcount included in _mapcount */ if (!PageAnon(page)) return ret - compound * HPAGE_PMD_NR; if (PageDoubleMap(page)) ret -= HPAGE_PMD_NR; return ret; } /* * This calculates accurately how many mappings a transparent hugepage * has (unlike page_mapcount() which isn't fully accurate). This full * accuracy is primarily needed to know if copy-on-write faults can * reuse the page and change the mapping to read-write instead of * copying them. At the same time this returns the total_mapcount too. * * The function returns the highest mapcount any one of the subpages * has. If the return value is one, even if different processes are * mapping different subpages of the transparent hugepage, they can * all reuse it, because each process is reusing a different subpage. * * The total_mapcount is instead counting all virtual mappings of the * subpages. If the total_mapcount is equal to "one", it tells the * caller all mappings belong to the same "mm" and in turn the * anon_vma of the transparent hugepage can become the vma->anon_vma * local one as no other process may be mapping any of the subpages. * * It would be more accurate to replace page_mapcount() with * page_trans_huge_mapcount(), however we only use * page_trans_huge_mapcount() in the copy-on-write faults where we * need full accuracy to avoid breaking page pinning, because * page_trans_huge_mapcount() is slower than page_mapcount(). */ int page_trans_huge_mapcount(struct page *page, int *total_mapcount) { int i, ret, _total_mapcount, mapcount; /* hugetlbfs shouldn't call it */ VM_BUG_ON_PAGE(PageHuge(page), page); if (likely(!PageTransCompound(page))) { mapcount = atomic_read(&page->_mapcount) + 1; if (total_mapcount) *total_mapcount = mapcount; return mapcount; } page = compound_head(page); _total_mapcount = ret = 0; for (i = 0; i < HPAGE_PMD_NR; i++) { mapcount = atomic_read(&page[i]._mapcount) + 1; ret = max(ret, mapcount); _total_mapcount += mapcount; } if (PageDoubleMap(page)) { ret -= 1; _total_mapcount -= HPAGE_PMD_NR; } mapcount = compound_mapcount(page); ret += mapcount; _total_mapcount += mapcount; if (total_mapcount) *total_mapcount = _total_mapcount; return ret; } /* * This function splits huge page into normal pages. @page can point to any * subpage of huge page to split. Split doesn't change the position of @page. * * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. * The huge page must be locked. * * If @list is null, tail pages will be added to LRU list, otherwise, to @list. * * Both head page and tail pages will inherit mapping, flags, and so on from * the hugepage. * * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if * they are not mapped. * * Returns 0 if the hugepage is split successfully. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under * us. */ int split_huge_page_to_list(struct page *page, struct list_head *list) { struct page *head = compound_head(page); struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); struct anon_vma *anon_vma = NULL; struct address_space *mapping = NULL; int count, mapcount, extra_pins, ret; bool mlocked; unsigned long flags; pgoff_t end; VM_BUG_ON_PAGE(is_huge_zero_page(page), page); VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(!PageSwapBacked(page), page); VM_BUG_ON_PAGE(!PageCompound(page), page); if (PageAnon(head)) { /* * The caller does not necessarily hold an mmap_sem that would * prevent the anon_vma disappearing so we first we take a * reference to it and then lock the anon_vma for write. This * is similar to page_lock_anon_vma_read except the write lock * is taken to serialise against parallel split or collapse * operations. */ anon_vma = page_get_anon_vma(head); if (!anon_vma) { ret = -EBUSY; goto out; } extra_pins = 0; end = -1; mapping = NULL; anon_vma_lock_write(anon_vma); } else { mapping = head->mapping; /* Truncated ? */ if (!mapping) { ret = -EBUSY; goto out; } /* Addidional pins from radix tree */ extra_pins = HPAGE_PMD_NR; anon_vma = NULL; i_mmap_lock_read(mapping); /* *__split_huge_page() may need to trim off pages beyond EOF: * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, * which cannot be nested inside the page tree lock. So note * end now: i_size itself may be changed at any moment, but * head page lock is good enough to serialize the trimming. */ end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); } /* * Racy check if we can split the page, before unmap_page() will * split PMDs */ if (total_mapcount(head) != page_count(head) - extra_pins - 1) { ret = -EBUSY; goto out_unlock; } mlocked = PageMlocked(page); unmap_page(head); VM_BUG_ON_PAGE(compound_mapcount(head), head); /* Make sure the page is not on per-CPU pagevec as it takes pin */ if (mlocked) lru_add_drain(); /* prevent PageLRU to go away from under us, and freeze lru stats */ spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); if (mapping) { void **pslot; spin_lock(&mapping->tree_lock); pslot = radix_tree_lookup_slot(&mapping->page_tree, page_index(head)); /* * Check if the head page is present in radix tree. * We assume all tail are present too, if head is there. */ if (radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != head) goto fail; } /* Prevent deferred_split_scan() touching ->_refcount */ spin_lock(&pgdata->split_queue_lock); count = page_count(head); mapcount = total_mapcount(head); if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { if (!list_empty(page_deferred_list(head))) { pgdata->split_queue_len--; list_del(page_deferred_list(head)); } if (mapping) __dec_node_page_state(page, NR_SHMEM_THPS); spin_unlock(&pgdata->split_queue_lock); __split_huge_page(page, list, end, flags); ret = 0; } else { if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { pr_alert("total_mapcount: %u, page_count(): %u\n", mapcount, count); if (PageTail(page)) dump_page(head, NULL); dump_page(page, "total_mapcount(head) > 0"); BUG(); } spin_unlock(&pgdata->split_queue_lock); fail: if (mapping) spin_unlock(&mapping->tree_lock); spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); remap_page(head); ret = -EBUSY; } out_unlock: if (anon_vma) { anon_vma_unlock_write(anon_vma); put_anon_vma(anon_vma); } if (mapping) i_mmap_unlock_read(mapping); out: count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); return ret; } void free_transhuge_page(struct page *page) { struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); unsigned long flags; spin_lock_irqsave(&pgdata->split_queue_lock, flags); if (!list_empty(page_deferred_list(page))) { pgdata->split_queue_len--; list_del(page_deferred_list(page)); } spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); free_compound_page(page); } void deferred_split_huge_page(struct page *page) { struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); unsigned long flags; VM_BUG_ON_PAGE(!PageTransHuge(page), page); spin_lock_irqsave(&pgdata->split_queue_lock, flags); if (list_empty(page_deferred_list(page))) { count_vm_event(THP_DEFERRED_SPLIT_PAGE); list_add_tail(page_deferred_list(page), &pgdata->split_queue); pgdata->split_queue_len++; } spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); } static unsigned long deferred_split_count(struct shrinker *shrink, struct shrink_control *sc) { struct pglist_data *pgdata = NODE_DATA(sc->nid); return ACCESS_ONCE(pgdata->split_queue_len); } static unsigned long deferred_split_scan(struct shrinker *shrink, struct shrink_control *sc) { struct pglist_data *pgdata = NODE_DATA(sc->nid); unsigned long flags; LIST_HEAD(list), *pos, *next; struct page *page; int split = 0; spin_lock_irqsave(&pgdata->split_queue_lock, flags); /* Take pin on all head pages to avoid freeing them under us */ list_for_each_safe(pos, next, &pgdata->split_queue) { page = list_entry((void *)pos, struct page, mapping); page = compound_head(page); if (get_page_unless_zero(page)) { list_move(page_deferred_list(page), &list); } else { /* We lost race with put_compound_page() */ list_del_init(page_deferred_list(page)); pgdata->split_queue_len--; } if (!--sc->nr_to_scan) break; } spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); list_for_each_safe(pos, next, &list) { page = list_entry((void *)pos, struct page, mapping); if (!trylock_page(page)) goto next; /* split_huge_page() removes page from list on success */ if (!split_huge_page(page)) split++; unlock_page(page); next: put_page(page); } spin_lock_irqsave(&pgdata->split_queue_lock, flags); list_splice_tail(&list, &pgdata->split_queue); spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); /* * Stop shrinker if we didn't split any page, but the queue is empty. * This can happen if pages were freed under us. */ if (!split && list_empty(&pgdata->split_queue)) return SHRINK_STOP; return split; } static struct shrinker deferred_split_shrinker = { .count_objects = deferred_split_count, .scan_objects = deferred_split_scan, .seeks = DEFAULT_SEEKS, .flags = SHRINKER_NUMA_AWARE, }; #ifdef CONFIG_DEBUG_FS static int split_huge_pages_set(void *data, u64 val) { struct zone *zone; struct page *page; unsigned long pfn, max_zone_pfn; unsigned long total = 0, split = 0; if (val != 1) return -EINVAL; for_each_populated_zone(zone) { max_zone_pfn = zone_end_pfn(zone); for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { if (!pfn_valid(pfn)) continue; page = pfn_to_page(pfn); if (!get_page_unless_zero(page)) continue; if (zone != page_zone(page)) goto next; if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) goto next; total++; lock_page(page); if (!split_huge_page(page)) split++; unlock_page(page); next: put_page(page); } } pr_info("%lu of %lu THP split\n", split, total); return 0; } DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, "%llu\n"); static int __init split_huge_pages_debugfs(void) { void *ret; ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, &split_huge_pages_fops); if (!ret) pr_warn("Failed to create split_huge_pages in debugfs"); return 0; } late_initcall(split_huge_pages_debugfs); #endif |