Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 | Building External Modules This document describes how to build an out-of-tree kernel module. === Table of Contents === 1 Introduction === 2 How to Build External Modules --- 2.1 Command Syntax --- 2.2 Options --- 2.3 Targets --- 2.4 Building Separate Files === 3. Creating a Kbuild File for an External Module --- 3.1 Shared Makefile --- 3.2 Separate Kbuild file and Makefile --- 3.3 Binary Blobs --- 3.4 Building Multiple Modules === 4. Include Files --- 4.1 Kernel Includes --- 4.2 Single Subdirectory --- 4.3 Several Subdirectories === 5. Module Installation --- 5.1 INSTALL_MOD_PATH --- 5.2 INSTALL_MOD_DIR === 6. Module Versioning --- 6.1 Symbols From the Kernel (vmlinux + modules) --- 6.2 Symbols and External Modules --- 6.3 Symbols From Another External Module === 7. Tips & Tricks --- 7.1 Testing for CONFIG_FOO_BAR === 1. Introduction "kbuild" is the build system used by the Linux kernel. Modules must use kbuild to stay compatible with changes in the build infrastructure and to pick up the right flags to "gcc." Functionality for building modules both in-tree and out-of-tree is provided. The method for building either is similar, and all modules are initially developed and built out-of-tree. Covered in this document is information aimed at developers interested in building out-of-tree (or "external") modules. The author of an external module should supply a makefile that hides most of the complexity, so one only has to type "make" to build the module. This is easily accomplished, and a complete example will be presented in section 3. === 2. How to Build External Modules To build external modules, you must have a prebuilt kernel available that contains the configuration and header files used in the build. Also, the kernel must have been built with modules enabled. If you are using a distribution kernel, there will be a package for the kernel you are running provided by your distribution. An alternative is to use the "make" target "modules_prepare." This will make sure the kernel contains the information required. The target exists solely as a simple way to prepare a kernel source tree for building external modules. NOTE: "modules_prepare" will not build Module.symvers even if CONFIG_MODVERSIONS is set; therefore, a full kernel build needs to be executed to make module versioning work. --- 2.1 Command Syntax The command to build an external module is: $ make -C <path_to_kernel_src> M=$PWD The kbuild system knows that an external module is being built due to the "M=<dir>" option given in the command. To build against the running kernel use: $ make -C /lib/modules/`uname -r`/build M=$PWD Then to install the module(s) just built, add the target "modules_install" to the command: $ make -C /lib/modules/`uname -r`/build M=$PWD modules_install --- 2.2 Options ($KDIR refers to the path of the kernel source directory.) make -C $KDIR M=$PWD -C $KDIR The directory where the kernel source is located. "make" will actually change to the specified directory when executing and will change back when finished. M=$PWD Informs kbuild that an external module is being built. The value given to "M" is the absolute path of the directory where the external module (kbuild file) is located. --- 2.3 Targets When building an external module, only a subset of the "make" targets are available. make -C $KDIR M=$PWD [target] The default will build the module(s) located in the current directory, so a target does not need to be specified. All output files will also be generated in this directory. No attempts are made to update the kernel source, and it is a precondition that a successful "make" has been executed for the kernel. modules The default target for external modules. It has the same functionality as if no target was specified. See description above. modules_install Install the external module(s). The default location is /lib/modules/<kernel_release>/extra/, but a prefix may be added with INSTALL_MOD_PATH (discussed in section 5). clean Remove all generated files in the module directory only. help List the available targets for external modules. --- 2.4 Building Separate Files It is possible to build single files that are part of a module. This works equally well for the kernel, a module, and even for external modules. Example (The module foo.ko, consist of bar.o and baz.o): make -C $KDIR M=$PWD bar.lst make -C $KDIR M=$PWD baz.o make -C $KDIR M=$PWD foo.ko make -C $KDIR M=$PWD / === 3. Creating a Kbuild File for an External Module In the last section we saw the command to build a module for the running kernel. The module is not actually built, however, because a build file is required. Contained in this file will be the name of the module(s) being built, along with the list of requisite source files. The file may be as simple as a single line: obj-m := <module_name>.o The kbuild system will build <module_name>.o from <module_name>.c, and, after linking, will result in the kernel module <module_name>.ko. The above line can be put in either a "Kbuild" file or a "Makefile." When the module is built from multiple sources, an additional line is needed listing the files: <module_name>-y := <src1>.o <src2>.o ... NOTE: Further documentation describing the syntax used by kbuild is located in Documentation/kbuild/makefiles.txt. The examples below demonstrate how to create a build file for the module 8123.ko, which is built from the following files: 8123_if.c 8123_if.h 8123_pci.c 8123_bin.o_shipped <= Binary blob --- 3.1 Shared Makefile An external module always includes a wrapper makefile that supports building the module using "make" with no arguments. This target is not used by kbuild; it is only for convenience. Additional functionality, such as test targets, can be included but should be filtered out from kbuild due to possible name clashes. Example 1: --> filename: Makefile ifneq ($(KERNELRELEASE),) # kbuild part of makefile obj-m := 8123.o 8123-y := 8123_if.o 8123_pci.o 8123_bin.o else # normal makefile KDIR ?= /lib/modules/`uname -r`/build default: $(MAKE) -C $(KDIR) M=$$PWD # Module specific targets genbin: echo "X" > 8123_bin.o_shipped endif The check for KERNELRELEASE is used to separate the two parts of the makefile. In the example, kbuild will only see the two assignments, whereas "make" will see everything except these two assignments. This is due to two passes made on the file: the first pass is by the "make" instance run on the command line; the second pass is by the kbuild system, which is initiated by the parameterized "make" in the default target. --- 3.2 Separate Kbuild File and Makefile In newer versions of the kernel, kbuild will first look for a file named "Kbuild," and only if that is not found, will it then look for a makefile. Utilizing a "Kbuild" file allows us to split up the makefile from example 1 into two files: Example 2: --> filename: Kbuild obj-m := 8123.o 8123-y := 8123_if.o 8123_pci.o 8123_bin.o --> filename: Makefile KDIR ?= /lib/modules/`uname -r`/build default: $(MAKE) -C $(KDIR) M=$$PWD # Module specific targets genbin: echo "X" > 8123_bin.o_shipped The split in example 2 is questionable due to the simplicity of each file; however, some external modules use makefiles consisting of several hundred lines, and here it really pays off to separate the kbuild part from the rest. The next example shows a backward compatible version. Example 3: --> filename: Kbuild obj-m := 8123.o 8123-y := 8123_if.o 8123_pci.o 8123_bin.o --> filename: Makefile ifneq ($(KERNELRELEASE),) # kbuild part of makefile include Kbuild else # normal makefile KDIR ?= /lib/modules/`uname -r`/build default: $(MAKE) -C $(KDIR) M=$$PWD # Module specific targets genbin: echo "X" > 8123_bin.o_shipped endif Here the "Kbuild" file is included from the makefile. This allows an older version of kbuild, which only knows of makefiles, to be used when the "make" and kbuild parts are split into separate files. --- 3.3 Binary Blobs Some external modules need to include an object file as a blob. kbuild has support for this, but requires the blob file to be named <filename>_shipped. When the kbuild rules kick in, a copy of <filename>_shipped is created with _shipped stripped off, giving us <filename>. This shortened filename can be used in the assignment to the module. Throughout this section, 8123_bin.o_shipped has been used to build the kernel module 8123.ko; it has been included as 8123_bin.o. 8123-y := 8123_if.o 8123_pci.o 8123_bin.o Although there is no distinction between the ordinary source files and the binary file, kbuild will pick up different rules when creating the object file for the module. --- 3.4 Building Multiple Modules kbuild supports building multiple modules with a single build file. For example, if you wanted to build two modules, foo.ko and bar.ko, the kbuild lines would be: obj-m := foo.o bar.o foo-y := <foo_srcs> bar-y := <bar_srcs> It is that simple! === 4. Include Files Within the kernel, header files are kept in standard locations according to the following rule: * If the header file only describes the internal interface of a module, then the file is placed in the same directory as the source files. * If the header file describes an interface used by other parts of the kernel that are located in different directories, then the file is placed in include/linux/. NOTE: There are two notable exceptions to this rule: larger subsystems have their own directory under include/, such as include/scsi; and architecture specific headers are located under arch/$(ARCH)/include/. --- 4.1 Kernel Includes To include a header file located under include/linux/, simply use: #include <linux/module.h> kbuild will add options to "gcc" so the relevant directories are searched. --- 4.2 Single Subdirectory External modules tend to place header files in a separate include/ directory where their source is located, although this is not the usual kernel style. To inform kbuild of the directory, use either ccflags-y or CFLAGS_<filename>.o. Using the example from section 3, if we moved 8123_if.h to a subdirectory named include, the resulting kbuild file would look like: --> filename: Kbuild obj-m := 8123.o ccflags-y := -Iinclude 8123-y := 8123_if.o 8123_pci.o 8123_bin.o Note that in the assignment there is no space between -I and the path. This is a limitation of kbuild: there must be no space present. --- 4.3 Several Subdirectories kbuild can handle files that are spread over several directories. Consider the following example: . |__ src | |__ complex_main.c | |__ hal | |__ hardwareif.c | |__ include | |__ hardwareif.h |__ include |__ complex.h To build the module complex.ko, we then need the following kbuild file: --> filename: Kbuild obj-m := complex.o complex-y := src/complex_main.o complex-y += src/hal/hardwareif.o ccflags-y := -I$(src)/include ccflags-y += -I$(src)/src/hal/include As you can see, kbuild knows how to handle object files located in other directories. The trick is to specify the directory relative to the kbuild file's location. That being said, this is NOT recommended practice. For the header files, kbuild must be explicitly told where to look. When kbuild executes, the current directory is always the root of the kernel tree (the argument to "-C") and therefore an absolute path is needed. $(src) provides the absolute path by pointing to the directory where the currently executing kbuild file is located. === 5. Module Installation Modules which are included in the kernel are installed in the directory: /lib/modules/$(KERNELRELEASE)/kernel/ And external modules are installed in: /lib/modules/$(KERNELRELEASE)/extra/ --- 5.1 INSTALL_MOD_PATH Above are the default directories but as always some level of customization is possible. A prefix can be added to the installation path using the variable INSTALL_MOD_PATH: $ make INSTALL_MOD_PATH=/frodo modules_install => Install dir: /frodo/lib/modules/$(KERNELRELEASE)/kernel/ INSTALL_MOD_PATH may be set as an ordinary shell variable or, as shown above, can be specified on the command line when calling "make." This has effect when installing both in-tree and out-of-tree modules. --- 5.2 INSTALL_MOD_DIR External modules are by default installed to a directory under /lib/modules/$(KERNELRELEASE)/extra/, but you may wish to locate modules for a specific functionality in a separate directory. For this purpose, use INSTALL_MOD_DIR to specify an alternative name to "extra." $ make INSTALL_MOD_DIR=gandalf -C $KDIR \ M=$PWD modules_install => Install dir: /lib/modules/$(KERNELRELEASE)/gandalf/ === 6. Module Versioning Module versioning is enabled by the CONFIG_MODVERSIONS tag, and is used as a simple ABI consistency check. A CRC value of the full prototype for an exported symbol is created. When a module is loaded/used, the CRC values contained in the kernel are compared with similar values in the module; if they are not equal, the kernel refuses to load the module. Module.symvers contains a list of all exported symbols from a kernel build. --- 6.1 Symbols From the Kernel (vmlinux + modules) During a kernel build, a file named Module.symvers will be generated. Module.symvers contains all exported symbols from the kernel and compiled modules. For each symbol, the corresponding CRC value is also stored. The syntax of the Module.symvers file is: <CRC> <Symbol> <module> 0x2d036834 scsi_remove_host drivers/scsi/scsi_mod For a kernel build without CONFIG_MODVERSIONS enabled, the CRC would read 0x00000000. Module.symvers serves two purposes: 1) It lists all exported symbols from vmlinux and all modules. 2) It lists the CRC if CONFIG_MODVERSIONS is enabled. --- 6.2 Symbols and External Modules When building an external module, the build system needs access to the symbols from the kernel to check if all external symbols are defined. This is done in the MODPOST step. modpost obtains the symbols by reading Module.symvers from the kernel source tree. If a Module.symvers file is present in the directory where the external module is being built, this file will be read too. During the MODPOST step, a new Module.symvers file will be written containing all exported symbols that were not defined in the kernel. --- 6.3 Symbols From Another External Module Sometimes, an external module uses exported symbols from another external module. kbuild needs to have full knowledge of all symbols to avoid spitting out warnings about undefined symbols. Three solutions exist for this situation. NOTE: The method with a top-level kbuild file is recommended but may be impractical in certain situations. Use a top-level kbuild file If you have two modules, foo.ko and bar.ko, where foo.ko needs symbols from bar.ko, you can use a common top-level kbuild file so both modules are compiled in the same build. Consider the following directory layout: ./foo/ <= contains foo.ko ./bar/ <= contains bar.ko The top-level kbuild file would then look like: #./Kbuild (or ./Makefile): obj-y := foo/ bar/ And executing $ make -C $KDIR M=$PWD will then do the expected and compile both modules with full knowledge of symbols from either module. Use an extra Module.symvers file When an external module is built, a Module.symvers file is generated containing all exported symbols which are not defined in the kernel. To get access to symbols from bar.ko, copy the Module.symvers file from the compilation of bar.ko to the directory where foo.ko is built. During the module build, kbuild will read the Module.symvers file in the directory of the external module, and when the build is finished, a new Module.symvers file is created containing the sum of all symbols defined and not part of the kernel. Use "make" variable KBUILD_EXTRA_SYMBOLS If it is impractical to copy Module.symvers from another module, you can assign a space separated list of files to KBUILD_EXTRA_SYMBOLS in your build file. These files will be loaded by modpost during the initialization of its symbol tables. === 7. Tips & Tricks --- 7.1 Testing for CONFIG_FOO_BAR Modules often need to check for certain CONFIG_ options to decide if a specific feature is included in the module. In kbuild this is done by referencing the CONFIG_ variable directly. #fs/ext2/Makefile obj-$(CONFIG_EXT2_FS) += ext2.o ext2-y := balloc.o bitmap.o dir.o ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o External modules have traditionally used "grep" to check for specific CONFIG_ settings directly in .config. This usage is broken. As introduced before, external modules should use kbuild for building and can therefore use the same methods as in-tree modules when testing for CONFIG_ definitions. |