Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 | /* * fs/dax.c - Direct Access filesystem code * Copyright (c) 2013-2014 Intel Corporation * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> * Author: Ross Zwisler <ross.zwisler@linux.intel.com> * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include <linux/atomic.h> #include <linux/blkdev.h> #include <linux/buffer_head.h> #include <linux/dax.h> #include <linux/fs.h> #include <linux/genhd.h> #include <linux/highmem.h> #include <linux/memcontrol.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/pagevec.h> #include <linux/pmem.h> #include <linux/sched.h> #include <linux/uio.h> #include <linux/vmstat.h> #include <linux/pfn_t.h> #include <linux/sizes.h> /* * We use lowest available bit in exceptional entry for locking, other two * bits to determine entry type. In total 3 special bits. */ #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 3) #define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1)) #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2)) #define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD) #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK) #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT)) #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \ RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \ RADIX_TREE_EXCEPTIONAL_ENTRY)) /* We choose 4096 entries - same as per-zone page wait tables */ #define DAX_WAIT_TABLE_BITS 12 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; static int __init init_dax_wait_table(void) { int i; for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) init_waitqueue_head(wait_table + i); return 0; } fs_initcall(init_dax_wait_table); static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, pgoff_t index) { unsigned long hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); return wait_table + hash; } static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax) { struct request_queue *q = bdev->bd_queue; long rc = -EIO; dax->addr = ERR_PTR(-EIO); if (blk_queue_enter(q, true) != 0) return rc; rc = bdev_direct_access(bdev, dax); if (rc < 0) { dax->addr = ERR_PTR(rc); blk_queue_exit(q); return rc; } return rc; } static void dax_unmap_atomic(struct block_device *bdev, const struct blk_dax_ctl *dax) { if (IS_ERR(dax->addr)) return; blk_queue_exit(bdev->bd_queue); } struct page *read_dax_sector(struct block_device *bdev, sector_t n) { struct page *page = alloc_pages(GFP_KERNEL, 0); struct blk_dax_ctl dax = { .size = PAGE_SIZE, .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), }; long rc; if (!page) return ERR_PTR(-ENOMEM); rc = dax_map_atomic(bdev, &dax); if (rc < 0) return ERR_PTR(rc); memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); dax_unmap_atomic(bdev, &dax); return page; } static bool buffer_written(struct buffer_head *bh) { return buffer_mapped(bh) && !buffer_unwritten(bh); } /* * When ext4 encounters a hole, it returns without modifying the buffer_head * which means that we can't trust b_size. To cope with this, we set b_state * to 0 before calling get_block and, if any bit is set, we know we can trust * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is * and would save us time calling get_block repeatedly. */ static bool buffer_size_valid(struct buffer_head *bh) { return bh->b_state != 0; } static sector_t to_sector(const struct buffer_head *bh, const struct inode *inode) { sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9); return sector; } static ssize_t dax_io(struct inode *inode, struct iov_iter *iter, loff_t start, loff_t end, get_block_t get_block, struct buffer_head *bh) { loff_t pos = start, max = start, bh_max = start; bool hole = false; struct block_device *bdev = NULL; int rw = iov_iter_rw(iter), rc; long map_len = 0; struct blk_dax_ctl dax = { .addr = ERR_PTR(-EIO), }; unsigned blkbits = inode->i_blkbits; sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits; if (rw == READ) end = min(end, i_size_read(inode)); while (pos < end) { size_t len; if (pos == max) { long page = pos >> PAGE_SHIFT; sector_t block = page << (PAGE_SHIFT - blkbits); unsigned first = pos - (block << blkbits); long size; if (pos == bh_max) { bh->b_size = PAGE_ALIGN(end - pos); bh->b_state = 0; rc = get_block(inode, block, bh, rw == WRITE); if (rc) break; if (!buffer_size_valid(bh)) bh->b_size = 1 << blkbits; bh_max = pos - first + bh->b_size; bdev = bh->b_bdev; /* * We allow uninitialized buffers for writes * beyond EOF as those cannot race with faults */ WARN_ON_ONCE( (buffer_new(bh) && block < file_blks) || (rw == WRITE && buffer_unwritten(bh))); } else { unsigned done = bh->b_size - (bh_max - (pos - first)); bh->b_blocknr += done >> blkbits; bh->b_size -= done; } hole = rw == READ && !buffer_written(bh); if (hole) { size = bh->b_size - first; } else { dax_unmap_atomic(bdev, &dax); dax.sector = to_sector(bh, inode); dax.size = bh->b_size; map_len = dax_map_atomic(bdev, &dax); if (map_len < 0) { rc = map_len; break; } dax.addr += first; size = map_len - first; } /* * pos + size is one past the last offset for IO, * so pos + size can overflow loff_t at extreme offsets. * Cast to u64 to catch this and get the true minimum. */ max = min_t(u64, pos + size, end); } if (iov_iter_rw(iter) == WRITE) { len = copy_from_iter_pmem(dax.addr, max - pos, iter); } else if (!hole) len = copy_to_iter((void __force *) dax.addr, max - pos, iter); else len = iov_iter_zero(max - pos, iter); if (!len) { rc = -EFAULT; break; } pos += len; if (!IS_ERR(dax.addr)) dax.addr += len; } dax_unmap_atomic(bdev, &dax); return (pos == start) ? rc : pos - start; } /** * dax_do_io - Perform I/O to a DAX file * @iocb: The control block for this I/O * @inode: The file which the I/O is directed at * @iter: The addresses to do I/O from or to * @get_block: The filesystem method used to translate file offsets to blocks * @end_io: A filesystem callback for I/O completion * @flags: See below * * This function uses the same locking scheme as do_blockdev_direct_IO: * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the * caller for writes. For reads, we take and release the i_mutex ourselves. * If DIO_LOCKING is not set, the filesystem takes care of its own locking. * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O * is in progress. */ ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode, struct iov_iter *iter, get_block_t get_block, dio_iodone_t end_io, int flags) { struct buffer_head bh; ssize_t retval = -EINVAL; loff_t pos = iocb->ki_pos; loff_t end = pos + iov_iter_count(iter); memset(&bh, 0, sizeof(bh)); bh.b_bdev = inode->i_sb->s_bdev; if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) inode_lock(inode); /* Protects against truncate */ if (!(flags & DIO_SKIP_DIO_COUNT)) inode_dio_begin(inode); retval = dax_io(inode, iter, pos, end, get_block, &bh); if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) inode_unlock(inode); if (end_io) { int err; err = end_io(iocb, pos, retval, bh.b_private); if (err) retval = err; } if (!(flags & DIO_SKIP_DIO_COUNT)) inode_dio_end(inode); return retval; } EXPORT_SYMBOL_GPL(dax_do_io); /* * DAX radix tree locking */ struct exceptional_entry_key { struct address_space *mapping; unsigned long index; }; struct wait_exceptional_entry_queue { wait_queue_t wait; struct exceptional_entry_key key; }; static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode, int sync, void *keyp) { struct exceptional_entry_key *key = keyp; struct wait_exceptional_entry_queue *ewait = container_of(wait, struct wait_exceptional_entry_queue, wait); if (key->mapping != ewait->key.mapping || key->index != ewait->key.index) return 0; return autoremove_wake_function(wait, mode, sync, NULL); } /* * Check whether the given slot is locked. The function must be called with * mapping->tree_lock held */ static inline int slot_locked(struct address_space *mapping, void **slot) { unsigned long entry = (unsigned long) radix_tree_deref_slot_protected(slot, &mapping->tree_lock); return entry & RADIX_DAX_ENTRY_LOCK; } /* * Mark the given slot is locked. The function must be called with * mapping->tree_lock held */ static inline void *lock_slot(struct address_space *mapping, void **slot) { unsigned long entry = (unsigned long) radix_tree_deref_slot_protected(slot, &mapping->tree_lock); entry |= RADIX_DAX_ENTRY_LOCK; radix_tree_replace_slot(slot, (void *)entry); return (void *)entry; } /* * Mark the given slot is unlocked. The function must be called with * mapping->tree_lock held */ static inline void *unlock_slot(struct address_space *mapping, void **slot) { unsigned long entry = (unsigned long) radix_tree_deref_slot_protected(slot, &mapping->tree_lock); entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; radix_tree_replace_slot(slot, (void *)entry); return (void *)entry; } /* * Lookup entry in radix tree, wait for it to become unlocked if it is * exceptional entry and return it. The caller must call * put_unlocked_mapping_entry() when he decided not to lock the entry or * put_locked_mapping_entry() when he locked the entry and now wants to * unlock it. * * The function must be called with mapping->tree_lock held. */ static void *get_unlocked_mapping_entry(struct address_space *mapping, pgoff_t index, void ***slotp) { void *ret, **slot; struct wait_exceptional_entry_queue ewait; wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index); init_wait(&ewait.wait); ewait.wait.func = wake_exceptional_entry_func; ewait.key.mapping = mapping; ewait.key.index = index; for (;;) { ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); if (!ret || !radix_tree_exceptional_entry(ret) || !slot_locked(mapping, slot)) { if (slotp) *slotp = slot; return ret; } prepare_to_wait_exclusive(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); spin_unlock_irq(&mapping->tree_lock); schedule(); finish_wait(wq, &ewait.wait); spin_lock_irq(&mapping->tree_lock); } } /* * Find radix tree entry at given index. If it points to a page, return with * the page locked. If it points to the exceptional entry, return with the * radix tree entry locked. If the radix tree doesn't contain given index, * create empty exceptional entry for the index and return with it locked. * * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For * persistent memory the benefit is doubtful. We can add that later if we can * show it helps. */ static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index) { void *ret, **slot; restart: spin_lock_irq(&mapping->tree_lock); ret = get_unlocked_mapping_entry(mapping, index, &slot); /* No entry for given index? Make sure radix tree is big enough. */ if (!ret) { int err; spin_unlock_irq(&mapping->tree_lock); err = radix_tree_preload( mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); if (err) return ERR_PTR(err); ret = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | RADIX_DAX_ENTRY_LOCK); spin_lock_irq(&mapping->tree_lock); err = radix_tree_insert(&mapping->page_tree, index, ret); radix_tree_preload_end(); if (err) { spin_unlock_irq(&mapping->tree_lock); /* Someone already created the entry? */ if (err == -EEXIST) goto restart; return ERR_PTR(err); } /* Good, we have inserted empty locked entry into the tree. */ mapping->nrexceptional++; spin_unlock_irq(&mapping->tree_lock); return ret; } /* Normal page in radix tree? */ if (!radix_tree_exceptional_entry(ret)) { struct page *page = ret; get_page(page); spin_unlock_irq(&mapping->tree_lock); lock_page(page); /* Page got truncated? Retry... */ if (unlikely(page->mapping != mapping)) { unlock_page(page); put_page(page); goto restart; } return page; } ret = lock_slot(mapping, slot); spin_unlock_irq(&mapping->tree_lock); return ret; } void dax_wake_mapping_entry_waiter(struct address_space *mapping, pgoff_t index, bool wake_all) { wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index); /* * Checking for locked entry and prepare_to_wait_exclusive() happens * under mapping->tree_lock, ditto for entry handling in our callers. * So at this point all tasks that could have seen our entry locked * must be in the waitqueue and the following check will see them. */ if (waitqueue_active(wq)) { struct exceptional_entry_key key; key.mapping = mapping; key.index = index; __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); } } void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index) { void *ret, **slot; spin_lock_irq(&mapping->tree_lock); ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); if (WARN_ON_ONCE(!ret || !radix_tree_exceptional_entry(ret) || !slot_locked(mapping, slot))) { spin_unlock_irq(&mapping->tree_lock); return; } unlock_slot(mapping, slot); spin_unlock_irq(&mapping->tree_lock); dax_wake_mapping_entry_waiter(mapping, index, false); } static void put_locked_mapping_entry(struct address_space *mapping, pgoff_t index, void *entry) { if (!radix_tree_exceptional_entry(entry)) { unlock_page(entry); put_page(entry); } else { dax_unlock_mapping_entry(mapping, index); } } /* * Called when we are done with radix tree entry we looked up via * get_unlocked_mapping_entry() and which we didn't lock in the end. */ static void put_unlocked_mapping_entry(struct address_space *mapping, pgoff_t index, void *entry) { if (!radix_tree_exceptional_entry(entry)) return; /* We have to wake up next waiter for the radix tree entry lock */ dax_wake_mapping_entry_waiter(mapping, index, false); } /* * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree * entry to get unlocked before deleting it. */ int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) { void *entry; spin_lock_irq(&mapping->tree_lock); entry = get_unlocked_mapping_entry(mapping, index, NULL); /* * This gets called from truncate / punch_hole path. As such, the caller * must hold locks protecting against concurrent modifications of the * radix tree (usually fs-private i_mmap_sem for writing). Since the * caller has seen exceptional entry for this index, we better find it * at that index as well... */ if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) { spin_unlock_irq(&mapping->tree_lock); return 0; } radix_tree_delete(&mapping->page_tree, index); mapping->nrexceptional--; spin_unlock_irq(&mapping->tree_lock); dax_wake_mapping_entry_waiter(mapping, index, true); return 1; } /* * The user has performed a load from a hole in the file. Allocating * a new page in the file would cause excessive storage usage for * workloads with sparse files. We allocate a page cache page instead. * We'll kick it out of the page cache if it's ever written to, * otherwise it will simply fall out of the page cache under memory * pressure without ever having been dirtied. */ static int dax_load_hole(struct address_space *mapping, void *entry, struct vm_fault *vmf) { struct page *page; /* Hole page already exists? Return it... */ if (!radix_tree_exceptional_entry(entry)) { vmf->page = entry; return VM_FAULT_LOCKED; } /* This will replace locked radix tree entry with a hole page */ page = find_or_create_page(mapping, vmf->pgoff, vmf->gfp_mask | __GFP_ZERO); if (!page) { put_locked_mapping_entry(mapping, vmf->pgoff, entry); return VM_FAULT_OOM; } vmf->page = page; return VM_FAULT_LOCKED; } static int copy_user_bh(struct page *to, struct inode *inode, struct buffer_head *bh, unsigned long vaddr) { struct blk_dax_ctl dax = { .sector = to_sector(bh, inode), .size = bh->b_size, }; struct block_device *bdev = bh->b_bdev; void *vto; if (dax_map_atomic(bdev, &dax) < 0) return PTR_ERR(dax.addr); vto = kmap_atomic(to); copy_user_page(vto, (void __force *)dax.addr, vaddr, to); kunmap_atomic(vto); dax_unmap_atomic(bdev, &dax); return 0; } #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT)) static void *dax_insert_mapping_entry(struct address_space *mapping, struct vm_fault *vmf, void *entry, sector_t sector) { struct radix_tree_root *page_tree = &mapping->page_tree; int error = 0; bool hole_fill = false; void *new_entry; pgoff_t index = vmf->pgoff; if (vmf->flags & FAULT_FLAG_WRITE) __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); /* Replacing hole page with block mapping? */ if (!radix_tree_exceptional_entry(entry)) { hole_fill = true; /* * Unmap the page now before we remove it from page cache below. * The page is locked so it cannot be faulted in again. */ unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, PAGE_SIZE, 0); error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM); if (error) return ERR_PTR(error); } spin_lock_irq(&mapping->tree_lock); new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) | RADIX_DAX_ENTRY_LOCK); if (hole_fill) { __delete_from_page_cache(entry, NULL); /* Drop pagecache reference */ put_page(entry); error = radix_tree_insert(page_tree, index, new_entry); if (error) { new_entry = ERR_PTR(error); goto unlock; } mapping->nrexceptional++; } else { void **slot; void *ret; ret = __radix_tree_lookup(page_tree, index, NULL, &slot); WARN_ON_ONCE(ret != entry); radix_tree_replace_slot(slot, new_entry); } if (vmf->flags & FAULT_FLAG_WRITE) radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); unlock: spin_unlock_irq(&mapping->tree_lock); if (hole_fill) { radix_tree_preload_end(); /* * We don't need hole page anymore, it has been replaced with * locked radix tree entry now. */ if (mapping->a_ops->freepage) mapping->a_ops->freepage(entry); unlock_page(entry); put_page(entry); } return new_entry; } static int dax_writeback_one(struct block_device *bdev, struct address_space *mapping, pgoff_t index, void *entry) { struct radix_tree_root *page_tree = &mapping->page_tree; int type = RADIX_DAX_TYPE(entry); struct radix_tree_node *node; struct blk_dax_ctl dax; void **slot; int ret = 0; spin_lock_irq(&mapping->tree_lock); /* * Regular page slots are stabilized by the page lock even * without the tree itself locked. These unlocked entries * need verification under the tree lock. */ if (!__radix_tree_lookup(page_tree, index, &node, &slot)) goto unlock; if (*slot != entry) goto unlock; /* another fsync thread may have already written back this entry */ if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) goto unlock; if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) { ret = -EIO; goto unlock; } dax.sector = RADIX_DAX_SECTOR(entry); dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE); spin_unlock_irq(&mapping->tree_lock); /* * We cannot hold tree_lock while calling dax_map_atomic() because it * eventually calls cond_resched(). */ ret = dax_map_atomic(bdev, &dax); if (ret < 0) return ret; if (WARN_ON_ONCE(ret < dax.size)) { ret = -EIO; goto unmap; } wb_cache_pmem(dax.addr, dax.size); spin_lock_irq(&mapping->tree_lock); radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); spin_unlock_irq(&mapping->tree_lock); unmap: dax_unmap_atomic(bdev, &dax); return ret; unlock: spin_unlock_irq(&mapping->tree_lock); return ret; } /* * Flush the mapping to the persistent domain within the byte range of [start, * end]. This is required by data integrity operations to ensure file data is * on persistent storage prior to completion of the operation. */ int dax_writeback_mapping_range(struct address_space *mapping, struct block_device *bdev, struct writeback_control *wbc) { struct inode *inode = mapping->host; pgoff_t start_index, end_index, pmd_index; pgoff_t indices[PAGEVEC_SIZE]; struct pagevec pvec; bool done = false; int i, ret = 0; void *entry; if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) return -EIO; if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) return 0; start_index = wbc->range_start >> PAGE_SHIFT; end_index = wbc->range_end >> PAGE_SHIFT; pmd_index = DAX_PMD_INDEX(start_index); rcu_read_lock(); entry = radix_tree_lookup(&mapping->page_tree, pmd_index); rcu_read_unlock(); /* see if the start of our range is covered by a PMD entry */ if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) start_index = pmd_index; tag_pages_for_writeback(mapping, start_index, end_index); pagevec_init(&pvec, 0); while (!done) { pvec.nr = find_get_entries_tag(mapping, start_index, PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, pvec.pages, indices); if (pvec.nr == 0) break; for (i = 0; i < pvec.nr; i++) { if (indices[i] > end_index) { done = true; break; } ret = dax_writeback_one(bdev, mapping, indices[i], pvec.pages[i]); if (ret < 0) return ret; } } return 0; } EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); static int dax_insert_mapping(struct address_space *mapping, struct buffer_head *bh, void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf) { unsigned long vaddr = (unsigned long)vmf->virtual_address; struct block_device *bdev = bh->b_bdev; struct blk_dax_ctl dax = { .sector = to_sector(bh, mapping->host), .size = bh->b_size, }; void *ret; void *entry = *entryp; if (dax_map_atomic(bdev, &dax) < 0) return PTR_ERR(dax.addr); dax_unmap_atomic(bdev, &dax); ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector); if (IS_ERR(ret)) return PTR_ERR(ret); *entryp = ret; return vm_insert_mixed(vma, vaddr, dax.pfn); } /** * dax_fault - handle a page fault on a DAX file * @vma: The virtual memory area where the fault occurred * @vmf: The description of the fault * @get_block: The filesystem method used to translate file offsets to blocks * * When a page fault occurs, filesystems may call this helper in their * fault handler for DAX files. dax_fault() assumes the caller has done all * the necessary locking for the page fault to proceed successfully. */ int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, get_block_t get_block) { struct file *file = vma->vm_file; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; void *entry; struct buffer_head bh; unsigned long vaddr = (unsigned long)vmf->virtual_address; unsigned blkbits = inode->i_blkbits; sector_t block; pgoff_t size; int error; int major = 0; /* * Check whether offset isn't beyond end of file now. Caller is supposed * to hold locks serializing us with truncate / punch hole so this is * a reliable test. */ size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; if (vmf->pgoff >= size) return VM_FAULT_SIGBUS; memset(&bh, 0, sizeof(bh)); block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits); bh.b_bdev = inode->i_sb->s_bdev; bh.b_size = PAGE_SIZE; entry = grab_mapping_entry(mapping, vmf->pgoff); if (IS_ERR(entry)) { error = PTR_ERR(entry); goto out; } error = get_block(inode, block, &bh, 0); if (!error && (bh.b_size < PAGE_SIZE)) error = -EIO; /* fs corruption? */ if (error) goto unlock_entry; if (vmf->cow_page) { struct page *new_page = vmf->cow_page; if (buffer_written(&bh)) error = copy_user_bh(new_page, inode, &bh, vaddr); else clear_user_highpage(new_page, vaddr); if (error) goto unlock_entry; if (!radix_tree_exceptional_entry(entry)) { vmf->page = entry; return VM_FAULT_LOCKED; } vmf->entry = entry; return VM_FAULT_DAX_LOCKED; } if (!buffer_mapped(&bh)) { if (vmf->flags & FAULT_FLAG_WRITE) { error = get_block(inode, block, &bh, 1); count_vm_event(PGMAJFAULT); mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); major = VM_FAULT_MAJOR; if (!error && (bh.b_size < PAGE_SIZE)) error = -EIO; if (error) goto unlock_entry; } else { return dax_load_hole(mapping, entry, vmf); } } /* Filesystem should not return unwritten buffers to us! */ WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh)); error = dax_insert_mapping(mapping, &bh, &entry, vma, vmf); unlock_entry: put_locked_mapping_entry(mapping, vmf->pgoff, entry); out: if (error == -ENOMEM) return VM_FAULT_OOM | major; /* -EBUSY is fine, somebody else faulted on the same PTE */ if ((error < 0) && (error != -EBUSY)) return VM_FAULT_SIGBUS | major; return VM_FAULT_NOPAGE | major; } EXPORT_SYMBOL_GPL(dax_fault); #if defined(CONFIG_TRANSPARENT_HUGEPAGE) /* * The 'colour' (ie low bits) within a PMD of a page offset. This comes up * more often than one might expect in the below function. */ #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) static void __dax_dbg(struct buffer_head *bh, unsigned long address, const char *reason, const char *fn) { if (bh) { char bname[BDEVNAME_SIZE]; bdevname(bh->b_bdev, bname); pr_debug("%s: %s addr: %lx dev %s state %lx start %lld " "length %zd fallback: %s\n", fn, current->comm, address, bname, bh->b_state, (u64)bh->b_blocknr, bh->b_size, reason); } else { pr_debug("%s: %s addr: %lx fallback: %s\n", fn, current->comm, address, reason); } } #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd") /** * dax_pmd_fault - handle a PMD fault on a DAX file * @vma: The virtual memory area where the fault occurred * @vmf: The description of the fault * @get_block: The filesystem method used to translate file offsets to blocks * * When a page fault occurs, filesystems may call this helper in their * pmd_fault handler for DAX files. */ int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, pmd_t *pmd, unsigned int flags, get_block_t get_block) { struct file *file = vma->vm_file; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; struct buffer_head bh; unsigned blkbits = inode->i_blkbits; unsigned long pmd_addr = address & PMD_MASK; bool write = flags & FAULT_FLAG_WRITE; struct block_device *bdev; pgoff_t size, pgoff; sector_t block; int result = 0; bool alloc = false; /* dax pmd mappings require pfn_t_devmap() */ if (!IS_ENABLED(CONFIG_FS_DAX_PMD)) return VM_FAULT_FALLBACK; /* Fall back to PTEs if we're going to COW */ if (write && !(vma->vm_flags & VM_SHARED)) { split_huge_pmd(vma, pmd, address); dax_pmd_dbg(NULL, address, "cow write"); return VM_FAULT_FALLBACK; } /* If the PMD would extend outside the VMA */ if (pmd_addr < vma->vm_start) { dax_pmd_dbg(NULL, address, "vma start unaligned"); return VM_FAULT_FALLBACK; } if ((pmd_addr + PMD_SIZE) > vma->vm_end) { dax_pmd_dbg(NULL, address, "vma end unaligned"); return VM_FAULT_FALLBACK; } pgoff = linear_page_index(vma, pmd_addr); size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; if (pgoff >= size) return VM_FAULT_SIGBUS; /* If the PMD would cover blocks out of the file */ if ((pgoff | PG_PMD_COLOUR) >= size) { dax_pmd_dbg(NULL, address, "offset + huge page size > file size"); return VM_FAULT_FALLBACK; } memset(&bh, 0, sizeof(bh)); bh.b_bdev = inode->i_sb->s_bdev; block = (sector_t)pgoff << (PAGE_SHIFT - blkbits); bh.b_size = PMD_SIZE; if (get_block(inode, block, &bh, 0) != 0) return VM_FAULT_SIGBUS; if (!buffer_mapped(&bh) && write) { if (get_block(inode, block, &bh, 1) != 0) return VM_FAULT_SIGBUS; alloc = true; WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh)); } bdev = bh.b_bdev; /* * If the filesystem isn't willing to tell us the length of a hole, * just fall back to PTEs. Calling get_block 512 times in a loop * would be silly. */ if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) { dax_pmd_dbg(&bh, address, "allocated block too small"); return VM_FAULT_FALLBACK; } /* * If we allocated new storage, make sure no process has any * zero pages covering this hole */ if (alloc) { loff_t lstart = pgoff << PAGE_SHIFT; loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */ truncate_pagecache_range(inode, lstart, lend); } if (!write && !buffer_mapped(&bh)) { spinlock_t *ptl; pmd_t entry; struct page *zero_page = get_huge_zero_page(); if (unlikely(!zero_page)) { dax_pmd_dbg(&bh, address, "no zero page"); goto fallback; } ptl = pmd_lock(vma->vm_mm, pmd); if (!pmd_none(*pmd)) { spin_unlock(ptl); dax_pmd_dbg(&bh, address, "pmd already present"); goto fallback; } dev_dbg(part_to_dev(bdev->bd_part), "%s: %s addr: %lx pfn: <zero> sect: %llx\n", __func__, current->comm, address, (unsigned long long) to_sector(&bh, inode)); entry = mk_pmd(zero_page, vma->vm_page_prot); entry = pmd_mkhuge(entry); set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry); result = VM_FAULT_NOPAGE; spin_unlock(ptl); } else { struct blk_dax_ctl dax = { .sector = to_sector(&bh, inode), .size = PMD_SIZE, }; long length = dax_map_atomic(bdev, &dax); if (length < 0) { dax_pmd_dbg(&bh, address, "dax-error fallback"); goto fallback; } if (length < PMD_SIZE) { dax_pmd_dbg(&bh, address, "dax-length too small"); dax_unmap_atomic(bdev, &dax); goto fallback; } if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) { dax_pmd_dbg(&bh, address, "pfn unaligned"); dax_unmap_atomic(bdev, &dax); goto fallback; } if (!pfn_t_devmap(dax.pfn)) { dax_unmap_atomic(bdev, &dax); dax_pmd_dbg(&bh, address, "pfn not in memmap"); goto fallback; } dax_unmap_atomic(bdev, &dax); /* * For PTE faults we insert a radix tree entry for reads, and * leave it clean. Then on the first write we dirty the radix * tree entry via the dax_pfn_mkwrite() path. This sequence * allows the dax_pfn_mkwrite() call to be simpler and avoid a * call into get_block() to translate the pgoff to a sector in * order to be able to create a new radix tree entry. * * The PMD path doesn't have an equivalent to * dax_pfn_mkwrite(), though, so for a read followed by a * write we traverse all the way through dax_pmd_fault() * twice. This means we can just skip inserting a radix tree * entry completely on the initial read and just wait until * the write to insert a dirty entry. */ if (write) { /* * We should insert radix-tree entry and dirty it here. * For now this is broken... */ } dev_dbg(part_to_dev(bdev->bd_part), "%s: %s addr: %lx pfn: %lx sect: %llx\n", __func__, current->comm, address, pfn_t_to_pfn(dax.pfn), (unsigned long long) dax.sector); result |= vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write); } out: return result; fallback: count_vm_event(THP_FAULT_FALLBACK); result = VM_FAULT_FALLBACK; goto out; } EXPORT_SYMBOL_GPL(dax_pmd_fault); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /** * dax_pfn_mkwrite - handle first write to DAX page * @vma: The virtual memory area where the fault occurred * @vmf: The description of the fault */ int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) { struct file *file = vma->vm_file; struct address_space *mapping = file->f_mapping; void *entry; pgoff_t index = vmf->pgoff; spin_lock_irq(&mapping->tree_lock); entry = get_unlocked_mapping_entry(mapping, index, NULL); if (!entry || !radix_tree_exceptional_entry(entry)) goto out; radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY); put_unlocked_mapping_entry(mapping, index, entry); out: spin_unlock_irq(&mapping->tree_lock); return VM_FAULT_NOPAGE; } EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); static bool dax_range_is_aligned(struct block_device *bdev, unsigned int offset, unsigned int length) { unsigned short sector_size = bdev_logical_block_size(bdev); if (!IS_ALIGNED(offset, sector_size)) return false; if (!IS_ALIGNED(length, sector_size)) return false; return true; } int __dax_zero_page_range(struct block_device *bdev, sector_t sector, unsigned int offset, unsigned int length) { struct blk_dax_ctl dax = { .sector = sector, .size = PAGE_SIZE, }; if (dax_range_is_aligned(bdev, offset, length)) { sector_t start_sector = dax.sector + (offset >> 9); return blkdev_issue_zeroout(bdev, start_sector, length >> 9, GFP_NOFS, true); } else { if (dax_map_atomic(bdev, &dax) < 0) return PTR_ERR(dax.addr); clear_pmem(dax.addr + offset, length); dax_unmap_atomic(bdev, &dax); } return 0; } EXPORT_SYMBOL_GPL(__dax_zero_page_range); /** * dax_zero_page_range - zero a range within a page of a DAX file * @inode: The file being truncated * @from: The file offset that is being truncated to * @length: The number of bytes to zero * @get_block: The filesystem method used to translate file offsets to blocks * * This function can be called by a filesystem when it is zeroing part of a * page in a DAX file. This is intended for hole-punch operations. If * you are truncating a file, the helper function dax_truncate_page() may be * more convenient. */ int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length, get_block_t get_block) { struct buffer_head bh; pgoff_t index = from >> PAGE_SHIFT; unsigned offset = from & (PAGE_SIZE-1); int err; /* Block boundary? Nothing to do */ if (!length) return 0; BUG_ON((offset + length) > PAGE_SIZE); memset(&bh, 0, sizeof(bh)); bh.b_bdev = inode->i_sb->s_bdev; bh.b_size = PAGE_SIZE; err = get_block(inode, index, &bh, 0); if (err < 0 || !buffer_written(&bh)) return err; return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode), offset, length); } EXPORT_SYMBOL_GPL(dax_zero_page_range); /** * dax_truncate_page - handle a partial page being truncated in a DAX file * @inode: The file being truncated * @from: The file offset that is being truncated to * @get_block: The filesystem method used to translate file offsets to blocks * * Similar to block_truncate_page(), this function can be called by a * filesystem when it is truncating a DAX file to handle the partial page. */ int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block) { unsigned length = PAGE_ALIGN(from) - from; return dax_zero_page_range(inode, from, length, get_block); } EXPORT_SYMBOL_GPL(dax_truncate_page); |