Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 | /* * linux/arch/alpha/kernel/pci_iommu.c */ #include <linux/kernel.h> #include <linux/mm.h> #include <linux/pci.h> #include <linux/gfp.h> #include <linux/bootmem.h> #include <linux/export.h> #include <linux/scatterlist.h> #include <linux/log2.h> #include <linux/dma-mapping.h> #include <linux/iommu-helper.h> #include <asm/io.h> #include <asm/hwrpb.h> #include "proto.h" #include "pci_impl.h" #define DEBUG_ALLOC 0 #if DEBUG_ALLOC > 0 # define DBGA(args...) printk(KERN_DEBUG args) #else # define DBGA(args...) #endif #if DEBUG_ALLOC > 1 # define DBGA2(args...) printk(KERN_DEBUG args) #else # define DBGA2(args...) #endif #define DEBUG_NODIRECT 0 #define ISA_DMA_MASK 0x00ffffff static inline unsigned long mk_iommu_pte(unsigned long paddr) { return (paddr >> (PAGE_SHIFT-1)) | 1; } /* Return the minimum of MAX or the first power of two larger than main memory. */ unsigned long size_for_memory(unsigned long max) { unsigned long mem = max_low_pfn << PAGE_SHIFT; if (mem < max) max = roundup_pow_of_two(mem); return max; } struct pci_iommu_arena * __init iommu_arena_new_node(int nid, struct pci_controller *hose, dma_addr_t base, unsigned long window_size, unsigned long align) { unsigned long mem_size; struct pci_iommu_arena *arena; mem_size = window_size / (PAGE_SIZE / sizeof(unsigned long)); /* Note that the TLB lookup logic uses bitwise concatenation, not addition, so the required arena alignment is based on the size of the window. Retain the align parameter so that particular systems can over-align the arena. */ if (align < mem_size) align = mem_size; #ifdef CONFIG_DISCONTIGMEM arena = alloc_bootmem_node(NODE_DATA(nid), sizeof(*arena)); if (!NODE_DATA(nid) || !arena) { printk("%s: couldn't allocate arena from node %d\n" " falling back to system-wide allocation\n", __func__, nid); arena = alloc_bootmem(sizeof(*arena)); } arena->ptes = __alloc_bootmem_node(NODE_DATA(nid), mem_size, align, 0); if (!NODE_DATA(nid) || !arena->ptes) { printk("%s: couldn't allocate arena ptes from node %d\n" " falling back to system-wide allocation\n", __func__, nid); arena->ptes = __alloc_bootmem(mem_size, align, 0); } #else /* CONFIG_DISCONTIGMEM */ arena = alloc_bootmem(sizeof(*arena)); arena->ptes = __alloc_bootmem(mem_size, align, 0); #endif /* CONFIG_DISCONTIGMEM */ spin_lock_init(&arena->lock); arena->hose = hose; arena->dma_base = base; arena->size = window_size; arena->next_entry = 0; /* Align allocations to a multiple of a page size. Not needed unless there are chip bugs. */ arena->align_entry = 1; return arena; } struct pci_iommu_arena * __init iommu_arena_new(struct pci_controller *hose, dma_addr_t base, unsigned long window_size, unsigned long align) { return iommu_arena_new_node(0, hose, base, window_size, align); } /* Must be called with the arena lock held */ static long iommu_arena_find_pages(struct device *dev, struct pci_iommu_arena *arena, long n, long mask) { unsigned long *ptes; long i, p, nent; int pass = 0; unsigned long base; unsigned long boundary_size; base = arena->dma_base >> PAGE_SHIFT; if (dev) { boundary_size = dma_get_seg_boundary(dev) + 1; boundary_size >>= PAGE_SHIFT; } else { boundary_size = 1UL << (32 - PAGE_SHIFT); } /* Search forward for the first mask-aligned sequence of N free ptes */ ptes = arena->ptes; nent = arena->size >> PAGE_SHIFT; p = ALIGN(arena->next_entry, mask + 1); i = 0; again: while (i < n && p+i < nent) { if (!i && iommu_is_span_boundary(p, n, base, boundary_size)) { p = ALIGN(p + 1, mask + 1); goto again; } if (ptes[p+i]) p = ALIGN(p + i + 1, mask + 1), i = 0; else i = i + 1; } if (i < n) { if (pass < 1) { /* * Reached the end. Flush the TLB and restart * the search from the beginning. */ alpha_mv.mv_pci_tbi(arena->hose, 0, -1); pass++; p = 0; i = 0; goto again; } else return -1; } /* Success. It's the responsibility of the caller to mark them in use before releasing the lock */ return p; } static long iommu_arena_alloc(struct device *dev, struct pci_iommu_arena *arena, long n, unsigned int align) { unsigned long flags; unsigned long *ptes; long i, p, mask; spin_lock_irqsave(&arena->lock, flags); /* Search for N empty ptes */ ptes = arena->ptes; mask = max(align, arena->align_entry) - 1; p = iommu_arena_find_pages(dev, arena, n, mask); if (p < 0) { spin_unlock_irqrestore(&arena->lock, flags); return -1; } /* Success. Mark them all in use, ie not zero and invalid for the iommu tlb that could load them from under us. The chip specific bits will fill this in with something kosher when we return. */ for (i = 0; i < n; ++i) ptes[p+i] = IOMMU_INVALID_PTE; arena->next_entry = p + n; spin_unlock_irqrestore(&arena->lock, flags); return p; } static void iommu_arena_free(struct pci_iommu_arena *arena, long ofs, long n) { unsigned long *p; long i; p = arena->ptes + ofs; for (i = 0; i < n; ++i) p[i] = 0; } /* * True if the machine supports DAC addressing, and DEV can * make use of it given MASK. */ static int pci_dac_dma_supported(struct pci_dev *dev, u64 mask) { dma_addr_t dac_offset = alpha_mv.pci_dac_offset; int ok = 1; /* If this is not set, the machine doesn't support DAC at all. */ if (dac_offset == 0) ok = 0; /* The device has to be able to address our DAC bit. */ if ((dac_offset & dev->dma_mask) != dac_offset) ok = 0; /* If both conditions above are met, we are fine. */ DBGA("pci_dac_dma_supported %s from %pf\n", ok ? "yes" : "no", __builtin_return_address(0)); return ok; } /* Map a single buffer of the indicated size for PCI DMA in streaming mode. The 32-bit PCI bus mastering address to use is returned. Once the device is given the dma address, the device owns this memory until either pci_unmap_single or pci_dma_sync_single is performed. */ static dma_addr_t pci_map_single_1(struct pci_dev *pdev, void *cpu_addr, size_t size, int dac_allowed) { struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose; dma_addr_t max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; struct pci_iommu_arena *arena; long npages, dma_ofs, i; unsigned long paddr; dma_addr_t ret; unsigned int align = 0; struct device *dev = pdev ? &pdev->dev : NULL; paddr = __pa(cpu_addr); #if !DEBUG_NODIRECT /* First check to see if we can use the direct map window. */ if (paddr + size + __direct_map_base - 1 <= max_dma && paddr + size <= __direct_map_size) { ret = paddr + __direct_map_base; DBGA2("pci_map_single: [%p,%zx] -> direct %llx from %pf\n", cpu_addr, size, ret, __builtin_return_address(0)); return ret; } #endif /* Next, use DAC if selected earlier. */ if (dac_allowed) { ret = paddr + alpha_mv.pci_dac_offset; DBGA2("pci_map_single: [%p,%zx] -> DAC %llx from %pf\n", cpu_addr, size, ret, __builtin_return_address(0)); return ret; } /* If the machine doesn't define a pci_tbi routine, we have to assume it doesn't support sg mapping, and, since we tried to use direct_map above, it now must be considered an error. */ if (! alpha_mv.mv_pci_tbi) { printk_once(KERN_WARNING "pci_map_single: no HW sg\n"); return 0; } arena = hose->sg_pci; if (!arena || arena->dma_base + arena->size - 1 > max_dma) arena = hose->sg_isa; npages = iommu_num_pages(paddr, size, PAGE_SIZE); /* Force allocation to 64KB boundary for ISA bridges. */ if (pdev && pdev == isa_bridge) align = 8; dma_ofs = iommu_arena_alloc(dev, arena, npages, align); if (dma_ofs < 0) { printk(KERN_WARNING "pci_map_single failed: " "could not allocate dma page tables\n"); return 0; } paddr &= PAGE_MASK; for (i = 0; i < npages; ++i, paddr += PAGE_SIZE) arena->ptes[i + dma_ofs] = mk_iommu_pte(paddr); ret = arena->dma_base + dma_ofs * PAGE_SIZE; ret += (unsigned long)cpu_addr & ~PAGE_MASK; DBGA2("pci_map_single: [%p,%zx] np %ld -> sg %llx from %pf\n", cpu_addr, size, npages, ret, __builtin_return_address(0)); return ret; } /* Helper for generic DMA-mapping functions. */ static struct pci_dev *alpha_gendev_to_pci(struct device *dev) { if (dev && dev_is_pci(dev)) return to_pci_dev(dev); /* Assume that non-PCI devices asking for DMA are either ISA or EISA, BUG() otherwise. */ BUG_ON(!isa_bridge); /* Assume non-busmaster ISA DMA when dma_mask is not set (the ISA bridge is bus master then). */ if (!dev || !dev->dma_mask || !*dev->dma_mask) return isa_bridge; /* For EISA bus masters, return isa_bridge (it might have smaller dma_mask due to wiring limitations). */ if (*dev->dma_mask >= isa_bridge->dma_mask) return isa_bridge; /* This assumes ISA bus master with dma_mask 0xffffff. */ return NULL; } static dma_addr_t alpha_pci_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { struct pci_dev *pdev = alpha_gendev_to_pci(dev); int dac_allowed; BUG_ON(dir == PCI_DMA_NONE); dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; return pci_map_single_1(pdev, (char *)page_address(page) + offset, size, dac_allowed); } /* Unmap a single streaming mode DMA translation. The DMA_ADDR and SIZE must match what was provided for in a previous pci_map_single call. All other usages are undefined. After this call, reads by the cpu to the buffer are guaranteed to see whatever the device wrote there. */ static void alpha_pci_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { unsigned long flags; struct pci_dev *pdev = alpha_gendev_to_pci(dev); struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose; struct pci_iommu_arena *arena; long dma_ofs, npages; BUG_ON(dir == PCI_DMA_NONE); if (dma_addr >= __direct_map_base && dma_addr < __direct_map_base + __direct_map_size) { /* Nothing to do. */ DBGA2("pci_unmap_single: direct [%llx,%zx] from %pf\n", dma_addr, size, __builtin_return_address(0)); return; } if (dma_addr > 0xffffffff) { DBGA2("pci64_unmap_single: DAC [%llx,%zx] from %pf\n", dma_addr, size, __builtin_return_address(0)); return; } arena = hose->sg_pci; if (!arena || dma_addr < arena->dma_base) arena = hose->sg_isa; dma_ofs = (dma_addr - arena->dma_base) >> PAGE_SHIFT; if (dma_ofs * PAGE_SIZE >= arena->size) { printk(KERN_ERR "Bogus pci_unmap_single: dma_addr %llx " " base %llx size %x\n", dma_addr, arena->dma_base, arena->size); return; BUG(); } npages = iommu_num_pages(dma_addr, size, PAGE_SIZE); spin_lock_irqsave(&arena->lock, flags); iommu_arena_free(arena, dma_ofs, npages); /* If we're freeing ptes above the `next_entry' pointer (they may have snuck back into the TLB since the last wrap flush), we need to flush the TLB before reallocating the latter. */ if (dma_ofs >= arena->next_entry) alpha_mv.mv_pci_tbi(hose, dma_addr, dma_addr + size - 1); spin_unlock_irqrestore(&arena->lock, flags); DBGA2("pci_unmap_single: sg [%llx,%zx] np %ld from %pf\n", dma_addr, size, npages, __builtin_return_address(0)); } /* Allocate and map kernel buffer using consistent mode DMA for PCI device. Returns non-NULL cpu-view pointer to the buffer if successful and sets *DMA_ADDRP to the pci side dma address as well, else DMA_ADDRP is undefined. */ static void *alpha_pci_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addrp, gfp_t gfp, struct dma_attrs *attrs) { struct pci_dev *pdev = alpha_gendev_to_pci(dev); void *cpu_addr; long order = get_order(size); gfp &= ~GFP_DMA; try_again: cpu_addr = (void *)__get_free_pages(gfp, order); if (! cpu_addr) { printk(KERN_INFO "pci_alloc_consistent: " "get_free_pages failed from %pf\n", __builtin_return_address(0)); /* ??? Really atomic allocation? Otherwise we could play with vmalloc and sg if we can't find contiguous memory. */ return NULL; } memset(cpu_addr, 0, size); *dma_addrp = pci_map_single_1(pdev, cpu_addr, size, 0); if (*dma_addrp == 0) { free_pages((unsigned long)cpu_addr, order); if (alpha_mv.mv_pci_tbi || (gfp & GFP_DMA)) return NULL; /* The address doesn't fit required mask and we do not have iommu. Try again with GFP_DMA. */ gfp |= GFP_DMA; goto try_again; } DBGA2("pci_alloc_consistent: %zx -> [%p,%llx] from %pf\n", size, cpu_addr, *dma_addrp, __builtin_return_address(0)); return cpu_addr; } /* Free and unmap a consistent DMA buffer. CPU_ADDR and DMA_ADDR must be values that were returned from pci_alloc_consistent. SIZE must be the same as what as passed into pci_alloc_consistent. References to the memory and mappings associated with CPU_ADDR or DMA_ADDR past this call are illegal. */ static void alpha_pci_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, struct dma_attrs *attrs) { struct pci_dev *pdev = alpha_gendev_to_pci(dev); pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL); free_pages((unsigned long)cpu_addr, get_order(size)); DBGA2("pci_free_consistent: [%llx,%zx] from %pf\n", dma_addr, size, __builtin_return_address(0)); } /* Classify the elements of the scatterlist. Write dma_address of each element with: 0 : Followers all physically adjacent. 1 : Followers all virtually adjacent. -1 : Not leader, physically adjacent to previous. -2 : Not leader, virtually adjacent to previous. Write dma_length of each leader with the combined lengths of the mergable followers. */ #define SG_ENT_VIRT_ADDRESS(SG) (sg_virt((SG))) #define SG_ENT_PHYS_ADDRESS(SG) __pa(SG_ENT_VIRT_ADDRESS(SG)) static void sg_classify(struct device *dev, struct scatterlist *sg, struct scatterlist *end, int virt_ok) { unsigned long next_paddr; struct scatterlist *leader; long leader_flag, leader_length; unsigned int max_seg_size; leader = sg; leader_flag = 0; leader_length = leader->length; next_paddr = SG_ENT_PHYS_ADDRESS(leader) + leader_length; /* we will not marge sg without device. */ max_seg_size = dev ? dma_get_max_seg_size(dev) : 0; for (++sg; sg < end; ++sg) { unsigned long addr, len; addr = SG_ENT_PHYS_ADDRESS(sg); len = sg->length; if (leader_length + len > max_seg_size) goto new_segment; if (next_paddr == addr) { sg->dma_address = -1; leader_length += len; } else if (((next_paddr | addr) & ~PAGE_MASK) == 0 && virt_ok) { sg->dma_address = -2; leader_flag = 1; leader_length += len; } else { new_segment: leader->dma_address = leader_flag; leader->dma_length = leader_length; leader = sg; leader_flag = 0; leader_length = len; } next_paddr = addr + len; } leader->dma_address = leader_flag; leader->dma_length = leader_length; } /* Given a scatterlist leader, choose an allocation method and fill in the blanks. */ static int sg_fill(struct device *dev, struct scatterlist *leader, struct scatterlist *end, struct scatterlist *out, struct pci_iommu_arena *arena, dma_addr_t max_dma, int dac_allowed) { unsigned long paddr = SG_ENT_PHYS_ADDRESS(leader); long size = leader->dma_length; struct scatterlist *sg; unsigned long *ptes; long npages, dma_ofs, i; #if !DEBUG_NODIRECT /* If everything is physically contiguous, and the addresses fall into the direct-map window, use it. */ if (leader->dma_address == 0 && paddr + size + __direct_map_base - 1 <= max_dma && paddr + size <= __direct_map_size) { out->dma_address = paddr + __direct_map_base; out->dma_length = size; DBGA(" sg_fill: [%p,%lx] -> direct %llx\n", __va(paddr), size, out->dma_address); return 0; } #endif /* If physically contiguous and DAC is available, use it. */ if (leader->dma_address == 0 && dac_allowed) { out->dma_address = paddr + alpha_mv.pci_dac_offset; out->dma_length = size; DBGA(" sg_fill: [%p,%lx] -> DAC %llx\n", __va(paddr), size, out->dma_address); return 0; } /* Otherwise, we'll use the iommu to make the pages virtually contiguous. */ paddr &= ~PAGE_MASK; npages = iommu_num_pages(paddr, size, PAGE_SIZE); dma_ofs = iommu_arena_alloc(dev, arena, npages, 0); if (dma_ofs < 0) { /* If we attempted a direct map above but failed, die. */ if (leader->dma_address == 0) return -1; /* Otherwise, break up the remaining virtually contiguous hunks into individual direct maps and retry. */ sg_classify(dev, leader, end, 0); return sg_fill(dev, leader, end, out, arena, max_dma, dac_allowed); } out->dma_address = arena->dma_base + dma_ofs*PAGE_SIZE + paddr; out->dma_length = size; DBGA(" sg_fill: [%p,%lx] -> sg %llx np %ld\n", __va(paddr), size, out->dma_address, npages); /* All virtually contiguous. We need to find the length of each physically contiguous subsegment to fill in the ptes. */ ptes = &arena->ptes[dma_ofs]; sg = leader; do { #if DEBUG_ALLOC > 0 struct scatterlist *last_sg = sg; #endif size = sg->length; paddr = SG_ENT_PHYS_ADDRESS(sg); while (sg+1 < end && (int) sg[1].dma_address == -1) { size += sg[1].length; sg++; } npages = iommu_num_pages(paddr, size, PAGE_SIZE); paddr &= PAGE_MASK; for (i = 0; i < npages; ++i, paddr += PAGE_SIZE) *ptes++ = mk_iommu_pte(paddr); #if DEBUG_ALLOC > 0 DBGA(" (%ld) [%p,%x] np %ld\n", last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg), last_sg->length, npages); while (++last_sg <= sg) { DBGA(" (%ld) [%p,%x] cont\n", last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg), last_sg->length); } #endif } while (++sg < end && (int) sg->dma_address < 0); return 1; } static int alpha_pci_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, struct dma_attrs *attrs) { struct pci_dev *pdev = alpha_gendev_to_pci(dev); struct scatterlist *start, *end, *out; struct pci_controller *hose; struct pci_iommu_arena *arena; dma_addr_t max_dma; int dac_allowed; BUG_ON(dir == PCI_DMA_NONE); dac_allowed = dev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; /* Fast path single entry scatterlists. */ if (nents == 1) { sg->dma_length = sg->length; sg->dma_address = pci_map_single_1(pdev, SG_ENT_VIRT_ADDRESS(sg), sg->length, dac_allowed); return sg->dma_address != 0; } start = sg; end = sg + nents; /* First, prepare information about the entries. */ sg_classify(dev, sg, end, alpha_mv.mv_pci_tbi != 0); /* Second, figure out where we're going to map things. */ if (alpha_mv.mv_pci_tbi) { hose = pdev ? pdev->sysdata : pci_isa_hose; max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; arena = hose->sg_pci; if (!arena || arena->dma_base + arena->size - 1 > max_dma) arena = hose->sg_isa; } else { max_dma = -1; arena = NULL; hose = NULL; } /* Third, iterate over the scatterlist leaders and allocate dma space as needed. */ for (out = sg; sg < end; ++sg) { if ((int) sg->dma_address < 0) continue; if (sg_fill(dev, sg, end, out, arena, max_dma, dac_allowed) < 0) goto error; out++; } /* Mark the end of the list for pci_unmap_sg. */ if (out < end) out->dma_length = 0; if (out - start == 0) printk(KERN_WARNING "pci_map_sg failed: no entries?\n"); DBGA("pci_map_sg: %ld entries\n", out - start); return out - start; error: printk(KERN_WARNING "pci_map_sg failed: " "could not allocate dma page tables\n"); /* Some allocation failed while mapping the scatterlist entries. Unmap them now. */ if (out > start) pci_unmap_sg(pdev, start, out - start, dir); return 0; } /* Unmap a set of streaming mode DMA translations. Again, cpu read rules concerning calls here are the same as for pci_unmap_single() above. */ static void alpha_pci_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, struct dma_attrs *attrs) { struct pci_dev *pdev = alpha_gendev_to_pci(dev); unsigned long flags; struct pci_controller *hose; struct pci_iommu_arena *arena; struct scatterlist *end; dma_addr_t max_dma; dma_addr_t fbeg, fend; BUG_ON(dir == PCI_DMA_NONE); if (! alpha_mv.mv_pci_tbi) return; hose = pdev ? pdev->sysdata : pci_isa_hose; max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; arena = hose->sg_pci; if (!arena || arena->dma_base + arena->size - 1 > max_dma) arena = hose->sg_isa; fbeg = -1, fend = 0; spin_lock_irqsave(&arena->lock, flags); for (end = sg + nents; sg < end; ++sg) { dma_addr_t addr; size_t size; long npages, ofs; dma_addr_t tend; addr = sg->dma_address; size = sg->dma_length; if (!size) break; if (addr > 0xffffffff) { /* It's a DAC address -- nothing to do. */ DBGA(" (%ld) DAC [%llx,%zx]\n", sg - end + nents, addr, size); continue; } if (addr >= __direct_map_base && addr < __direct_map_base + __direct_map_size) { /* Nothing to do. */ DBGA(" (%ld) direct [%llx,%zx]\n", sg - end + nents, addr, size); continue; } DBGA(" (%ld) sg [%llx,%zx]\n", sg - end + nents, addr, size); npages = iommu_num_pages(addr, size, PAGE_SIZE); ofs = (addr - arena->dma_base) >> PAGE_SHIFT; iommu_arena_free(arena, ofs, npages); tend = addr + size - 1; if (fbeg > addr) fbeg = addr; if (fend < tend) fend = tend; } /* If we're freeing ptes above the `next_entry' pointer (they may have snuck back into the TLB since the last wrap flush), we need to flush the TLB before reallocating the latter. */ if ((fend - arena->dma_base) >> PAGE_SHIFT >= arena->next_entry) alpha_mv.mv_pci_tbi(hose, fbeg, fend); spin_unlock_irqrestore(&arena->lock, flags); DBGA("pci_unmap_sg: %ld entries\n", nents - (end - sg)); } /* Return whether the given PCI device DMA address mask can be supported properly. */ static int alpha_pci_supported(struct device *dev, u64 mask) { struct pci_dev *pdev = alpha_gendev_to_pci(dev); struct pci_controller *hose; struct pci_iommu_arena *arena; /* If there exists a direct map, and the mask fits either the entire direct mapped space or the total system memory as shifted by the map base */ if (__direct_map_size != 0 && (__direct_map_base + __direct_map_size - 1 <= mask || __direct_map_base + (max_low_pfn << PAGE_SHIFT) - 1 <= mask)) return 1; /* Check that we have a scatter-gather arena that fits. */ hose = pdev ? pdev->sysdata : pci_isa_hose; arena = hose->sg_isa; if (arena && arena->dma_base + arena->size - 1 <= mask) return 1; arena = hose->sg_pci; if (arena && arena->dma_base + arena->size - 1 <= mask) return 1; /* As last resort try ZONE_DMA. */ if (!__direct_map_base && MAX_DMA_ADDRESS - IDENT_ADDR - 1 <= mask) return 1; return 0; } /* * AGP GART extensions to the IOMMU */ int iommu_reserve(struct pci_iommu_arena *arena, long pg_count, long align_mask) { unsigned long flags; unsigned long *ptes; long i, p; if (!arena) return -EINVAL; spin_lock_irqsave(&arena->lock, flags); /* Search for N empty ptes. */ ptes = arena->ptes; p = iommu_arena_find_pages(NULL, arena, pg_count, align_mask); if (p < 0) { spin_unlock_irqrestore(&arena->lock, flags); return -1; } /* Success. Mark them all reserved (ie not zero and invalid) for the iommu tlb that could load them from under us. They will be filled in with valid bits by _bind() */ for (i = 0; i < pg_count; ++i) ptes[p+i] = IOMMU_RESERVED_PTE; arena->next_entry = p + pg_count; spin_unlock_irqrestore(&arena->lock, flags); return p; } int iommu_release(struct pci_iommu_arena *arena, long pg_start, long pg_count) { unsigned long *ptes; long i; if (!arena) return -EINVAL; ptes = arena->ptes; /* Make sure they're all reserved first... */ for(i = pg_start; i < pg_start + pg_count; i++) if (ptes[i] != IOMMU_RESERVED_PTE) return -EBUSY; iommu_arena_free(arena, pg_start, pg_count); return 0; } int iommu_bind(struct pci_iommu_arena *arena, long pg_start, long pg_count, struct page **pages) { unsigned long flags; unsigned long *ptes; long i, j; if (!arena) return -EINVAL; spin_lock_irqsave(&arena->lock, flags); ptes = arena->ptes; for(j = pg_start; j < pg_start + pg_count; j++) { if (ptes[j] != IOMMU_RESERVED_PTE) { spin_unlock_irqrestore(&arena->lock, flags); return -EBUSY; } } for(i = 0, j = pg_start; i < pg_count; i++, j++) ptes[j] = mk_iommu_pte(page_to_phys(pages[i])); spin_unlock_irqrestore(&arena->lock, flags); return 0; } int iommu_unbind(struct pci_iommu_arena *arena, long pg_start, long pg_count) { unsigned long *p; long i; if (!arena) return -EINVAL; p = arena->ptes + pg_start; for(i = 0; i < pg_count; i++) p[i] = IOMMU_RESERVED_PTE; return 0; } static int alpha_pci_mapping_error(struct device *dev, dma_addr_t dma_addr) { return dma_addr == 0; } struct dma_map_ops alpha_pci_ops = { .alloc = alpha_pci_alloc_coherent, .free = alpha_pci_free_coherent, .map_page = alpha_pci_map_page, .unmap_page = alpha_pci_unmap_page, .map_sg = alpha_pci_map_sg, .unmap_sg = alpha_pci_unmap_sg, .mapping_error = alpha_pci_mapping_error, .dma_supported = alpha_pci_supported, }; struct dma_map_ops *dma_ops = &alpha_pci_ops; EXPORT_SYMBOL(dma_ops); |