Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | /proc/bus/usb filesystem output =============================== (version 2010.09.13) The usbfs filesystem for USB devices is traditionally mounted at /proc/bus/usb. It provides the /proc/bus/usb/devices file, as well as the /proc/bus/usb/BBB/DDD files. In many modern systems the usbfs filesystem isn't used at all. Instead USB device nodes are created under /dev/usb/ or someplace similar. The "devices" file is available in debugfs, typically as /sys/kernel/debug/usb/devices. **NOTE**: If /proc/bus/usb appears empty, and a host controller driver has been linked, then you need to mount the filesystem. Issue the command (as root): mount -t usbfs none /proc/bus/usb An alternative and more permanent method would be to add none /proc/bus/usb usbfs defaults 0 0 to /etc/fstab. This will mount usbfs at each reboot. You can then issue `cat /proc/bus/usb/devices` to extract USB device information, and user mode drivers can use usbfs to interact with USB devices. There are a number of mount options supported by usbfs. Consult the source code (linux/drivers/usb/core/inode.c) for information about those options. **NOTE**: The filesystem has been renamed from "usbdevfs" to "usbfs", to reduce confusion with "devfs". You may still see references to the older "usbdevfs" name. For more information on mounting the usbfs file system, see the "USB Device Filesystem" section of the USB Guide. The latest copy of the USB Guide can be found at http://www.linux-usb.org/ THE /proc/bus/usb/BBB/DDD FILES: -------------------------------- Each connected USB device has one file. The BBB indicates the bus number. The DDD indicates the device address on that bus. Both of these numbers are assigned sequentially, and can be reused, so you can't rely on them for stable access to devices. For example, it's relatively common for devices to re-enumerate while they are still connected (perhaps someone jostled their power supply, hub, or USB cable), so a device might be 002/027 when you first connect it and 002/048 sometime later. These files can be read as binary data. The binary data consists of first the device descriptor, then the descriptors for each configuration of the device. Multi-byte fields in the device descriptor are converted to host endianness by the kernel. The configuration descriptors are in bus endian format! The configuration descriptor are wTotalLength bytes apart. If a device returns less configuration descriptor data than indicated by wTotalLength there will be a hole in the file for the missing bytes. This information is also shown in text form by the /proc/bus/usb/devices file, described later. These files may also be used to write user-level drivers for the USB devices. You would open the /proc/bus/usb/BBB/DDD file read/write, read its descriptors to make sure it's the device you expect, and then bind to an interface (or perhaps several) using an ioctl call. You would issue more ioctls to the device to communicate to it using control, bulk, or other kinds of USB transfers. The IOCTLs are listed in the <linux/usbdevice_fs.h> file, and at this writing the source code (linux/drivers/usb/core/devio.c) is the primary reference for how to access devices through those files. Note that since by default these BBB/DDD files are writable only by root, only root can write such user mode drivers. You can selectively grant read/write permissions to other users by using "chmod". Also, usbfs mount options such as "devmode=0666" may be helpful. THE /proc/bus/usb/devices FILE: ------------------------------- In /proc/bus/usb/devices, each device's output has multiple lines of ASCII output. I made it ASCII instead of binary on purpose, so that someone can obtain some useful data from it without the use of an auxiliary program. However, with an auxiliary program, the numbers in the first 4 columns of each "T:" line (topology info: Lev, Prnt, Port, Cnt) can be used to build a USB topology diagram. Each line is tagged with a one-character ID for that line: T = Topology (etc.) B = Bandwidth (applies only to USB host controllers, which are virtualized as root hubs) D = Device descriptor info. P = Product ID info. (from Device descriptor, but they won't fit together on one line) S = String descriptors. C = Configuration descriptor info. (* = active configuration) I = Interface descriptor info. E = Endpoint descriptor info. ======================================================================= /proc/bus/usb/devices output format: Legend: d = decimal number (may have leading spaces or 0's) x = hexadecimal number (may have leading spaces or 0's) s = string Topology info: T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=dddd MxCh=dd | | | | | | | | |__MaxChildren | | | | | | | |__Device Speed in Mbps | | | | | | |__DeviceNumber | | | | | |__Count of devices at this level | | | | |__Connector/Port on Parent for this device | | | |__Parent DeviceNumber | | |__Level in topology for this bus | |__Bus number |__Topology info tag Speed may be: 1.5 Mbit/s for low speed USB 12 Mbit/s for full speed USB 480 Mbit/s for high speed USB (added for USB 2.0); also used for Wireless USB, which has no fixed speed 5000 Mbit/s for SuperSpeed USB (added for USB 3.0) For reasons lost in the mists of time, the Port number is always too low by 1. For example, a device plugged into port 4 will show up with "Port=03". Bandwidth info: B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd | | | |__Number of isochronous requests | | |__Number of interrupt requests | |__Total Bandwidth allocated to this bus |__Bandwidth info tag Bandwidth allocation is an approximation of how much of one frame (millisecond) is in use. It reflects only periodic transfers, which are the only transfers that reserve bandwidth. Control and bulk transfers use all other bandwidth, including reserved bandwidth that is not used for transfers (such as for short packets). The percentage is how much of the "reserved" bandwidth is scheduled by those transfers. For a low or full speed bus (loosely, "USB 1.1"), 90% of the bus bandwidth is reserved. For a high speed bus (loosely, "USB 2.0") 80% is reserved. Device descriptor info & Product ID info: D: Ver=x.xx Cls=xx(s) Sub=xx Prot=xx MxPS=dd #Cfgs=dd P: Vendor=xxxx ProdID=xxxx Rev=xx.xx where D: Ver=x.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd | | | | | | |__NumberConfigurations | | | | | |__MaxPacketSize of Default Endpoint | | | | |__DeviceProtocol | | | |__DeviceSubClass | | |__DeviceClass | |__Device USB version |__Device info tag #1 where P: Vendor=xxxx ProdID=xxxx Rev=xx.xx | | | |__Product revision number | | |__Product ID code | |__Vendor ID code |__Device info tag #2 String descriptor info: S: Manufacturer=ssss | |__Manufacturer of this device as read from the device. | For USB host controller drivers (virtual root hubs) this may | be omitted, or (for newer drivers) will identify the kernel | version and the driver which provides this hub emulation. |__String info tag S: Product=ssss | |__Product description of this device as read from the device. | For older USB host controller drivers (virtual root hubs) this | indicates the driver; for newer ones, it's a product (and vendor) | description that often comes from the kernel's PCI ID database. |__String info tag S: SerialNumber=ssss | |__Serial Number of this device as read from the device. | For USB host controller drivers (virtual root hubs) this is | some unique ID, normally a bus ID (address or slot name) that | can't be shared with any other device. |__String info tag Configuration descriptor info: C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA | | | | | |__MaxPower in mA | | | | |__Attributes | | | |__ConfiguratioNumber | | |__NumberOfInterfaces | |__ "*" indicates the active configuration (others are " ") |__Config info tag USB devices may have multiple configurations, each of which act rather differently. For example, a bus-powered configuration might be much less capable than one that is self-powered. Only one device configuration can be active at a time; most devices have only one configuration. Each configuration consists of one or more interfaces. Each interface serves a distinct "function", which is typically bound to a different USB device driver. One common example is a USB speaker with an audio interface for playback, and a HID interface for use with software volume control. Interface descriptor info (can be multiple per Config): I:* If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss | | | | | | | | |__Driver name | | | | | | | | or "(none)" | | | | | | | |__InterfaceProtocol | | | | | | |__InterfaceSubClass | | | | | |__InterfaceClass | | | | |__NumberOfEndpoints | | | |__AlternateSettingNumber | | |__InterfaceNumber | |__ "*" indicates the active altsetting (others are " ") |__Interface info tag A given interface may have one or more "alternate" settings. For example, default settings may not use more than a small amount of periodic bandwidth. To use significant fractions of bus bandwidth, drivers must select a non-default altsetting. Only one setting for an interface may be active at a time, and only one driver may bind to an interface at a time. Most devices have only one alternate setting per interface. Endpoint descriptor info (can be multiple per Interface): E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=dddss | | | | |__Interval (max) between transfers | | | |__EndpointMaxPacketSize | | |__Attributes(EndpointType) | |__EndpointAddress(I=In,O=Out) |__Endpoint info tag The interval is nonzero for all periodic (interrupt or isochronous) endpoints. For high speed endpoints the transfer interval may be measured in microseconds rather than milliseconds. For high speed periodic endpoints, the "MaxPacketSize" reflects the per-microframe data transfer size. For "high bandwidth" endpoints, that can reflect two or three packets (for up to 3KBytes every 125 usec) per endpoint. With the Linux-USB stack, periodic bandwidth reservations use the transfer intervals and sizes provided by URBs, which can be less than those found in endpoint descriptor. ======================================================================= If a user or script is interested only in Topology info, for example, use something like "grep ^T: /proc/bus/usb/devices" for only the Topology lines. A command like "grep -i ^[tdp]: /proc/bus/usb/devices" can be used to list only the lines that begin with the characters in square brackets, where the valid characters are TDPCIE. With a slightly more able script, it can display any selected lines (for example, only T, D, and P lines) and change their output format. (The "procusb" Perl script is the beginning of this idea. It will list only selected lines [selected from TBDPSCIE] or "All" lines from /proc/bus/usb/devices.) The Topology lines can be used to generate a graphic/pictorial of the USB devices on a system's root hub. (See more below on how to do this.) The Interface lines can be used to determine what driver is being used for each device, and which altsetting it activated. The Configuration lines could be used to list maximum power (in milliamps) that a system's USB devices are using. For example, "grep ^C: /proc/bus/usb/devices". Here's an example, from a system which has a UHCI root hub, an external hub connected to the root hub, and a mouse and a serial converter connected to the external hub. T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 B: Alloc= 28/900 us ( 3%), #Int= 2, #Iso= 0 D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 P: Vendor=0000 ProdID=0000 Rev= 0.00 S: Product=USB UHCI Root Hub S: SerialNumber=dce0 C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 P: Vendor=0451 ProdID=1446 Rev= 1.00 C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub E: Ad=81(I) Atr=03(Int.) MxPS= 1 Ivl=255ms T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 P: Vendor=04b4 ProdID=0001 Rev= 0.00 C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse E: Ad=81(I) Atr=03(Int.) MxPS= 3 Ivl= 10ms T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 P: Vendor=0565 ProdID=0001 Rev= 1.08 S: Manufacturer=Peracom Networks, Inc. S: Product=Peracom USB to Serial Converter C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl= 16ms E: Ad=01(O) Atr=02(Bulk) MxPS= 16 Ivl= 16ms E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl= 8ms Selecting only the "T:" and "I:" lines from this (for example, by using "procusb ti"), we have: T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial Physically this looks like (or could be converted to): +------------------+ | PC/root_hub (12)| Dev# = 1 +------------------+ (nn) is Mbps. Level 0 | CN.0 | CN.1 | [CN = connector/port #] +------------------+ / / +-----------------------+ Level 1 | Dev#2: 4-port hub (12)| +-----------------------+ |CN.0 |CN.1 |CN.2 |CN.3 | +-----------------------+ \ \____________________ \_____ \ \ \ +--------------------+ +--------------------+ Level 2 | Dev# 3: mouse (1.5)| | Dev# 4: serial (12)| +--------------------+ +--------------------+ Or, in a more tree-like structure (ports [Connectors] without connections could be omitted): PC: Dev# 1, root hub, 2 ports, 12 Mbps |_ CN.0: Dev# 2, hub, 4 ports, 12 Mbps |_ CN.0: Dev #3, mouse, 1.5 Mbps |_ CN.1: |_ CN.2: Dev #4, serial, 12 Mbps |_ CN.3: |_ CN.1: ### END ### |