Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
/*
 * Copyright (C) 2010,2015 Broadcom
 * Copyright (C) 2012 Stephen Warren
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

/**
 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
 *
 * The clock tree on the 2835 has several levels.  There's a root
 * oscillator running at 19.2Mhz.  After the oscillator there are 5
 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
 * and "HDMI displays".  Those 5 PLLs each can divide their output to
 * produce up to 4 channels.  Finally, there is the level of clocks to
 * be consumed by other hardware components (like "H264" or "HDMI
 * state machine"), which divide off of some subset of the PLL
 * channels.
 *
 * All of the clocks in the tree are exposed in the DT, because the DT
 * may want to make assignments of the final layer of clocks to the
 * PLL channels, and some components of the hardware will actually
 * skip layers of the tree (for example, the pixel clock comes
 * directly from the PLLH PIX channel without using a CM_*CTL clock
 * generator).
 */

#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/clk/bcm2835.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <dt-bindings/clock/bcm2835.h>

#define CM_PASSWORD		0x5a000000

#define CM_GNRICCTL		0x000
#define CM_GNRICDIV		0x004
# define CM_DIV_FRAC_BITS	12

#define CM_VPUCTL		0x008
#define CM_VPUDIV		0x00c
#define CM_SYSCTL		0x010
#define CM_SYSDIV		0x014
#define CM_PERIACTL		0x018
#define CM_PERIADIV		0x01c
#define CM_PERIICTL		0x020
#define CM_PERIIDIV		0x024
#define CM_H264CTL		0x028
#define CM_H264DIV		0x02c
#define CM_ISPCTL		0x030
#define CM_ISPDIV		0x034
#define CM_V3DCTL		0x038
#define CM_V3DDIV		0x03c
#define CM_CAM0CTL		0x040
#define CM_CAM0DIV		0x044
#define CM_CAM1CTL		0x048
#define CM_CAM1DIV		0x04c
#define CM_CCP2CTL		0x050
#define CM_CCP2DIV		0x054
#define CM_DSI0ECTL		0x058
#define CM_DSI0EDIV		0x05c
#define CM_DSI0PCTL		0x060
#define CM_DSI0PDIV		0x064
#define CM_DPICTL		0x068
#define CM_DPIDIV		0x06c
#define CM_GP0CTL		0x070
#define CM_GP0DIV		0x074
#define CM_GP1CTL		0x078
#define CM_GP1DIV		0x07c
#define CM_GP2CTL		0x080
#define CM_GP2DIV		0x084
#define CM_HSMCTL		0x088
#define CM_HSMDIV		0x08c
#define CM_OTPCTL		0x090
#define CM_OTPDIV		0x094
#define CM_PWMCTL		0x0a0
#define CM_PWMDIV		0x0a4
#define CM_SMICTL		0x0b0
#define CM_SMIDIV		0x0b4
#define CM_TSENSCTL		0x0e0
#define CM_TSENSDIV		0x0e4
#define CM_TIMERCTL		0x0e8
#define CM_TIMERDIV		0x0ec
#define CM_UARTCTL		0x0f0
#define CM_UARTDIV		0x0f4
#define CM_VECCTL		0x0f8
#define CM_VECDIV		0x0fc
#define CM_PULSECTL		0x190
#define CM_PULSEDIV		0x194
#define CM_SDCCTL		0x1a8
#define CM_SDCDIV		0x1ac
#define CM_ARMCTL		0x1b0
#define CM_EMMCCTL		0x1c0
#define CM_EMMCDIV		0x1c4

/* General bits for the CM_*CTL regs */
# define CM_ENABLE			BIT(4)
# define CM_KILL			BIT(5)
# define CM_GATE_BIT			6
# define CM_GATE			BIT(CM_GATE_BIT)
# define CM_BUSY			BIT(7)
# define CM_BUSYD			BIT(8)
# define CM_SRC_SHIFT			0
# define CM_SRC_BITS			4
# define CM_SRC_MASK			0xf
# define CM_SRC_GND			0
# define CM_SRC_OSC			1
# define CM_SRC_TESTDEBUG0		2
# define CM_SRC_TESTDEBUG1		3
# define CM_SRC_PLLA_CORE		4
# define CM_SRC_PLLA_PER		4
# define CM_SRC_PLLC_CORE0		5
# define CM_SRC_PLLC_PER		5
# define CM_SRC_PLLC_CORE1		8
# define CM_SRC_PLLD_CORE		6
# define CM_SRC_PLLD_PER		6
# define CM_SRC_PLLH_AUX		7
# define CM_SRC_PLLC_CORE1		8
# define CM_SRC_PLLC_CORE2		9

#define CM_OSCCOUNT		0x100

#define CM_PLLA			0x104
# define CM_PLL_ANARST			BIT(8)
# define CM_PLLA_HOLDPER		BIT(7)
# define CM_PLLA_LOADPER		BIT(6)
# define CM_PLLA_HOLDCORE		BIT(5)
# define CM_PLLA_LOADCORE		BIT(4)
# define CM_PLLA_HOLDCCP2		BIT(3)
# define CM_PLLA_LOADCCP2		BIT(2)
# define CM_PLLA_HOLDDSI0		BIT(1)
# define CM_PLLA_LOADDSI0		BIT(0)

#define CM_PLLC			0x108
# define CM_PLLC_HOLDPER		BIT(7)
# define CM_PLLC_LOADPER		BIT(6)
# define CM_PLLC_HOLDCORE2		BIT(5)
# define CM_PLLC_LOADCORE2		BIT(4)
# define CM_PLLC_HOLDCORE1		BIT(3)
# define CM_PLLC_LOADCORE1		BIT(2)
# define CM_PLLC_HOLDCORE0		BIT(1)
# define CM_PLLC_LOADCORE0		BIT(0)

#define CM_PLLD			0x10c
# define CM_PLLD_HOLDPER		BIT(7)
# define CM_PLLD_LOADPER		BIT(6)
# define CM_PLLD_HOLDCORE		BIT(5)
# define CM_PLLD_LOADCORE		BIT(4)
# define CM_PLLD_HOLDDSI1		BIT(3)
# define CM_PLLD_LOADDSI1		BIT(2)
# define CM_PLLD_HOLDDSI0		BIT(1)
# define CM_PLLD_LOADDSI0		BIT(0)

#define CM_PLLH			0x110
# define CM_PLLH_LOADRCAL		BIT(2)
# define CM_PLLH_LOADAUX		BIT(1)
# define CM_PLLH_LOADPIX		BIT(0)

#define CM_LOCK			0x114
# define CM_LOCK_FLOCKH			BIT(12)
# define CM_LOCK_FLOCKD			BIT(11)
# define CM_LOCK_FLOCKC			BIT(10)
# define CM_LOCK_FLOCKB			BIT(9)
# define CM_LOCK_FLOCKA			BIT(8)

#define CM_EVENT		0x118
#define CM_DSI1ECTL		0x158
#define CM_DSI1EDIV		0x15c
#define CM_DSI1PCTL		0x160
#define CM_DSI1PDIV		0x164
#define CM_DFTCTL		0x168
#define CM_DFTDIV		0x16c

#define CM_PLLB			0x170
# define CM_PLLB_HOLDARM		BIT(1)
# define CM_PLLB_LOADARM		BIT(0)

#define A2W_PLLA_CTRL		0x1100
#define A2W_PLLC_CTRL		0x1120
#define A2W_PLLD_CTRL		0x1140
#define A2W_PLLH_CTRL		0x1160
#define A2W_PLLB_CTRL		0x11e0
# define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
# define A2W_PLL_CTRL_PWRDN		BIT(16)
# define A2W_PLL_CTRL_PDIV_MASK		0x000007000
# define A2W_PLL_CTRL_PDIV_SHIFT	12
# define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
# define A2W_PLL_CTRL_NDIV_SHIFT	0

#define A2W_PLLA_ANA0		0x1010
#define A2W_PLLC_ANA0		0x1030
#define A2W_PLLD_ANA0		0x1050
#define A2W_PLLH_ANA0		0x1070
#define A2W_PLLB_ANA0		0x10f0

#define A2W_PLL_KA_SHIFT	7
#define A2W_PLL_KA_MASK		GENMASK(9, 7)
#define A2W_PLL_KI_SHIFT	19
#define A2W_PLL_KI_MASK		GENMASK(21, 19)
#define A2W_PLL_KP_SHIFT	15
#define A2W_PLL_KP_MASK		GENMASK(18, 15)

#define A2W_PLLH_KA_SHIFT	19
#define A2W_PLLH_KA_MASK	GENMASK(21, 19)
#define A2W_PLLH_KI_LOW_SHIFT	22
#define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
#define A2W_PLLH_KI_HIGH_SHIFT	0
#define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
#define A2W_PLLH_KP_SHIFT	1
#define A2W_PLLH_KP_MASK	GENMASK(4, 1)

#define A2W_XOSC_CTRL		0x1190
# define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
# define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
# define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
# define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
# define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
# define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
# define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
# define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)

#define A2W_PLLA_FRAC		0x1200
#define A2W_PLLC_FRAC		0x1220
#define A2W_PLLD_FRAC		0x1240
#define A2W_PLLH_FRAC		0x1260
#define A2W_PLLB_FRAC		0x12e0
# define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
# define A2W_PLL_FRAC_BITS		20

#define A2W_PLL_CHANNEL_DISABLE		BIT(8)
#define A2W_PLL_DIV_BITS		8
#define A2W_PLL_DIV_SHIFT		0

#define A2W_PLLA_DSI0		0x1300
#define A2W_PLLA_CORE		0x1400
#define A2W_PLLA_PER		0x1500
#define A2W_PLLA_CCP2		0x1600

#define A2W_PLLC_CORE2		0x1320
#define A2W_PLLC_CORE1		0x1420
#define A2W_PLLC_PER		0x1520
#define A2W_PLLC_CORE0		0x1620

#define A2W_PLLD_DSI0		0x1340
#define A2W_PLLD_CORE		0x1440
#define A2W_PLLD_PER		0x1540
#define A2W_PLLD_DSI1		0x1640

#define A2W_PLLH_AUX		0x1360
#define A2W_PLLH_RCAL		0x1460
#define A2W_PLLH_PIX		0x1560
#define A2W_PLLH_STS		0x1660

#define A2W_PLLH_CTRLR		0x1960
#define A2W_PLLH_FRACR		0x1a60
#define A2W_PLLH_AUXR		0x1b60
#define A2W_PLLH_RCALR		0x1c60
#define A2W_PLLH_PIXR		0x1d60
#define A2W_PLLH_STSR		0x1e60

#define A2W_PLLB_ARM		0x13e0
#define A2W_PLLB_SP0		0x14e0
#define A2W_PLLB_SP1		0x15e0
#define A2W_PLLB_SP2		0x16e0

#define LOCK_TIMEOUT_NS		100000000
#define BCM2835_MAX_FB_RATE	1750000000u

struct bcm2835_cprman {
	struct device *dev;
	void __iomem *regs;
	spinlock_t regs_lock;
	const char *osc_name;

	struct clk_onecell_data onecell;
	struct clk *clks[BCM2835_CLOCK_COUNT];
};

static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
{
	writel(CM_PASSWORD | val, cprman->regs + reg);
}

static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
{
	return readl(cprman->regs + reg);
}

/*
 * These are fixed clocks. They're probably not all root clocks and it may
 * be possible to turn them on and off but until this is mapped out better
 * it's the only way they can be used.
 */
void __init bcm2835_init_clocks(void)
{
	struct clk *clk;
	int ret;

	clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, CLK_IS_ROOT,
					126000000);
	if (IS_ERR(clk))
		pr_err("apb_pclk not registered\n");

	clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, CLK_IS_ROOT,
					3000000);
	if (IS_ERR(clk))
		pr_err("uart0_pclk not registered\n");
	ret = clk_register_clkdev(clk, NULL, "20201000.uart");
	if (ret)
		pr_err("uart0_pclk alias not registered\n");

	clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, CLK_IS_ROOT,
					125000000);
	if (IS_ERR(clk))
		pr_err("uart1_pclk not registered\n");
	ret = clk_register_clkdev(clk, NULL, "20215000.uart");
	if (ret)
		pr_err("uart1_pclk alias not registered\n");
}

struct bcm2835_pll_data {
	const char *name;
	u32 cm_ctrl_reg;
	u32 a2w_ctrl_reg;
	u32 frac_reg;
	u32 ana_reg_base;
	u32 reference_enable_mask;
	/* Bit in CM_LOCK to indicate when the PLL has locked. */
	u32 lock_mask;

	const struct bcm2835_pll_ana_bits *ana;

	unsigned long min_rate;
	unsigned long max_rate;
	/*
	 * Highest rate for the VCO before we have to use the
	 * pre-divide-by-2.
	 */
	unsigned long max_fb_rate;
};

struct bcm2835_pll_ana_bits {
	u32 mask0;
	u32 set0;
	u32 mask1;
	u32 set1;
	u32 mask3;
	u32 set3;
	u32 fb_prediv_mask;
};

static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
	.mask0 = 0,
	.set0 = 0,
	.mask1 = ~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
	.mask3 = ~A2W_PLL_KA_MASK,
	.set3 = (2 << A2W_PLL_KA_SHIFT),
	.fb_prediv_mask = BIT(14),
};

static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
	.mask0 = ~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
	.mask1 = ~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
	.set1 = (6 << A2W_PLLH_KP_SHIFT),
	.mask3 = 0,
	.set3 = 0,
	.fb_prediv_mask = BIT(11),
};

/*
 * PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera
 * Port 2) transmitter clock.
 *
 * It is in the PX LDO power domain, which is on when the AUDIO domain
 * is on.
 */
static const struct bcm2835_pll_data bcm2835_plla_data = {
	.name = "plla",
	.cm_ctrl_reg = CM_PLLA,
	.a2w_ctrl_reg = A2W_PLLA_CTRL,
	.frac_reg = A2W_PLLA_FRAC,
	.ana_reg_base = A2W_PLLA_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
	.lock_mask = CM_LOCK_FLOCKA,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 2400000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/* PLLB is used for the ARM's clock. */
static const struct bcm2835_pll_data bcm2835_pllb_data = {
	.name = "pllb",
	.cm_ctrl_reg = CM_PLLB,
	.a2w_ctrl_reg = A2W_PLLB_CTRL,
	.frac_reg = A2W_PLLB_FRAC,
	.ana_reg_base = A2W_PLLB_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
	.lock_mask = CM_LOCK_FLOCKB,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 3000000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/*
 * PLLC is the core PLL, used to drive the core VPU clock.
 *
 * It is in the PX LDO power domain, which is on when the AUDIO domain
 * is on.
*/
static const struct bcm2835_pll_data bcm2835_pllc_data = {
	.name = "pllc",
	.cm_ctrl_reg = CM_PLLC,
	.a2w_ctrl_reg = A2W_PLLC_CTRL,
	.frac_reg = A2W_PLLC_FRAC,
	.ana_reg_base = A2W_PLLC_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
	.lock_mask = CM_LOCK_FLOCKC,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 3000000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/*
 * PLLD is the display PLL, used to drive DSI display panels.
 *
 * It is in the PX LDO power domain, which is on when the AUDIO domain
 * is on.
 */
static const struct bcm2835_pll_data bcm2835_plld_data = {
	.name = "plld",
	.cm_ctrl_reg = CM_PLLD,
	.a2w_ctrl_reg = A2W_PLLD_CTRL,
	.frac_reg = A2W_PLLD_FRAC,
	.ana_reg_base = A2W_PLLD_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
	.lock_mask = CM_LOCK_FLOCKD,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 2400000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/*
 * PLLH is used to supply the pixel clock or the AUX clock for the TV
 * encoder.
 *
 * It is in the HDMI power domain.
 */
static const struct bcm2835_pll_data bcm2835_pllh_data = {
	"pllh",
	.cm_ctrl_reg = CM_PLLH,
	.a2w_ctrl_reg = A2W_PLLH_CTRL,
	.frac_reg = A2W_PLLH_FRAC,
	.ana_reg_base = A2W_PLLH_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
	.lock_mask = CM_LOCK_FLOCKH,

	.ana = &bcm2835_ana_pllh,

	.min_rate = 600000000u,
	.max_rate = 3000000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

struct bcm2835_pll_divider_data {
	const char *name;
	const struct bcm2835_pll_data *source_pll;
	u32 cm_reg;
	u32 a2w_reg;

	u32 load_mask;
	u32 hold_mask;
	u32 fixed_divider;
};

static const struct bcm2835_pll_divider_data bcm2835_plla_core_data = {
	.name = "plla_core",
	.source_pll = &bcm2835_plla_data,
	.cm_reg = CM_PLLA,
	.a2w_reg = A2W_PLLA_CORE,
	.load_mask = CM_PLLA_LOADCORE,
	.hold_mask = CM_PLLA_HOLDCORE,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_plla_per_data = {
	.name = "plla_per",
	.source_pll = &bcm2835_plla_data,
	.cm_reg = CM_PLLA,
	.a2w_reg = A2W_PLLA_PER,
	.load_mask = CM_PLLA_LOADPER,
	.hold_mask = CM_PLLA_HOLDPER,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data = {
	.name = "pllb_arm",
	.source_pll = &bcm2835_pllb_data,
	.cm_reg = CM_PLLB,
	.a2w_reg = A2W_PLLB_ARM,
	.load_mask = CM_PLLB_LOADARM,
	.hold_mask = CM_PLLB_HOLDARM,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data = {
	.name = "pllc_core0",
	.source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC,
	.a2w_reg = A2W_PLLC_CORE0,
	.load_mask = CM_PLLC_LOADCORE0,
	.hold_mask = CM_PLLC_HOLDCORE0,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data = {
	.name = "pllc_core1", .source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC, A2W_PLLC_CORE1,
	.load_mask = CM_PLLC_LOADCORE1,
	.hold_mask = CM_PLLC_HOLDCORE1,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data = {
	.name = "pllc_core2",
	.source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC,
	.a2w_reg = A2W_PLLC_CORE2,
	.load_mask = CM_PLLC_LOADCORE2,
	.hold_mask = CM_PLLC_HOLDCORE2,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data = {
	.name = "pllc_per",
	.source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC,
	.a2w_reg = A2W_PLLC_PER,
	.load_mask = CM_PLLC_LOADPER,
	.hold_mask = CM_PLLC_HOLDPER,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_plld_core_data = {
	.name = "plld_core",
	.source_pll = &bcm2835_plld_data,
	.cm_reg = CM_PLLD,
	.a2w_reg = A2W_PLLD_CORE,
	.load_mask = CM_PLLD_LOADCORE,
	.hold_mask = CM_PLLD_HOLDCORE,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_plld_per_data = {
	.name = "plld_per",
	.source_pll = &bcm2835_plld_data,
	.cm_reg = CM_PLLD,
	.a2w_reg = A2W_PLLD_PER,
	.load_mask = CM_PLLD_LOADPER,
	.hold_mask = CM_PLLD_HOLDPER,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data = {
	.name = "pllh_rcal",
	.source_pll = &bcm2835_pllh_data,
	.cm_reg = CM_PLLH,
	.a2w_reg = A2W_PLLH_RCAL,
	.load_mask = CM_PLLH_LOADRCAL,
	.hold_mask = 0,
	.fixed_divider = 10,
};

static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data = {
	.name = "pllh_aux",
	.source_pll = &bcm2835_pllh_data,
	.cm_reg = CM_PLLH,
	.a2w_reg = A2W_PLLH_AUX,
	.load_mask = CM_PLLH_LOADAUX,
	.hold_mask = 0,
	.fixed_divider = 10,
};

static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data = {
	.name = "pllh_pix",
	.source_pll = &bcm2835_pllh_data,
	.cm_reg = CM_PLLH,
	.a2w_reg = A2W_PLLH_PIX,
	.load_mask = CM_PLLH_LOADPIX,
	.hold_mask = 0,
	.fixed_divider = 10,
};

struct bcm2835_clock_data {
	const char *name;

	const char *const *parents;
	int num_mux_parents;

	u32 ctl_reg;
	u32 div_reg;

	/* Number of integer bits in the divider */
	u32 int_bits;
	/* Number of fractional bits in the divider */
	u32 frac_bits;

	bool is_vpu_clock;
};

static const char *const bcm2835_clock_per_parents[] = {
	"gnd",
	"xosc",
	"testdebug0",
	"testdebug1",
	"plla_per",
	"pllc_per",
	"plld_per",
	"pllh_aux",
};

static const char *const bcm2835_clock_vpu_parents[] = {
	"gnd",
	"xosc",
	"testdebug0",
	"testdebug1",
	"plla_core",
	"pllc_core0",
	"plld_core",
	"pllh_aux",
	"pllc_core1",
	"pllc_core2",
};

static const char *const bcm2835_clock_osc_parents[] = {
	"gnd",
	"xosc",
	"testdebug0",
	"testdebug1"
};

/*
 * Used for a 1Mhz clock for the system clocksource, and also used by
 * the watchdog timer and the camera pulse generator.
 */
static const struct bcm2835_clock_data bcm2835_clock_timer_data = {
	.name = "timer",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
	.parents = bcm2835_clock_osc_parents,
	.ctl_reg = CM_TIMERCTL,
	.div_reg = CM_TIMERDIV,
	.int_bits = 6,
	.frac_bits = 12,
};

/* One Time Programmable Memory clock.  Maximum 10Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_otp_data = {
	.name = "otp",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
	.parents = bcm2835_clock_osc_parents,
	.ctl_reg = CM_OTPCTL,
	.div_reg = CM_OTPDIV,
	.int_bits = 4,
	.frac_bits = 0,
};

/*
 * VPU clock.  This doesn't have an enable bit, since it drives the
 * bus for everything else, and is special so it doesn't need to be
 * gated for rate changes.  It is also known as "clk_audio" in various
 * hardware documentation.
 */
static const struct bcm2835_clock_data bcm2835_clock_vpu_data = {
	.name = "vpu",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_VPUCTL,
	.div_reg = CM_VPUDIV,
	.int_bits = 12,
	.frac_bits = 8,
	.is_vpu_clock = true,
};

static const struct bcm2835_clock_data bcm2835_clock_v3d_data = {
	.name = "v3d",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_V3DCTL,
	.div_reg = CM_V3DDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

static const struct bcm2835_clock_data bcm2835_clock_isp_data = {
	.name = "isp",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_ISPCTL,
	.div_reg = CM_ISPDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

static const struct bcm2835_clock_data bcm2835_clock_h264_data = {
	.name = "h264",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_H264CTL,
	.div_reg = CM_H264DIV,
	.int_bits = 4,
	.frac_bits = 8,
};

/* TV encoder clock.  Only operating frequency is 108Mhz.  */
static const struct bcm2835_clock_data bcm2835_clock_vec_data = {
	.name = "vec",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_VECCTL,
	.div_reg = CM_VECDIV,
	.int_bits = 4,
	.frac_bits = 0,
};

static const struct bcm2835_clock_data bcm2835_clock_uart_data = {
	.name = "uart",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_UARTCTL,
	.div_reg = CM_UARTDIV,
	.int_bits = 10,
	.frac_bits = 12,
};

/* HDMI state machine */
static const struct bcm2835_clock_data bcm2835_clock_hsm_data = {
	.name = "hsm",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_HSMCTL,
	.div_reg = CM_HSMDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

/*
 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL in
 * the SDRAM controller can't be used.
 */
static const struct bcm2835_clock_data bcm2835_clock_sdram_data = {
	.name = "sdram",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_SDCCTL,
	.div_reg = CM_SDCDIV,
	.int_bits = 6,
	.frac_bits = 0,
};

/* Clock for the temperature sensor.  Generally run at 2Mhz, max 5Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_tsens_data = {
	.name = "tsens",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
	.parents = bcm2835_clock_osc_parents,
	.ctl_reg = CM_TSENSCTL,
	.div_reg = CM_TSENSDIV,
	.int_bits = 5,
	.frac_bits = 0,
};

/* Arasan EMMC clock */
static const struct bcm2835_clock_data bcm2835_clock_emmc_data = {
	.name = "emmc",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_EMMCCTL,
	.div_reg = CM_EMMCDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

struct bcm2835_pll {
	struct clk_hw hw;
	struct bcm2835_cprman *cprman;
	const struct bcm2835_pll_data *data;
};

static int bcm2835_pll_is_on(struct clk_hw *hw)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;

	return cprman_read(cprman, data->a2w_ctrl_reg) &
		A2W_PLL_CTRL_PRST_DISABLE;
}

static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
					     unsigned long parent_rate,
					     u32 *ndiv, u32 *fdiv)
{
	u64 div;

	div = (u64)rate << A2W_PLL_FRAC_BITS;
	do_div(div, parent_rate);

	*ndiv = div >> A2W_PLL_FRAC_BITS;
	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
}

static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
					   u32 ndiv, u32 fdiv, u32 pdiv)
{
	u64 rate;

	if (pdiv == 0)
		return 0;

	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
	do_div(rate, pdiv);
	return rate >> A2W_PLL_FRAC_BITS;
}

static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
				   unsigned long *parent_rate)
{
	u32 ndiv, fdiv;

	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);

	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
}

static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
					  unsigned long parent_rate)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;
	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
	u32 ndiv, pdiv, fdiv;
	bool using_prediv;

	if (parent_rate == 0)
		return 0;

	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
		data->ana->fb_prediv_mask;

	if (using_prediv)
		ndiv *= 2;

	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
}

static void bcm2835_pll_off(struct clk_hw *hw)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;

	spin_lock(&cprman->regs_lock);
	cprman_write(cprman, data->cm_ctrl_reg,
		     cprman_read(cprman, data->cm_ctrl_reg) |
		     CM_PLL_ANARST);
	cprman_write(cprman, data->a2w_ctrl_reg,
		     cprman_read(cprman, data->a2w_ctrl_reg) |
		     A2W_PLL_CTRL_PWRDN);
	spin_unlock(&cprman->regs_lock);
}

static int bcm2835_pll_on(struct clk_hw *hw)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;
	ktime_t timeout;

	cprman_write(cprman, data->a2w_ctrl_reg,
		     cprman_read(cprman, data->a2w_ctrl_reg) &
		     ~A2W_PLL_CTRL_PWRDN);

	/* Take the PLL out of reset. */
	cprman_write(cprman, data->cm_ctrl_reg,
		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);

	/* Wait for the PLL to lock. */
	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
		if (ktime_after(ktime_get(), timeout)) {
			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
				clk_hw_get_name(hw));
			return -ETIMEDOUT;
		}

		cpu_relax();
	}

	return 0;
}

static void
bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
{
	int i;

	/*
	 * ANA register setup is done as a series of writes to
	 * ANA3-ANA0, in that order.  This lets us write all 4
	 * registers as a single cycle of the serdes interface (taking
	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
	 * 3 individually through their partial-write registers, each
	 * would be their own serdes cycle.
	 */
	for (i = 3; i >= 0; i--)
		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
}

static int bcm2835_pll_set_rate(struct clk_hw *hw,
				unsigned long rate, unsigned long parent_rate)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;
	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
	u32 ndiv, fdiv, a2w_ctl;
	u32 ana[4];
	int i;

	if (rate < data->min_rate || rate > data->max_rate) {
		dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
			clk_hw_get_name(hw), rate,
			data->min_rate, data->max_rate);
		return -EINVAL;
	}

	if (rate > data->max_fb_rate) {
		use_fb_prediv = true;
		rate /= 2;
	} else {
		use_fb_prediv = false;
	}

	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);

	for (i = 3; i >= 0; i--)
		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);

	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;

	ana[0] &= ~data->ana->mask0;
	ana[0] |= data->ana->set0;
	ana[1] &= ~data->ana->mask1;
	ana[1] |= data->ana->set1;
	ana[3] &= ~data->ana->mask3;
	ana[3] |= data->ana->set3;

	if (was_using_prediv && !use_fb_prediv) {
		ana[1] &= ~data->ana->fb_prediv_mask;
		do_ana_setup_first = true;
	} else if (!was_using_prediv && use_fb_prediv) {
		ana[1] |= data->ana->fb_prediv_mask;
		do_ana_setup_first = false;
	} else {
		do_ana_setup_first = true;
	}

	/* Unmask the reference clock from the oscillator. */
	cprman_write(cprman, A2W_XOSC_CTRL,
		     cprman_read(cprman, A2W_XOSC_CTRL) |
		     data->reference_enable_mask);

	if (do_ana_setup_first)
		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);

	/* Set the PLL multiplier from the oscillator. */
	cprman_write(cprman, data->frac_reg, fdiv);

	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);

	if (!do_ana_setup_first)
		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);

	return 0;
}

static const struct clk_ops bcm2835_pll_clk_ops = {
	.is_prepared = bcm2835_pll_is_on,
	.prepare = bcm2835_pll_on,
	.unprepare = bcm2835_pll_off,
	.recalc_rate = bcm2835_pll_get_rate,
	.set_rate = bcm2835_pll_set_rate,
	.round_rate = bcm2835_pll_round_rate,
};

struct bcm2835_pll_divider {
	struct clk_divider div;
	struct bcm2835_cprman *cprman;
	const struct bcm2835_pll_divider_data *data;
};

static struct bcm2835_pll_divider *
bcm2835_pll_divider_from_hw(struct clk_hw *hw)
{
	return container_of(hw, struct bcm2835_pll_divider, div.hw);
}

static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;

	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
}

static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
					   unsigned long rate,
					   unsigned long *parent_rate)
{
	return clk_divider_ops.round_rate(hw, rate, parent_rate);
}

static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
						  unsigned long parent_rate)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;
	u32 div = cprman_read(cprman, data->a2w_reg);

	div &= (1 << A2W_PLL_DIV_BITS) - 1;
	if (div == 0)
		div = 256;

	return parent_rate / div;
}

static void bcm2835_pll_divider_off(struct clk_hw *hw)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;

	spin_lock(&cprman->regs_lock);
	cprman_write(cprman, data->cm_reg,
		     (cprman_read(cprman, data->cm_reg) &
		      ~data->load_mask) | data->hold_mask);
	cprman_write(cprman, data->a2w_reg,
		     cprman_read(cprman, data->a2w_reg) |
		     A2W_PLL_CHANNEL_DISABLE);
	spin_unlock(&cprman->regs_lock);
}

static int bcm2835_pll_divider_on(struct clk_hw *hw)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;

	spin_lock(&cprman->regs_lock);
	cprman_write(cprman, data->a2w_reg,
		     cprman_read(cprman, data->a2w_reg) &
		     ~A2W_PLL_CHANNEL_DISABLE);

	cprman_write(cprman, data->cm_reg,
		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
	spin_unlock(&cprman->regs_lock);

	return 0;
}

static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
					unsigned long rate,
					unsigned long parent_rate)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;
	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;

	div = DIV_ROUND_UP_ULL(parent_rate, rate);

	div = min(div, max_div);
	if (div == max_div)
		div = 0;

	cprman_write(cprman, data->a2w_reg, div);
	cm = cprman_read(cprman, data->cm_reg);
	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);

	return 0;
}

static const struct clk_ops bcm2835_pll_divider_clk_ops = {
	.is_prepared = bcm2835_pll_divider_is_on,
	.prepare = bcm2835_pll_divider_on,
	.unprepare = bcm2835_pll_divider_off,
	.recalc_rate = bcm2835_pll_divider_get_rate,
	.set_rate = bcm2835_pll_divider_set_rate,
	.round_rate = bcm2835_pll_divider_round_rate,
};

/*
 * The CM dividers do fixed-point division, so we can't use the
 * generic integer divider code like the PLL dividers do (and we can't
 * fake it by having some fixed shifts preceding it in the clock tree,
 * because we'd run out of bits in a 32-bit unsigned long).
 */
struct bcm2835_clock {
	struct clk_hw hw;
	struct bcm2835_cprman *cprman;
	const struct bcm2835_clock_data *data;
};

static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
{
	return container_of(hw, struct bcm2835_clock, hw);
}

static int bcm2835_clock_is_on(struct clk_hw *hw)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;

	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
}

static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
				    unsigned long rate,
				    unsigned long parent_rate)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	const struct bcm2835_clock_data *data = clock->data;
	u32 unused_frac_mask = GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0);
	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
	u32 div;

	do_div(temp, rate);
	div = temp;

	/* Round and mask off the unused bits */
	if (unused_frac_mask != 0) {
		div += unused_frac_mask >> 1;
		div &= ~unused_frac_mask;
	}

	/* clamp to min divider of 1 */
	div = max_t(u32, div, 1 << CM_DIV_FRAC_BITS);
	/* clamp to the highest possible fractional divider */
	div = min_t(u32, div, GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
				      CM_DIV_FRAC_BITS - data->frac_bits));

	return div;
}

static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
					    unsigned long parent_rate,
					    u32 div)
{
	const struct bcm2835_clock_data *data = clock->data;
	u64 temp;

	/*
	 * The divisor is a 12.12 fixed point field, but only some of
	 * the bits are populated in any given clock.
	 */
	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
	div &= (1 << (data->int_bits + data->frac_bits)) - 1;

	if (div == 0)
		return 0;

	temp = (u64)parent_rate << data->frac_bits;

	do_div(temp, div);

	return temp;
}

static long bcm2835_clock_round_rate(struct clk_hw *hw,
				     unsigned long rate,
				     unsigned long *parent_rate)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	u32 div = bcm2835_clock_choose_div(hw, rate, *parent_rate);

	return bcm2835_clock_rate_from_divisor(clock, *parent_rate, div);
}

static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
					    unsigned long parent_rate)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	u32 div = cprman_read(cprman, data->div_reg);

	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
}

static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
{
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);

	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
		if (ktime_after(ktime_get(), timeout)) {
			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
				clk_hw_get_name(&clock->hw));
			return;
		}
		cpu_relax();
	}
}

static void bcm2835_clock_off(struct clk_hw *hw)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;

	spin_lock(&cprman->regs_lock);
	cprman_write(cprman, data->ctl_reg,
		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
	spin_unlock(&cprman->regs_lock);

	/* BUSY will remain high until the divider completes its cycle. */
	bcm2835_clock_wait_busy(clock);
}

static int bcm2835_clock_on(struct clk_hw *hw)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;

	spin_lock(&cprman->regs_lock);
	cprman_write(cprman, data->ctl_reg,
		     cprman_read(cprman, data->ctl_reg) |
		     CM_ENABLE |
		     CM_GATE);
	spin_unlock(&cprman->regs_lock);

	return 0;
}

static int bcm2835_clock_set_rate(struct clk_hw *hw,
				  unsigned long rate, unsigned long parent_rate)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);

	cprman_write(cprman, data->div_reg, div);

	return 0;
}

static const struct clk_ops bcm2835_clock_clk_ops = {
	.is_prepared = bcm2835_clock_is_on,
	.prepare = bcm2835_clock_on,
	.unprepare = bcm2835_clock_off,
	.recalc_rate = bcm2835_clock_get_rate,
	.set_rate = bcm2835_clock_set_rate,
	.round_rate = bcm2835_clock_round_rate,
};

static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
{
	return true;
}

/*
 * The VPU clock can never be disabled (it doesn't have an ENABLE
 * bit), so it gets its own set of clock ops.
 */
static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
	.is_prepared = bcm2835_vpu_clock_is_on,
	.recalc_rate = bcm2835_clock_get_rate,
	.set_rate = bcm2835_clock_set_rate,
	.round_rate = bcm2835_clock_round_rate,
};

static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
					const struct bcm2835_pll_data *data)
{
	struct bcm2835_pll *pll;
	struct clk_init_data init;

	memset(&init, 0, sizeof(init));

	/* All of the PLLs derive from the external oscillator. */
	init.parent_names = &cprman->osc_name;
	init.num_parents = 1;
	init.name = data->name;
	init.ops = &bcm2835_pll_clk_ops;
	init.flags = CLK_IGNORE_UNUSED;

	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
	if (!pll)
		return NULL;

	pll->cprman = cprman;
	pll->data = data;
	pll->hw.init = &init;

	return devm_clk_register(cprman->dev, &pll->hw);
}

static struct clk *
bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
			     const struct bcm2835_pll_divider_data *data)
{
	struct bcm2835_pll_divider *divider;
	struct clk_init_data init;
	struct clk *clk;
	const char *divider_name;

	if (data->fixed_divider != 1) {
		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
					      "%s_prediv", data->name);
		if (!divider_name)
			return NULL;
	} else {
		divider_name = data->name;
	}

	memset(&init, 0, sizeof(init));

	init.parent_names = &data->source_pll->name;
	init.num_parents = 1;
	init.name = divider_name;
	init.ops = &bcm2835_pll_divider_clk_ops;
	init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;

	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
	if (!divider)
		return NULL;

	divider->div.reg = cprman->regs + data->a2w_reg;
	divider->div.shift = A2W_PLL_DIV_SHIFT;
	divider->div.width = A2W_PLL_DIV_BITS;
	divider->div.flags = 0;
	divider->div.lock = &cprman->regs_lock;
	divider->div.hw.init = &init;
	divider->div.table = NULL;

	divider->cprman = cprman;
	divider->data = data;

	clk = devm_clk_register(cprman->dev, &divider->div.hw);
	if (IS_ERR(clk))
		return clk;

	/*
	 * PLLH's channels have a fixed divide by 10 afterwards, which
	 * is what our consumers are actually using.
	 */
	if (data->fixed_divider != 1) {
		return clk_register_fixed_factor(cprman->dev, data->name,
						 divider_name,
						 CLK_SET_RATE_PARENT,
						 1,
						 data->fixed_divider);
	}

	return clk;
}

static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
					  const struct bcm2835_clock_data *data)
{
	struct bcm2835_clock *clock;
	struct clk_init_data init;
	const char *parent;

	/*
	 * Most of the clock generators have a mux field, so we
	 * instantiate a generic mux as our parent to handle it.
	 */
	if (data->num_mux_parents) {
		const char *parents[1 << CM_SRC_BITS];
		int i;

		parent = devm_kasprintf(cprman->dev, GFP_KERNEL,
					"mux_%s", data->name);
		if (!parent)
			return NULL;

		/*
		 * Replace our "xosc" references with the oscillator's
		 * actual name.
		 */
		for (i = 0; i < data->num_mux_parents; i++) {
			if (strcmp(data->parents[i], "xosc") == 0)
				parents[i] = cprman->osc_name;
			else
				parents[i] = data->parents[i];
		}

		clk_register_mux(cprman->dev, parent,
				 parents, data->num_mux_parents,
				 CLK_SET_RATE_PARENT,
				 cprman->regs + data->ctl_reg,
				 CM_SRC_SHIFT, CM_SRC_BITS,
				 0, &cprman->regs_lock);
	} else {
		parent = data->parents[0];
	}

	memset(&init, 0, sizeof(init));
	init.parent_names = &parent;
	init.num_parents = 1;
	init.name = data->name;
	init.flags = CLK_IGNORE_UNUSED;

	if (data->is_vpu_clock) {
		init.ops = &bcm2835_vpu_clock_clk_ops;
	} else {
		init.ops = &bcm2835_clock_clk_ops;
		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
	}

	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
	if (!clock)
		return NULL;

	clock->cprman = cprman;
	clock->data = data;
	clock->hw.init = &init;

	return devm_clk_register(cprman->dev, &clock->hw);
}

static int bcm2835_clk_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct clk **clks;
	struct bcm2835_cprman *cprman;
	struct resource *res;

	cprman = devm_kzalloc(dev, sizeof(*cprman), GFP_KERNEL);
	if (!cprman)
		return -ENOMEM;

	spin_lock_init(&cprman->regs_lock);
	cprman->dev = dev;
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	cprman->regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(cprman->regs))
		return PTR_ERR(cprman->regs);

	cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
	if (!cprman->osc_name)
		return -ENODEV;

	platform_set_drvdata(pdev, cprman);

	cprman->onecell.clk_num = BCM2835_CLOCK_COUNT;
	cprman->onecell.clks = cprman->clks;
	clks = cprman->clks;

	clks[BCM2835_PLLA] = bcm2835_register_pll(cprman, &bcm2835_plla_data);
	clks[BCM2835_PLLB] = bcm2835_register_pll(cprman, &bcm2835_pllb_data);
	clks[BCM2835_PLLC] = bcm2835_register_pll(cprman, &bcm2835_pllc_data);
	clks[BCM2835_PLLD] = bcm2835_register_pll(cprman, &bcm2835_plld_data);
	clks[BCM2835_PLLH] = bcm2835_register_pll(cprman, &bcm2835_pllh_data);

	clks[BCM2835_PLLA_CORE] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plla_core_data);
	clks[BCM2835_PLLA_PER] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plla_per_data);
	clks[BCM2835_PLLC_CORE0] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core0_data);
	clks[BCM2835_PLLC_CORE1] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core1_data);
	clks[BCM2835_PLLC_CORE2] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core2_data);
	clks[BCM2835_PLLC_PER] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_per_data);
	clks[BCM2835_PLLD_CORE] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plld_core_data);
	clks[BCM2835_PLLD_PER] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plld_per_data);
	clks[BCM2835_PLLH_RCAL] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_rcal_data);
	clks[BCM2835_PLLH_AUX] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_aux_data);
	clks[BCM2835_PLLH_PIX] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_pix_data);

	clks[BCM2835_CLOCK_TIMER] =
		bcm2835_register_clock(cprman, &bcm2835_clock_timer_data);
	clks[BCM2835_CLOCK_OTP] =
		bcm2835_register_clock(cprman, &bcm2835_clock_otp_data);
	clks[BCM2835_CLOCK_TSENS] =
		bcm2835_register_clock(cprman, &bcm2835_clock_tsens_data);
	clks[BCM2835_CLOCK_VPU] =
		bcm2835_register_clock(cprman, &bcm2835_clock_vpu_data);
	clks[BCM2835_CLOCK_V3D] =
		bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
	clks[BCM2835_CLOCK_ISP] =
		bcm2835_register_clock(cprman, &bcm2835_clock_isp_data);
	clks[BCM2835_CLOCK_H264] =
		bcm2835_register_clock(cprman, &bcm2835_clock_h264_data);
	clks[BCM2835_CLOCK_V3D] =
		bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
	clks[BCM2835_CLOCK_SDRAM] =
		bcm2835_register_clock(cprman, &bcm2835_clock_sdram_data);
	clks[BCM2835_CLOCK_UART] =
		bcm2835_register_clock(cprman, &bcm2835_clock_uart_data);
	clks[BCM2835_CLOCK_VEC] =
		bcm2835_register_clock(cprman, &bcm2835_clock_vec_data);
	clks[BCM2835_CLOCK_HSM] =
		bcm2835_register_clock(cprman, &bcm2835_clock_hsm_data);
	clks[BCM2835_CLOCK_EMMC] =
		bcm2835_register_clock(cprman, &bcm2835_clock_emmc_data);

	/*
	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
	 * you have the debug bit set in the power manager, which we
	 * don't bother exposing) are individual gates off of the
	 * non-stop vpu clock.
	 */
	clks[BCM2835_CLOCK_PERI_IMAGE] =
		clk_register_gate(dev, "peri_image", "vpu",
				  CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
				  cprman->regs + CM_PERIICTL, CM_GATE_BIT,
				  0, &cprman->regs_lock);

	return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
				   &cprman->onecell);
}

static const struct of_device_id bcm2835_clk_of_match[] = {
	{ .compatible = "brcm,bcm2835-cprman", },
	{}
};
MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);

static struct platform_driver bcm2835_clk_driver = {
	.driver = {
		.name = "bcm2835-clk",
		.of_match_table = bcm2835_clk_of_match,
	},
	.probe          = bcm2835_clk_probe,
};

builtin_platform_driver(bcm2835_clk_driver);

MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
MODULE_DESCRIPTION("BCM2835 clock driver");
MODULE_LICENSE("GPL v2");