Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
/*
 *  linux/fs/namespace.c
 *
 * (C) Copyright Al Viro 2000, 2001
 *	Released under GPL v2.
 *
 * Based on code from fs/super.c, copyright Linus Torvalds and others.
 * Heavily rewritten.
 */

#include <linux/syscalls.h>
#include <linux/export.h>
#include <linux/capability.h>
#include <linux/mnt_namespace.h>
#include <linux/user_namespace.h>
#include <linux/namei.h>
#include <linux/security.h>
#include <linux/idr.h>
#include <linux/init.h>		/* init_rootfs */
#include <linux/fs_struct.h>	/* get_fs_root et.al. */
#include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
#include <linux/uaccess.h>
#include <linux/proc_ns.h>
#include <linux/magic.h>
#include <linux/bootmem.h>
#include <linux/task_work.h>
#include "pnode.h"
#include "internal.h"

static unsigned int m_hash_mask __read_mostly;
static unsigned int m_hash_shift __read_mostly;
static unsigned int mp_hash_mask __read_mostly;
static unsigned int mp_hash_shift __read_mostly;

static __initdata unsigned long mhash_entries;
static int __init set_mhash_entries(char *str)
{
	if (!str)
		return 0;
	mhash_entries = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("mhash_entries=", set_mhash_entries);

static __initdata unsigned long mphash_entries;
static int __init set_mphash_entries(char *str)
{
	if (!str)
		return 0;
	mphash_entries = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("mphash_entries=", set_mphash_entries);

static u64 event;
static DEFINE_IDA(mnt_id_ida);
static DEFINE_IDA(mnt_group_ida);
static DEFINE_SPINLOCK(mnt_id_lock);
static int mnt_id_start = 0;
static int mnt_group_start = 1;

static struct hlist_head *mount_hashtable __read_mostly;
static struct hlist_head *mountpoint_hashtable __read_mostly;
static struct kmem_cache *mnt_cache __read_mostly;
static DECLARE_RWSEM(namespace_sem);

/* /sys/fs */
struct kobject *fs_kobj;
EXPORT_SYMBOL_GPL(fs_kobj);

/*
 * vfsmount lock may be taken for read to prevent changes to the
 * vfsmount hash, ie. during mountpoint lookups or walking back
 * up the tree.
 *
 * It should be taken for write in all cases where the vfsmount
 * tree or hash is modified or when a vfsmount structure is modified.
 */
__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);

static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
{
	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
	tmp = tmp + (tmp >> m_hash_shift);
	return &mount_hashtable[tmp & m_hash_mask];
}

static inline struct hlist_head *mp_hash(struct dentry *dentry)
{
	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
	tmp = tmp + (tmp >> mp_hash_shift);
	return &mountpoint_hashtable[tmp & mp_hash_mask];
}

/*
 * allocation is serialized by namespace_sem, but we need the spinlock to
 * serialize with freeing.
 */
static int mnt_alloc_id(struct mount *mnt)
{
	int res;

retry:
	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
	spin_lock(&mnt_id_lock);
	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
	if (!res)
		mnt_id_start = mnt->mnt_id + 1;
	spin_unlock(&mnt_id_lock);
	if (res == -EAGAIN)
		goto retry;

	return res;
}

static void mnt_free_id(struct mount *mnt)
{
	int id = mnt->mnt_id;
	spin_lock(&mnt_id_lock);
	ida_remove(&mnt_id_ida, id);
	if (mnt_id_start > id)
		mnt_id_start = id;
	spin_unlock(&mnt_id_lock);
}

/*
 * Allocate a new peer group ID
 *
 * mnt_group_ida is protected by namespace_sem
 */
static int mnt_alloc_group_id(struct mount *mnt)
{
	int res;

	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
		return -ENOMEM;

	res = ida_get_new_above(&mnt_group_ida,
				mnt_group_start,
				&mnt->mnt_group_id);
	if (!res)
		mnt_group_start = mnt->mnt_group_id + 1;

	return res;
}

/*
 * Release a peer group ID
 */
void mnt_release_group_id(struct mount *mnt)
{
	int id = mnt->mnt_group_id;
	ida_remove(&mnt_group_ida, id);
	if (mnt_group_start > id)
		mnt_group_start = id;
	mnt->mnt_group_id = 0;
}

/*
 * vfsmount lock must be held for read
 */
static inline void mnt_add_count(struct mount *mnt, int n)
{
#ifdef CONFIG_SMP
	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
#else
	preempt_disable();
	mnt->mnt_count += n;
	preempt_enable();
#endif
}

/*
 * vfsmount lock must be held for write
 */
unsigned int mnt_get_count(struct mount *mnt)
{
#ifdef CONFIG_SMP
	unsigned int count = 0;
	int cpu;

	for_each_possible_cpu(cpu) {
		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
	}

	return count;
#else
	return mnt->mnt_count;
#endif
}

static void drop_mountpoint(struct fs_pin *p)
{
	struct mount *m = container_of(p, struct mount, mnt_umount);
	dput(m->mnt_ex_mountpoint);
	pin_remove(p);
	mntput(&m->mnt);
}

static struct mount *alloc_vfsmnt(const char *name)
{
	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
	if (mnt) {
		int err;

		err = mnt_alloc_id(mnt);
		if (err)
			goto out_free_cache;

		if (name) {
			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
			if (!mnt->mnt_devname)
				goto out_free_id;
		}

#ifdef CONFIG_SMP
		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
		if (!mnt->mnt_pcp)
			goto out_free_devname;

		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
#else
		mnt->mnt_count = 1;
		mnt->mnt_writers = 0;
#endif

		INIT_HLIST_NODE(&mnt->mnt_hash);
		INIT_LIST_HEAD(&mnt->mnt_child);
		INIT_LIST_HEAD(&mnt->mnt_mounts);
		INIT_LIST_HEAD(&mnt->mnt_list);
		INIT_LIST_HEAD(&mnt->mnt_expire);
		INIT_LIST_HEAD(&mnt->mnt_share);
		INIT_LIST_HEAD(&mnt->mnt_slave_list);
		INIT_LIST_HEAD(&mnt->mnt_slave);
		INIT_HLIST_NODE(&mnt->mnt_mp_list);
#ifdef CONFIG_FSNOTIFY
		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
#endif
		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
	}
	return mnt;

#ifdef CONFIG_SMP
out_free_devname:
	kfree_const(mnt->mnt_devname);
#endif
out_free_id:
	mnt_free_id(mnt);
out_free_cache:
	kmem_cache_free(mnt_cache, mnt);
	return NULL;
}

/*
 * Most r/o checks on a fs are for operations that take
 * discrete amounts of time, like a write() or unlink().
 * We must keep track of when those operations start
 * (for permission checks) and when they end, so that
 * we can determine when writes are able to occur to
 * a filesystem.
 */
/*
 * __mnt_is_readonly: check whether a mount is read-only
 * @mnt: the mount to check for its write status
 *
 * This shouldn't be used directly ouside of the VFS.
 * It does not guarantee that the filesystem will stay
 * r/w, just that it is right *now*.  This can not and
 * should not be used in place of IS_RDONLY(inode).
 * mnt_want/drop_write() will _keep_ the filesystem
 * r/w.
 */
int __mnt_is_readonly(struct vfsmount *mnt)
{
	if (mnt->mnt_flags & MNT_READONLY)
		return 1;
	if (mnt->mnt_sb->s_flags & MS_RDONLY)
		return 1;
	return 0;
}
EXPORT_SYMBOL_GPL(__mnt_is_readonly);

static inline void mnt_inc_writers(struct mount *mnt)
{
#ifdef CONFIG_SMP
	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
#else
	mnt->mnt_writers++;
#endif
}

static inline void mnt_dec_writers(struct mount *mnt)
{
#ifdef CONFIG_SMP
	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
#else
	mnt->mnt_writers--;
#endif
}

static unsigned int mnt_get_writers(struct mount *mnt)
{
#ifdef CONFIG_SMP
	unsigned int count = 0;
	int cpu;

	for_each_possible_cpu(cpu) {
		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
	}

	return count;
#else
	return mnt->mnt_writers;
#endif
}

static int mnt_is_readonly(struct vfsmount *mnt)
{
	if (mnt->mnt_sb->s_readonly_remount)
		return 1;
	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
	smp_rmb();
	return __mnt_is_readonly(mnt);
}

/*
 * Most r/o & frozen checks on a fs are for operations that take discrete
 * amounts of time, like a write() or unlink().  We must keep track of when
 * those operations start (for permission checks) and when they end, so that we
 * can determine when writes are able to occur to a filesystem.
 */
/**
 * __mnt_want_write - get write access to a mount without freeze protection
 * @m: the mount on which to take a write
 *
 * This tells the low-level filesystem that a write is about to be performed to
 * it, and makes sure that writes are allowed (mnt it read-write) before
 * returning success. This operation does not protect against filesystem being
 * frozen. When the write operation is finished, __mnt_drop_write() must be
 * called. This is effectively a refcount.
 */
int __mnt_want_write(struct vfsmount *m)
{
	struct mount *mnt = real_mount(m);
	int ret = 0;

	preempt_disable();
	mnt_inc_writers(mnt);
	/*
	 * The store to mnt_inc_writers must be visible before we pass
	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
	 * incremented count after it has set MNT_WRITE_HOLD.
	 */
	smp_mb();
	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
		cpu_relax();
	/*
	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
	 * be set to match its requirements. So we must not load that until
	 * MNT_WRITE_HOLD is cleared.
	 */
	smp_rmb();
	if (mnt_is_readonly(m)) {
		mnt_dec_writers(mnt);
		ret = -EROFS;
	}
	preempt_enable();

	return ret;
}

/**
 * mnt_want_write - get write access to a mount
 * @m: the mount on which to take a write
 *
 * This tells the low-level filesystem that a write is about to be performed to
 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 * is not frozen) before returning success.  When the write operation is
 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 */
int mnt_want_write(struct vfsmount *m)
{
	int ret;

	sb_start_write(m->mnt_sb);
	ret = __mnt_want_write(m);
	if (ret)
		sb_end_write(m->mnt_sb);
	return ret;
}
EXPORT_SYMBOL_GPL(mnt_want_write);

/**
 * mnt_clone_write - get write access to a mount
 * @mnt: the mount on which to take a write
 *
 * This is effectively like mnt_want_write, except
 * it must only be used to take an extra write reference
 * on a mountpoint that we already know has a write reference
 * on it. This allows some optimisation.
 *
 * After finished, mnt_drop_write must be called as usual to
 * drop the reference.
 */
int mnt_clone_write(struct vfsmount *mnt)
{
	/* superblock may be r/o */
	if (__mnt_is_readonly(mnt))
		return -EROFS;
	preempt_disable();
	mnt_inc_writers(real_mount(mnt));
	preempt_enable();
	return 0;
}
EXPORT_SYMBOL_GPL(mnt_clone_write);

/**
 * __mnt_want_write_file - get write access to a file's mount
 * @file: the file who's mount on which to take a write
 *
 * This is like __mnt_want_write, but it takes a file and can
 * do some optimisations if the file is open for write already
 */
int __mnt_want_write_file(struct file *file)
{
	if (!(file->f_mode & FMODE_WRITER))
		return __mnt_want_write(file->f_path.mnt);
	else
		return mnt_clone_write(file->f_path.mnt);
}

/**
 * mnt_want_write_file - get write access to a file's mount
 * @file: the file who's mount on which to take a write
 *
 * This is like mnt_want_write, but it takes a file and can
 * do some optimisations if the file is open for write already
 */
int mnt_want_write_file(struct file *file)
{
	int ret;

	sb_start_write(file->f_path.mnt->mnt_sb);
	ret = __mnt_want_write_file(file);
	if (ret)
		sb_end_write(file->f_path.mnt->mnt_sb);
	return ret;
}
EXPORT_SYMBOL_GPL(mnt_want_write_file);

/**
 * __mnt_drop_write - give up write access to a mount
 * @mnt: the mount on which to give up write access
 *
 * Tells the low-level filesystem that we are done
 * performing writes to it.  Must be matched with
 * __mnt_want_write() call above.
 */
void __mnt_drop_write(struct vfsmount *mnt)
{
	preempt_disable();
	mnt_dec_writers(real_mount(mnt));
	preempt_enable();
}

/**
 * mnt_drop_write - give up write access to a mount
 * @mnt: the mount on which to give up write access
 *
 * Tells the low-level filesystem that we are done performing writes to it and
 * also allows filesystem to be frozen again.  Must be matched with
 * mnt_want_write() call above.
 */
void mnt_drop_write(struct vfsmount *mnt)
{
	__mnt_drop_write(mnt);
	sb_end_write(mnt->mnt_sb);
}
EXPORT_SYMBOL_GPL(mnt_drop_write);

void __mnt_drop_write_file(struct file *file)
{
	__mnt_drop_write(file->f_path.mnt);
}

void mnt_drop_write_file(struct file *file)
{
	mnt_drop_write(file->f_path.mnt);
}
EXPORT_SYMBOL(mnt_drop_write_file);

static int mnt_make_readonly(struct mount *mnt)
{
	int ret = 0;

	lock_mount_hash();
	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
	/*
	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
	 * should be visible before we do.
	 */
	smp_mb();

	/*
	 * With writers on hold, if this value is zero, then there are
	 * definitely no active writers (although held writers may subsequently
	 * increment the count, they'll have to wait, and decrement it after
	 * seeing MNT_READONLY).
	 *
	 * It is OK to have counter incremented on one CPU and decremented on
	 * another: the sum will add up correctly. The danger would be when we
	 * sum up each counter, if we read a counter before it is incremented,
	 * but then read another CPU's count which it has been subsequently
	 * decremented from -- we would see more decrements than we should.
	 * MNT_WRITE_HOLD protects against this scenario, because
	 * mnt_want_write first increments count, then smp_mb, then spins on
	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
	 * we're counting up here.
	 */
	if (mnt_get_writers(mnt) > 0)
		ret = -EBUSY;
	else
		mnt->mnt.mnt_flags |= MNT_READONLY;
	/*
	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
	 * that become unheld will see MNT_READONLY.
	 */
	smp_wmb();
	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
	unlock_mount_hash();
	return ret;
}

static void __mnt_unmake_readonly(struct mount *mnt)
{
	lock_mount_hash();
	mnt->mnt.mnt_flags &= ~MNT_READONLY;
	unlock_mount_hash();
}

int sb_prepare_remount_readonly(struct super_block *sb)
{
	struct mount *mnt;
	int err = 0;

	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
	if (atomic_long_read(&sb->s_remove_count))
		return -EBUSY;

	lock_mount_hash();
	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
			smp_mb();
			if (mnt_get_writers(mnt) > 0) {
				err = -EBUSY;
				break;
			}
		}
	}
	if (!err && atomic_long_read(&sb->s_remove_count))
		err = -EBUSY;

	if (!err) {
		sb->s_readonly_remount = 1;
		smp_wmb();
	}
	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
	}
	unlock_mount_hash();

	return err;
}

static void free_vfsmnt(struct mount *mnt)
{
	kfree_const(mnt->mnt_devname);
#ifdef CONFIG_SMP
	free_percpu(mnt->mnt_pcp);
#endif
	kmem_cache_free(mnt_cache, mnt);
}

static void delayed_free_vfsmnt(struct rcu_head *head)
{
	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
}

/* call under rcu_read_lock */
int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
{
	struct mount *mnt;
	if (read_seqretry(&mount_lock, seq))
		return 1;
	if (bastard == NULL)
		return 0;
	mnt = real_mount(bastard);
	mnt_add_count(mnt, 1);
	if (likely(!read_seqretry(&mount_lock, seq)))
		return 0;
	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
		mnt_add_count(mnt, -1);
		return 1;
	}
	return -1;
}

/* call under rcu_read_lock */
bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
{
	int res = __legitimize_mnt(bastard, seq);
	if (likely(!res))
		return true;
	if (unlikely(res < 0)) {
		rcu_read_unlock();
		mntput(bastard);
		rcu_read_lock();
	}
	return false;
}

/*
 * find the first mount at @dentry on vfsmount @mnt.
 * call under rcu_read_lock()
 */
struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
{
	struct hlist_head *head = m_hash(mnt, dentry);
	struct mount *p;

	hlist_for_each_entry_rcu(p, head, mnt_hash)
		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
			return p;
	return NULL;
}

/*
 * find the last mount at @dentry on vfsmount @mnt.
 * mount_lock must be held.
 */
struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
{
	struct mount *p, *res = NULL;
	p = __lookup_mnt(mnt, dentry);
	if (!p)
		goto out;
	if (!(p->mnt.mnt_flags & MNT_UMOUNT))
		res = p;
	hlist_for_each_entry_continue(p, mnt_hash) {
		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
			break;
		if (!(p->mnt.mnt_flags & MNT_UMOUNT))
			res = p;
	}
out:
	return res;
}

/*
 * lookup_mnt - Return the first child mount mounted at path
 *
 * "First" means first mounted chronologically.  If you create the
 * following mounts:
 *
 * mount /dev/sda1 /mnt
 * mount /dev/sda2 /mnt
 * mount /dev/sda3 /mnt
 *
 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 * return successively the root dentry and vfsmount of /dev/sda1, then
 * /dev/sda2, then /dev/sda3, then NULL.
 *
 * lookup_mnt takes a reference to the found vfsmount.
 */
struct vfsmount *lookup_mnt(struct path *path)
{
	struct mount *child_mnt;
	struct vfsmount *m;
	unsigned seq;

	rcu_read_lock();
	do {
		seq = read_seqbegin(&mount_lock);
		child_mnt = __lookup_mnt(path->mnt, path->dentry);
		m = child_mnt ? &child_mnt->mnt : NULL;
	} while (!legitimize_mnt(m, seq));
	rcu_read_unlock();
	return m;
}

/*
 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 *                         current mount namespace.
 *
 * The common case is dentries are not mountpoints at all and that
 * test is handled inline.  For the slow case when we are actually
 * dealing with a mountpoint of some kind, walk through all of the
 * mounts in the current mount namespace and test to see if the dentry
 * is a mountpoint.
 *
 * The mount_hashtable is not usable in the context because we
 * need to identify all mounts that may be in the current mount
 * namespace not just a mount that happens to have some specified
 * parent mount.
 */
bool __is_local_mountpoint(struct dentry *dentry)
{
	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
	struct mount *mnt;
	bool is_covered = false;

	if (!d_mountpoint(dentry))
		goto out;

	down_read(&namespace_sem);
	list_for_each_entry(mnt, &ns->list, mnt_list) {
		is_covered = (mnt->mnt_mountpoint == dentry);
		if (is_covered)
			break;
	}
	up_read(&namespace_sem);
out:
	return is_covered;
}

static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
{
	struct hlist_head *chain = mp_hash(dentry);
	struct mountpoint *mp;

	hlist_for_each_entry(mp, chain, m_hash) {
		if (mp->m_dentry == dentry) {
			/* might be worth a WARN_ON() */
			if (d_unlinked(dentry))
				return ERR_PTR(-ENOENT);
			mp->m_count++;
			return mp;
		}
	}
	return NULL;
}

static struct mountpoint *new_mountpoint(struct dentry *dentry)
{
	struct hlist_head *chain = mp_hash(dentry);
	struct mountpoint *mp;
	int ret;

	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
	if (!mp)
		return ERR_PTR(-ENOMEM);

	ret = d_set_mounted(dentry);
	if (ret) {
		kfree(mp);
		return ERR_PTR(ret);
	}

	mp->m_dentry = dentry;
	mp->m_count = 1;
	hlist_add_head(&mp->m_hash, chain);
	INIT_HLIST_HEAD(&mp->m_list);
	return mp;
}

static void put_mountpoint(struct mountpoint *mp)
{
	if (!--mp->m_count) {
		struct dentry *dentry = mp->m_dentry;
		BUG_ON(!hlist_empty(&mp->m_list));
		spin_lock(&dentry->d_lock);
		dentry->d_flags &= ~DCACHE_MOUNTED;
		spin_unlock(&dentry->d_lock);
		hlist_del(&mp->m_hash);
		kfree(mp);
	}
}

static inline int check_mnt(struct mount *mnt)
{
	return mnt->mnt_ns == current->nsproxy->mnt_ns;
}

/*
 * vfsmount lock must be held for write
 */
static void touch_mnt_namespace(struct mnt_namespace *ns)
{
	if (ns) {
		ns->event = ++event;
		wake_up_interruptible(&ns->poll);
	}
}

/*
 * vfsmount lock must be held for write
 */
static void __touch_mnt_namespace(struct mnt_namespace *ns)
{
	if (ns && ns->event != event) {
		ns->event = event;
		wake_up_interruptible(&ns->poll);
	}
}

/*
 * vfsmount lock must be held for write
 */
static void unhash_mnt(struct mount *mnt)
{
	mnt->mnt_parent = mnt;
	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
	list_del_init(&mnt->mnt_child);
	hlist_del_init_rcu(&mnt->mnt_hash);
	hlist_del_init(&mnt->mnt_mp_list);
	put_mountpoint(mnt->mnt_mp);
	mnt->mnt_mp = NULL;
}

/*
 * vfsmount lock must be held for write
 */
static void detach_mnt(struct mount *mnt, struct path *old_path)
{
	old_path->dentry = mnt->mnt_mountpoint;
	old_path->mnt = &mnt->mnt_parent->mnt;
	unhash_mnt(mnt);
}

/*
 * vfsmount lock must be held for write
 */
static void umount_mnt(struct mount *mnt)
{
	/* old mountpoint will be dropped when we can do that */
	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
	unhash_mnt(mnt);
}

/*
 * vfsmount lock must be held for write
 */
void mnt_set_mountpoint(struct mount *mnt,
			struct mountpoint *mp,
			struct mount *child_mnt)
{
	mp->m_count++;
	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
	child_mnt->mnt_parent = mnt;
	child_mnt->mnt_mp = mp;
	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
}

/*
 * vfsmount lock must be held for write
 */
static void attach_mnt(struct mount *mnt,
			struct mount *parent,
			struct mountpoint *mp)
{
	mnt_set_mountpoint(parent, mp, mnt);
	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
}

static void attach_shadowed(struct mount *mnt,
			struct mount *parent,
			struct mount *shadows)
{
	if (shadows) {
		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
		list_add(&mnt->mnt_child, &shadows->mnt_child);
	} else {
		hlist_add_head_rcu(&mnt->mnt_hash,
				m_hash(&parent->mnt, mnt->mnt_mountpoint));
		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
	}
}

/*
 * vfsmount lock must be held for write
 */
static void commit_tree(struct mount *mnt, struct mount *shadows)
{
	struct mount *parent = mnt->mnt_parent;
	struct mount *m;
	LIST_HEAD(head);
	struct mnt_namespace *n = parent->mnt_ns;

	BUG_ON(parent == mnt);

	list_add_tail(&head, &mnt->mnt_list);
	list_for_each_entry(m, &head, mnt_list)
		m->mnt_ns = n;

	list_splice(&head, n->list.prev);

	attach_shadowed(mnt, parent, shadows);
	touch_mnt_namespace(n);
}

static struct mount *next_mnt(struct mount *p, struct mount *root)
{
	struct list_head *next = p->mnt_mounts.next;
	if (next == &p->mnt_mounts) {
		while (1) {
			if (p == root)
				return NULL;
			next = p->mnt_child.next;
			if (next != &p->mnt_parent->mnt_mounts)
				break;
			p = p->mnt_parent;
		}
	}
	return list_entry(next, struct mount, mnt_child);
}

static struct mount *skip_mnt_tree(struct mount *p)
{
	struct list_head *prev = p->mnt_mounts.prev;
	while (prev != &p->mnt_mounts) {
		p = list_entry(prev, struct mount, mnt_child);
		prev = p->mnt_mounts.prev;
	}
	return p;
}

struct vfsmount *
vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
{
	struct mount *mnt;
	struct dentry *root;

	if (!type)
		return ERR_PTR(-ENODEV);

	mnt = alloc_vfsmnt(name);
	if (!mnt)
		return ERR_PTR(-ENOMEM);

	if (flags & MS_KERNMOUNT)
		mnt->mnt.mnt_flags = MNT_INTERNAL;

	root = mount_fs(type, flags, name, data);
	if (IS_ERR(root)) {
		mnt_free_id(mnt);
		free_vfsmnt(mnt);
		return ERR_CAST(root);
	}

	mnt->mnt.mnt_root = root;
	mnt->mnt.mnt_sb = root->d_sb;
	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
	mnt->mnt_parent = mnt;
	lock_mount_hash();
	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
	unlock_mount_hash();
	return &mnt->mnt;
}
EXPORT_SYMBOL_GPL(vfs_kern_mount);

static struct mount *clone_mnt(struct mount *old, struct dentry *root,
					int flag)
{
	struct super_block *sb = old->mnt.mnt_sb;
	struct mount *mnt;
	int err;

	mnt = alloc_vfsmnt(old->mnt_devname);
	if (!mnt)
		return ERR_PTR(-ENOMEM);

	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
		mnt->mnt_group_id = 0; /* not a peer of original */
	else
		mnt->mnt_group_id = old->mnt_group_id;

	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
		err = mnt_alloc_group_id(mnt);
		if (err)
			goto out_free;
	}

	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
	/* Don't allow unprivileged users to change mount flags */
	if (flag & CL_UNPRIVILEGED) {
		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;

		if (mnt->mnt.mnt_flags & MNT_READONLY)
			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;

		if (mnt->mnt.mnt_flags & MNT_NODEV)
			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;

		if (mnt->mnt.mnt_flags & MNT_NOSUID)
			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;

		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
	}

	/* Don't allow unprivileged users to reveal what is under a mount */
	if ((flag & CL_UNPRIVILEGED) &&
	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
		mnt->mnt.mnt_flags |= MNT_LOCKED;

	atomic_inc(&sb->s_active);
	mnt->mnt.mnt_sb = sb;
	mnt->mnt.mnt_root = dget(root);
	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
	mnt->mnt_parent = mnt;
	lock_mount_hash();
	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
	unlock_mount_hash();

	if ((flag & CL_SLAVE) ||
	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
		mnt->mnt_master = old;
		CLEAR_MNT_SHARED(mnt);
	} else if (!(flag & CL_PRIVATE)) {
		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
			list_add(&mnt->mnt_share, &old->mnt_share);
		if (IS_MNT_SLAVE(old))
			list_add(&mnt->mnt_slave, &old->mnt_slave);
		mnt->mnt_master = old->mnt_master;
	}
	if (flag & CL_MAKE_SHARED)
		set_mnt_shared(mnt);

	/* stick the duplicate mount on the same expiry list
	 * as the original if that was on one */
	if (flag & CL_EXPIRE) {
		if (!list_empty(&old->mnt_expire))
			list_add(&mnt->mnt_expire, &old->mnt_expire);
	}

	return mnt;

 out_free:
	mnt_free_id(mnt);
	free_vfsmnt(mnt);
	return ERR_PTR(err);
}

static void cleanup_mnt(struct mount *mnt)
{
	/*
	 * This probably indicates that somebody messed
	 * up a mnt_want/drop_write() pair.  If this
	 * happens, the filesystem was probably unable
	 * to make r/w->r/o transitions.
	 */
	/*
	 * The locking used to deal with mnt_count decrement provides barriers,
	 * so mnt_get_writers() below is safe.
	 */
	WARN_ON(mnt_get_writers(mnt));
	if (unlikely(mnt->mnt_pins.first))
		mnt_pin_kill(mnt);
	fsnotify_vfsmount_delete(&mnt->mnt);
	dput(mnt->mnt.mnt_root);
	deactivate_super(mnt->mnt.mnt_sb);
	mnt_free_id(mnt);
	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
}

static void __cleanup_mnt(struct rcu_head *head)
{
	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
}

static LLIST_HEAD(delayed_mntput_list);
static void delayed_mntput(struct work_struct *unused)
{
	struct llist_node *node = llist_del_all(&delayed_mntput_list);
	struct llist_node *next;

	for (; node; node = next) {
		next = llist_next(node);
		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
	}
}
static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);

static void mntput_no_expire(struct mount *mnt)
{
	rcu_read_lock();
	mnt_add_count(mnt, -1);
	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
		rcu_read_unlock();
		return;
	}
	lock_mount_hash();
	if (mnt_get_count(mnt)) {
		rcu_read_unlock();
		unlock_mount_hash();
		return;
	}
	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
		rcu_read_unlock();
		unlock_mount_hash();
		return;
	}
	mnt->mnt.mnt_flags |= MNT_DOOMED;
	rcu_read_unlock();

	list_del(&mnt->mnt_instance);

	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
		struct mount *p, *tmp;
		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
			umount_mnt(p);
		}
	}
	unlock_mount_hash();

	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
		struct task_struct *task = current;
		if (likely(!(task->flags & PF_KTHREAD))) {
			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
			if (!task_work_add(task, &mnt->mnt_rcu, true))
				return;
		}
		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
			schedule_delayed_work(&delayed_mntput_work, 1);
		return;
	}
	cleanup_mnt(mnt);
}

void mntput(struct vfsmount *mnt)
{
	if (mnt) {
		struct mount *m = real_mount(mnt);
		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
		if (unlikely(m->mnt_expiry_mark))
			m->mnt_expiry_mark = 0;
		mntput_no_expire(m);
	}
}
EXPORT_SYMBOL(mntput);

struct vfsmount *mntget(struct vfsmount *mnt)
{
	if (mnt)
		mnt_add_count(real_mount(mnt), 1);
	return mnt;
}
EXPORT_SYMBOL(mntget);

struct vfsmount *mnt_clone_internal(struct path *path)
{
	struct mount *p;
	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
	if (IS_ERR(p))
		return ERR_CAST(p);
	p->mnt.mnt_flags |= MNT_INTERNAL;
	return &p->mnt;
}

static inline void mangle(struct seq_file *m, const char *s)
{
	seq_escape(m, s, " \t\n\\");
}

/*
 * Simple .show_options callback for filesystems which don't want to
 * implement more complex mount option showing.
 *
 * See also save_mount_options().
 */
int generic_show_options(struct seq_file *m, struct dentry *root)
{
	const char *options;

	rcu_read_lock();
	options = rcu_dereference(root->d_sb->s_options);

	if (options != NULL && options[0]) {
		seq_putc(m, ',');
		mangle(m, options);
	}
	rcu_read_unlock();

	return 0;
}
EXPORT_SYMBOL(generic_show_options);

/*
 * If filesystem uses generic_show_options(), this function should be
 * called from the fill_super() callback.
 *
 * The .remount_fs callback usually needs to be handled in a special
 * way, to make sure, that previous options are not overwritten if the
 * remount fails.
 *
 * Also note, that if the filesystem's .remount_fs function doesn't
 * reset all options to their default value, but changes only newly
 * given options, then the displayed options will not reflect reality
 * any more.
 */
void save_mount_options(struct super_block *sb, char *options)
{
	BUG_ON(sb->s_options);
	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
}
EXPORT_SYMBOL(save_mount_options);

void replace_mount_options(struct super_block *sb, char *options)
{
	char *old = sb->s_options;
	rcu_assign_pointer(sb->s_options, options);
	if (old) {
		synchronize_rcu();
		kfree(old);
	}
}
EXPORT_SYMBOL(replace_mount_options);

#ifdef CONFIG_PROC_FS
/* iterator; we want it to have access to namespace_sem, thus here... */
static void *m_start(struct seq_file *m, loff_t *pos)
{
	struct proc_mounts *p = m->private;

	down_read(&namespace_sem);
	if (p->cached_event == p->ns->event) {
		void *v = p->cached_mount;
		if (*pos == p->cached_index)
			return v;
		if (*pos == p->cached_index + 1) {
			v = seq_list_next(v, &p->ns->list, &p->cached_index);
			return p->cached_mount = v;
		}
	}

	p->cached_event = p->ns->event;
	p->cached_mount = seq_list_start(&p->ns->list, *pos);
	p->cached_index = *pos;
	return p->cached_mount;
}

static void *m_next(struct seq_file *m, void *v, loff_t *pos)
{
	struct proc_mounts *p = m->private;

	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
	p->cached_index = *pos;
	return p->cached_mount;
}

static void m_stop(struct seq_file *m, void *v)
{
	up_read(&namespace_sem);
}

static int m_show(struct seq_file *m, void *v)
{
	struct proc_mounts *p = m->private;
	struct mount *r = list_entry(v, struct mount, mnt_list);
	return p->show(m, &r->mnt);
}

const struct seq_operations mounts_op = {
	.start	= m_start,
	.next	= m_next,
	.stop	= m_stop,
	.show	= m_show,
};
#endif  /* CONFIG_PROC_FS */

/**
 * may_umount_tree - check if a mount tree is busy
 * @mnt: root of mount tree
 *
 * This is called to check if a tree of mounts has any
 * open files, pwds, chroots or sub mounts that are
 * busy.
 */
int may_umount_tree(struct vfsmount *m)
{
	struct mount *mnt = real_mount(m);
	int actual_refs = 0;
	int minimum_refs = 0;
	struct mount *p;
	BUG_ON(!m);

	/* write lock needed for mnt_get_count */
	lock_mount_hash();
	for (p = mnt; p; p = next_mnt(p, mnt)) {
		actual_refs += mnt_get_count(p);
		minimum_refs += 2;
	}
	unlock_mount_hash();

	if (actual_refs > minimum_refs)
		return 0;

	return 1;
}

EXPORT_SYMBOL(may_umount_tree);

/**
 * may_umount - check if a mount point is busy
 * @mnt: root of mount
 *
 * This is called to check if a mount point has any
 * open files, pwds, chroots or sub mounts. If the
 * mount has sub mounts this will return busy
 * regardless of whether the sub mounts are busy.
 *
 * Doesn't take quota and stuff into account. IOW, in some cases it will
 * give false negatives. The main reason why it's here is that we need
 * a non-destructive way to look for easily umountable filesystems.
 */
int may_umount(struct vfsmount *mnt)
{
	int ret = 1;
	down_read(&namespace_sem);
	lock_mount_hash();
	if (propagate_mount_busy(real_mount(mnt), 2))
		ret = 0;
	unlock_mount_hash();
	up_read(&namespace_sem);
	return ret;
}

EXPORT_SYMBOL(may_umount);

static HLIST_HEAD(unmounted);	/* protected by namespace_sem */

static void namespace_unlock(void)
{
	struct hlist_head head;

	hlist_move_list(&unmounted, &head);

	up_write(&namespace_sem);

	if (likely(hlist_empty(&head)))
		return;

	synchronize_rcu();

	group_pin_kill(&head);
}

static inline void namespace_lock(void)
{
	down_write(&namespace_sem);
}

enum umount_tree_flags {
	UMOUNT_SYNC = 1,
	UMOUNT_PROPAGATE = 2,
	UMOUNT_CONNECTED = 4,
};

static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
{
	/* Leaving mounts connected is only valid for lazy umounts */
	if (how & UMOUNT_SYNC)
		return true;

	/* A mount without a parent has nothing to be connected to */
	if (!mnt_has_parent(mnt))
		return true;

	/* Because the reference counting rules change when mounts are
	 * unmounted and connected, umounted mounts may not be
	 * connected to mounted mounts.
	 */
	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
		return true;

	/* Has it been requested that the mount remain connected? */
	if (how & UMOUNT_CONNECTED)
		return false;

	/* Is the mount locked such that it needs to remain connected? */
	if (IS_MNT_LOCKED(mnt))
		return false;

	/* By default disconnect the mount */
	return true;
}

/*
 * mount_lock must be held
 * namespace_sem must be held for write
 */
static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
{
	LIST_HEAD(tmp_list);
	struct mount *p;

	if (how & UMOUNT_PROPAGATE)
		propagate_mount_unlock(mnt);

	/* Gather the mounts to umount */
	for (p = mnt; p; p = next_mnt(p, mnt)) {
		p->mnt.mnt_flags |= MNT_UMOUNT;
		list_move(&p->mnt_list, &tmp_list);
	}

	/* Hide the mounts from mnt_mounts */
	list_for_each_entry(p, &tmp_list, mnt_list) {
		list_del_init(&p->mnt_child);
	}

	/* Add propogated mounts to the tmp_list */
	if (how & UMOUNT_PROPAGATE)
		propagate_umount(&tmp_list);

	while (!list_empty(&tmp_list)) {
		bool disconnect;
		p = list_first_entry(&tmp_list, struct mount, mnt_list);
		list_del_init(&p->mnt_expire);
		list_del_init(&p->mnt_list);
		__touch_mnt_namespace(p->mnt_ns);
		p->mnt_ns = NULL;
		if (how & UMOUNT_SYNC)
			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;

		disconnect = disconnect_mount(p, how);

		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
				 disconnect ? &unmounted : NULL);
		if (mnt_has_parent(p)) {
			mnt_add_count(p->mnt_parent, -1);
			if (!disconnect) {
				/* Don't forget about p */
				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
			} else {
				umount_mnt(p);
			}
		}
		change_mnt_propagation(p, MS_PRIVATE);
	}
}

static void shrink_submounts(struct mount *mnt);

static int do_umount(struct mount *mnt, int flags)
{
	struct super_block *sb = mnt->mnt.mnt_sb;
	int retval;

	retval = security_sb_umount(&mnt->mnt, flags);
	if (retval)
		return retval;

	/*
	 * Allow userspace to request a mountpoint be expired rather than
	 * unmounting unconditionally. Unmount only happens if:
	 *  (1) the mark is already set (the mark is cleared by mntput())
	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
	 */
	if (flags & MNT_EXPIRE) {
		if (&mnt->mnt == current->fs->root.mnt ||
		    flags & (MNT_FORCE | MNT_DETACH))
			return -EINVAL;

		/*
		 * probably don't strictly need the lock here if we examined
		 * all race cases, but it's a slowpath.
		 */
		lock_mount_hash();
		if (mnt_get_count(mnt) != 2) {
			unlock_mount_hash();
			return -EBUSY;
		}
		unlock_mount_hash();

		if (!xchg(&mnt->mnt_expiry_mark, 1))
			return -EAGAIN;
	}

	/*
	 * If we may have to abort operations to get out of this
	 * mount, and they will themselves hold resources we must
	 * allow the fs to do things. In the Unix tradition of
	 * 'Gee thats tricky lets do it in userspace' the umount_begin
	 * might fail to complete on the first run through as other tasks
	 * must return, and the like. Thats for the mount program to worry
	 * about for the moment.
	 */

	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
		sb->s_op->umount_begin(sb);
	}

	/*
	 * No sense to grab the lock for this test, but test itself looks
	 * somewhat bogus. Suggestions for better replacement?
	 * Ho-hum... In principle, we might treat that as umount + switch
	 * to rootfs. GC would eventually take care of the old vfsmount.
	 * Actually it makes sense, especially if rootfs would contain a
	 * /reboot - static binary that would close all descriptors and
	 * call reboot(9). Then init(8) could umount root and exec /reboot.
	 */
	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
		/*
		 * Special case for "unmounting" root ...
		 * we just try to remount it readonly.
		 */
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		down_write(&sb->s_umount);
		if (!(sb->s_flags & MS_RDONLY))
			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
		up_write(&sb->s_umount);
		return retval;
	}

	namespace_lock();
	lock_mount_hash();
	event++;

	if (flags & MNT_DETACH) {
		if (!list_empty(&mnt->mnt_list))
			umount_tree(mnt, UMOUNT_PROPAGATE);
		retval = 0;
	} else {
		shrink_submounts(mnt);
		retval = -EBUSY;
		if (!propagate_mount_busy(mnt, 2)) {
			if (!list_empty(&mnt->mnt_list))
				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
			retval = 0;
		}
	}
	unlock_mount_hash();
	namespace_unlock();
	return retval;
}

/*
 * __detach_mounts - lazily unmount all mounts on the specified dentry
 *
 * During unlink, rmdir, and d_drop it is possible to loose the path
 * to an existing mountpoint, and wind up leaking the mount.
 * detach_mounts allows lazily unmounting those mounts instead of
 * leaking them.
 *
 * The caller may hold dentry->d_inode->i_mutex.
 */
void __detach_mounts(struct dentry *dentry)
{
	struct mountpoint *mp;
	struct mount *mnt;

	namespace_lock();
	mp = lookup_mountpoint(dentry);
	if (IS_ERR_OR_NULL(mp))
		goto out_unlock;

	lock_mount_hash();
	event++;
	while (!hlist_empty(&mp->m_list)) {
		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
			umount_mnt(mnt);
		}
		else umount_tree(mnt, UMOUNT_CONNECTED);
	}
	unlock_mount_hash();
	put_mountpoint(mp);
out_unlock:
	namespace_unlock();
}

/* 
 * Is the caller allowed to modify his namespace?
 */
static inline bool may_mount(void)
{
	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
}

/*
 * Now umount can handle mount points as well as block devices.
 * This is important for filesystems which use unnamed block devices.
 *
 * We now support a flag for forced unmount like the other 'big iron'
 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
 */

SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
{
	struct path path;
	struct mount *mnt;
	int retval;
	int lookup_flags = 0;

	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
		return -EINVAL;

	if (!may_mount())
		return -EPERM;

	if (!(flags & UMOUNT_NOFOLLOW))
		lookup_flags |= LOOKUP_FOLLOW;

	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
	if (retval)
		goto out;
	mnt = real_mount(path.mnt);
	retval = -EINVAL;
	if (path.dentry != path.mnt->mnt_root)
		goto dput_and_out;
	if (!check_mnt(mnt))
		goto dput_and_out;
	if (mnt->mnt.mnt_flags & MNT_LOCKED)
		goto dput_and_out;
	retval = -EPERM;
	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
		goto dput_and_out;

	retval = do_umount(mnt, flags);
dput_and_out:
	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
	dput(path.dentry);
	mntput_no_expire(mnt);
out:
	return retval;
}

#ifdef __ARCH_WANT_SYS_OLDUMOUNT

/*
 *	The 2.0 compatible umount. No flags.
 */
SYSCALL_DEFINE1(oldumount, char __user *, name)
{
	return sys_umount(name, 0);
}

#endif

static bool is_mnt_ns_file(struct dentry *dentry)
{
	/* Is this a proxy for a mount namespace? */
	return dentry->d_op == &ns_dentry_operations &&
	       dentry->d_fsdata == &mntns_operations;
}

struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
{
	return container_of(ns, struct mnt_namespace, ns);
}

static bool mnt_ns_loop(struct dentry *dentry)
{
	/* Could bind mounting the mount namespace inode cause a
	 * mount namespace loop?
	 */
	struct mnt_namespace *mnt_ns;
	if (!is_mnt_ns_file(dentry))
		return false;

	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
}

struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
					int flag)
{
	struct mount *res, *p, *q, *r, *parent;

	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
		return ERR_PTR(-EINVAL);

	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
		return ERR_PTR(-EINVAL);

	res = q = clone_mnt(mnt, dentry, flag);
	if (IS_ERR(q))
		return q;

	q->mnt_mountpoint = mnt->mnt_mountpoint;

	p = mnt;
	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
		struct mount *s;
		if (!is_subdir(r->mnt_mountpoint, dentry))
			continue;

		for (s = r; s; s = next_mnt(s, r)) {
			struct mount *t = NULL;
			if (!(flag & CL_COPY_UNBINDABLE) &&
			    IS_MNT_UNBINDABLE(s)) {
				s = skip_mnt_tree(s);
				continue;
			}
			if (!(flag & CL_COPY_MNT_NS_FILE) &&
			    is_mnt_ns_file(s->mnt.mnt_root)) {
				s = skip_mnt_tree(s);
				continue;
			}
			while (p != s->mnt_parent) {
				p = p->mnt_parent;
				q = q->mnt_parent;
			}
			p = s;
			parent = q;
			q = clone_mnt(p, p->mnt.mnt_root, flag);
			if (IS_ERR(q))
				goto out;
			lock_mount_hash();
			list_add_tail(&q->mnt_list, &res->mnt_list);
			mnt_set_mountpoint(parent, p->mnt_mp, q);
			if (!list_empty(&parent->mnt_mounts)) {
				t = list_last_entry(&parent->mnt_mounts,
					struct mount, mnt_child);
				if (t->mnt_mp != p->mnt_mp)
					t = NULL;
			}
			attach_shadowed(q, parent, t);
			unlock_mount_hash();
		}
	}
	return res;
out:
	if (res) {
		lock_mount_hash();
		umount_tree(res, UMOUNT_SYNC);
		unlock_mount_hash();
	}
	return q;
}

/* Caller should check returned pointer for errors */

struct vfsmount *collect_mounts(struct path *path)
{
	struct mount *tree;
	namespace_lock();
	if (!check_mnt(real_mount(path->mnt)))
		tree = ERR_PTR(-EINVAL);
	else
		tree = copy_tree(real_mount(path->mnt), path->dentry,
				 CL_COPY_ALL | CL_PRIVATE);
	namespace_unlock();
	if (IS_ERR(tree))
		return ERR_CAST(tree);
	return &tree->mnt;
}

void drop_collected_mounts(struct vfsmount *mnt)
{
	namespace_lock();
	lock_mount_hash();
	umount_tree(real_mount(mnt), UMOUNT_SYNC);
	unlock_mount_hash();
	namespace_unlock();
}

/**
 * clone_private_mount - create a private clone of a path
 *
 * This creates a new vfsmount, which will be the clone of @path.  The new will
 * not be attached anywhere in the namespace and will be private (i.e. changes
 * to the originating mount won't be propagated into this).
 *
 * Release with mntput().
 */
struct vfsmount *clone_private_mount(struct path *path)
{
	struct mount *old_mnt = real_mount(path->mnt);
	struct mount *new_mnt;

	if (IS_MNT_UNBINDABLE(old_mnt))
		return ERR_PTR(-EINVAL);

	down_read(&namespace_sem);
	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
	up_read(&namespace_sem);
	if (IS_ERR(new_mnt))
		return ERR_CAST(new_mnt);

	return &new_mnt->mnt;
}
EXPORT_SYMBOL_GPL(clone_private_mount);

int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
		   struct vfsmount *root)
{
	struct mount *mnt;
	int res = f(root, arg);
	if (res)
		return res;
	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
		res = f(&mnt->mnt, arg);
		if (res)
			return res;
	}
	return 0;
}

static void cleanup_group_ids(struct mount *mnt, struct mount *end)
{
	struct mount *p;

	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
		if (p->mnt_group_id && !IS_MNT_SHARED(p))
			mnt_release_group_id(p);
	}
}

static int invent_group_ids(struct mount *mnt, bool recurse)
{
	struct mount *p;

	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
			int err = mnt_alloc_group_id(p);
			if (err) {
				cleanup_group_ids(mnt, p);
				return err;
			}
		}
	}

	return 0;
}

/*
 *  @source_mnt : mount tree to be attached
 *  @nd         : place the mount tree @source_mnt is attached
 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
 *  		   store the parent mount and mountpoint dentry.
 *  		   (done when source_mnt is moved)
 *
 *  NOTE: in the table below explains the semantics when a source mount
 *  of a given type is attached to a destination mount of a given type.
 * ---------------------------------------------------------------------------
 * |         BIND MOUNT OPERATION                                            |
 * |**************************************************************************
 * | source-->| shared        |       private  |       slave    | unbindable |
 * | dest     |               |                |                |            |
 * |   |      |               |                |                |            |
 * |   v      |               |                |                |            |
 * |**************************************************************************
 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
 * |          |               |                |                |            |
 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
 * ***************************************************************************
 * A bind operation clones the source mount and mounts the clone on the
 * destination mount.
 *
 * (++)  the cloned mount is propagated to all the mounts in the propagation
 * 	 tree of the destination mount and the cloned mount is added to
 * 	 the peer group of the source mount.
 * (+)   the cloned mount is created under the destination mount and is marked
 *       as shared. The cloned mount is added to the peer group of the source
 *       mount.
 * (+++) the mount is propagated to all the mounts in the propagation tree
 *       of the destination mount and the cloned mount is made slave
 *       of the same master as that of the source mount. The cloned mount
 *       is marked as 'shared and slave'.
 * (*)   the cloned mount is made a slave of the same master as that of the
 * 	 source mount.
 *
 * ---------------------------------------------------------------------------
 * |         		MOVE MOUNT OPERATION                                 |
 * |**************************************************************************
 * | source-->| shared        |       private  |       slave    | unbindable |
 * | dest     |               |                |                |            |
 * |   |      |               |                |                |            |
 * |   v      |               |                |                |            |
 * |**************************************************************************
 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
 * |          |               |                |                |            |
 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
 * ***************************************************************************
 *
 * (+)  the mount is moved to the destination. And is then propagated to
 * 	all the mounts in the propagation tree of the destination mount.
 * (+*)  the mount is moved to the destination.
 * (+++)  the mount is moved to the destination and is then propagated to
 * 	all the mounts belonging to the destination mount's propagation tree.
 * 	the mount is marked as 'shared and slave'.
 * (*)	the mount continues to be a slave at the new location.
 *
 * if the source mount is a tree, the operations explained above is
 * applied to each mount in the tree.
 * Must be called without spinlocks held, since this function can sleep
 * in allocations.
 */
static int attach_recursive_mnt(struct mount *source_mnt,
			struct mount *dest_mnt,
			struct mountpoint *dest_mp,
			struct path *parent_path)
{
	HLIST_HEAD(tree_list);
	struct mount *child, *p;
	struct hlist_node *n;
	int err;

	if (IS_MNT_SHARED(dest_mnt)) {
		err = invent_group_ids(source_mnt, true);
		if (err)
			goto out;
		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
		lock_mount_hash();
		if (err)
			goto out_cleanup_ids;
		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
			set_mnt_shared(p);
	} else {
		lock_mount_hash();
	}
	if (parent_path) {
		detach_mnt(source_mnt, parent_path);
		attach_mnt(source_mnt, dest_mnt, dest_mp);
		touch_mnt_namespace(source_mnt->mnt_ns);
	} else {
		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
		commit_tree(source_mnt, NULL);
	}

	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
		struct mount *q;
		hlist_del_init(&child->mnt_hash);
		q = __lookup_mnt_last(&child->mnt_parent->mnt,
				      child->mnt_mountpoint);
		commit_tree(child, q);
	}
	unlock_mount_hash();

	return 0;

 out_cleanup_ids:
	while (!hlist_empty(&tree_list)) {
		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
		umount_tree(child, UMOUNT_SYNC);
	}
	unlock_mount_hash();
	cleanup_group_ids(source_mnt, NULL);
 out:
	return err;
}

static struct mountpoint *lock_mount(struct path *path)
{
	struct vfsmount *mnt;
	struct dentry *dentry = path->dentry;
retry:
	mutex_lock(&dentry->d_inode->i_mutex);
	if (unlikely(cant_mount(dentry))) {
		mutex_unlock(&dentry->d_inode->i_mutex);
		return ERR_PTR(-ENOENT);
	}
	namespace_lock();
	mnt = lookup_mnt(path);
	if (likely(!mnt)) {
		struct mountpoint *mp = lookup_mountpoint(dentry);
		if (!mp)
			mp = new_mountpoint(dentry);
		if (IS_ERR(mp)) {
			namespace_unlock();
			mutex_unlock(&dentry->d_inode->i_mutex);
			return mp;
		}
		return mp;
	}
	namespace_unlock();
	mutex_unlock(&path->dentry->d_inode->i_mutex);
	path_put(path);
	path->mnt = mnt;
	dentry = path->dentry = dget(mnt->mnt_root);
	goto retry;
}

static void unlock_mount(struct mountpoint *where)
{
	struct dentry *dentry = where->m_dentry;
	put_mountpoint(where);
	namespace_unlock();
	mutex_unlock(&dentry->d_inode->i_mutex);
}

static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
{
	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
		return -EINVAL;

	if (d_is_dir(mp->m_dentry) !=
	      d_is_dir(mnt->mnt.mnt_root))
		return -ENOTDIR;

	return attach_recursive_mnt(mnt, p, mp, NULL);
}

/*
 * Sanity check the flags to change_mnt_propagation.
 */

static int flags_to_propagation_type(int flags)
{
	int type = flags & ~(MS_REC | MS_SILENT);

	/* Fail if any non-propagation flags are set */
	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
		return 0;
	/* Only one propagation flag should be set */
	if (!is_power_of_2(type))
		return 0;
	return type;
}

/*
 * recursively change the type of the mountpoint.
 */
static int do_change_type(struct path *path, int flag)
{
	struct mount *m;
	struct mount *mnt = real_mount(path->mnt);
	int recurse = flag & MS_REC;
	int type;
	int err = 0;

	if (path->dentry != path->mnt->mnt_root)
		return -EINVAL;

	type = flags_to_propagation_type(flag);
	if (!type)
		return -EINVAL;

	namespace_lock();
	if (type == MS_SHARED) {
		err = invent_group_ids(mnt, recurse);
		if (err)
			goto out_unlock;
	}

	lock_mount_hash();
	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
		change_mnt_propagation(m, type);
	unlock_mount_hash();

 out_unlock:
	namespace_unlock();
	return err;
}

static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
{
	struct mount *child;
	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
		if (!is_subdir(child->mnt_mountpoint, dentry))
			continue;

		if (child->mnt.mnt_flags & MNT_LOCKED)
			return true;
	}
	return false;
}

/*
 * do loopback mount.
 */
static int do_loopback(struct path *path, const char *old_name,
				int recurse)
{
	struct path old_path;
	struct mount *mnt = NULL, *old, *parent;
	struct mountpoint *mp;
	int err;
	if (!old_name || !*old_name)
		return -EINVAL;
	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
	if (err)
		return err;

	err = -EINVAL;
	if (mnt_ns_loop(old_path.dentry))
		goto out; 

	mp = lock_mount(path);
	err = PTR_ERR(mp);
	if (IS_ERR(mp))
		goto out;

	old = real_mount(old_path.mnt);
	parent = real_mount(path->mnt);

	err = -EINVAL;
	if (IS_MNT_UNBINDABLE(old))
		goto out2;

	if (!check_mnt(parent))
		goto out2;

	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
		goto out2;

	if (!recurse && has_locked_children(old, old_path.dentry))
		goto out2;

	if (recurse)
		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
	else
		mnt = clone_mnt(old, old_path.dentry, 0);

	if (IS_ERR(mnt)) {
		err = PTR_ERR(mnt);
		goto out2;
	}

	mnt->mnt.mnt_flags &= ~MNT_LOCKED;

	err = graft_tree(mnt, parent, mp);
	if (err) {
		lock_mount_hash();
		umount_tree(mnt, UMOUNT_SYNC);
		unlock_mount_hash();
	}
out2:
	unlock_mount(mp);
out:
	path_put(&old_path);
	return err;
}

static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
{
	int error = 0;
	int readonly_request = 0;

	if (ms_flags & MS_RDONLY)
		readonly_request = 1;
	if (readonly_request == __mnt_is_readonly(mnt))
		return 0;

	if (readonly_request)
		error = mnt_make_readonly(real_mount(mnt));
	else
		__mnt_unmake_readonly(real_mount(mnt));
	return error;
}

/*
 * change filesystem flags. dir should be a physical root of filesystem.
 * If you've mounted a non-root directory somewhere and want to do remount
 * on it - tough luck.
 */
static int do_remount(struct path *path, int flags, int mnt_flags,
		      void *data)
{
	int err;
	struct super_block *sb = path->mnt->mnt_sb;
	struct mount *mnt = real_mount(path->mnt);

	if (!check_mnt(mnt))
		return -EINVAL;

	if (path->dentry != path->mnt->mnt_root)
		return -EINVAL;

	/* Don't allow changing of locked mnt flags.
	 *
	 * No locks need to be held here while testing the various
	 * MNT_LOCK flags because those flags can never be cleared
	 * once they are set.
	 */
	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
	    !(mnt_flags & MNT_READONLY)) {
		return -EPERM;
	}
	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
	    !(mnt_flags & MNT_NODEV)) {
		/* Was the nodev implicitly added in mount? */
		if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
		    !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
			mnt_flags |= MNT_NODEV;
		} else {
			return -EPERM;
		}
	}
	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
	    !(mnt_flags & MNT_NOSUID)) {
		return -EPERM;
	}
	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
	    !(mnt_flags & MNT_NOEXEC)) {
		return -EPERM;
	}
	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
		return -EPERM;
	}

	err = security_sb_remount(sb, data);
	if (err)
		return err;

	down_write(&sb->s_umount);
	if (flags & MS_BIND)
		err = change_mount_flags(path->mnt, flags);
	else if (!capable(CAP_SYS_ADMIN))
		err = -EPERM;
	else
		err = do_remount_sb(sb, flags, data, 0);
	if (!err) {
		lock_mount_hash();
		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
		mnt->mnt.mnt_flags = mnt_flags;
		touch_mnt_namespace(mnt->mnt_ns);
		unlock_mount_hash();
	}
	up_write(&sb->s_umount);
	return err;
}

static inline int tree_contains_unbindable(struct mount *mnt)
{
	struct mount *p;
	for (p = mnt; p; p = next_mnt(p, mnt)) {
		if (IS_MNT_UNBINDABLE(p))
			return 1;
	}
	return 0;
}

static int do_move_mount(struct path *path, const char *old_name)
{
	struct path old_path, parent_path;
	struct mount *p;
	struct mount *old;
	struct mountpoint *mp;
	int err;
	if (!old_name || !*old_name)
		return -EINVAL;
	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
	if (err)
		return err;

	mp = lock_mount(path);
	err = PTR_ERR(mp);
	if (IS_ERR(mp))
		goto out;

	old = real_mount(old_path.mnt);
	p = real_mount(path->mnt);

	err = -EINVAL;
	if (!check_mnt(p) || !check_mnt(old))
		goto out1;

	if (old->mnt.mnt_flags & MNT_LOCKED)
		goto out1;

	err = -EINVAL;
	if (old_path.dentry != old_path.mnt->mnt_root)
		goto out1;

	if (!mnt_has_parent(old))
		goto out1;

	if (d_is_dir(path->dentry) !=
	      d_is_dir(old_path.dentry))
		goto out1;
	/*
	 * Don't move a mount residing in a shared parent.
	 */
	if (IS_MNT_SHARED(old->mnt_parent))
		goto out1;
	/*
	 * Don't move a mount tree containing unbindable mounts to a destination
	 * mount which is shared.
	 */
	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
		goto out1;
	err = -ELOOP;
	for (; mnt_has_parent(p); p = p->mnt_parent)
		if (p == old)
			goto out1;

	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
	if (err)
		goto out1;

	/* if the mount is moved, it should no longer be expire
	 * automatically */
	list_del_init(&old->mnt_expire);
out1:
	unlock_mount(mp);
out:
	if (!err)
		path_put(&parent_path);
	path_put(&old_path);
	return err;
}

static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
{
	int err;
	const char *subtype = strchr(fstype, '.');
	if (subtype) {
		subtype++;
		err = -EINVAL;
		if (!subtype[0])
			goto err;
	} else
		subtype = "";

	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
	err = -ENOMEM;
	if (!mnt->mnt_sb->s_subtype)
		goto err;
	return mnt;

 err:
	mntput(mnt);
	return ERR_PTR(err);
}

/*
 * add a mount into a namespace's mount tree
 */
static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
{
	struct mountpoint *mp;
	struct mount *parent;
	int err;

	mnt_flags &= ~MNT_INTERNAL_FLAGS;

	mp = lock_mount(path);
	if (IS_ERR(mp))
		return PTR_ERR(mp);

	parent = real_mount(path->mnt);
	err = -EINVAL;
	if (unlikely(!check_mnt(parent))) {
		/* that's acceptable only for automounts done in private ns */
		if (!(mnt_flags & MNT_SHRINKABLE))
			goto unlock;
		/* ... and for those we'd better have mountpoint still alive */
		if (!parent->mnt_ns)
			goto unlock;
	}

	/* Refuse the same filesystem on the same mount point */
	err = -EBUSY;
	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
	    path->mnt->mnt_root == path->dentry)
		goto unlock;

	err = -EINVAL;
	if (d_is_symlink(newmnt->mnt.mnt_root))
		goto unlock;

	newmnt->mnt.mnt_flags = mnt_flags;
	err = graft_tree(newmnt, parent, mp);

unlock:
	unlock_mount(mp);
	return err;
}

static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);

/*
 * create a new mount for userspace and request it to be added into the
 * namespace's tree
 */
static int do_new_mount(struct path *path, const char *fstype, int flags,
			int mnt_flags, const char *name, void *data)
{
	struct file_system_type *type;
	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
	struct vfsmount *mnt;
	int err;

	if (!fstype)
		return -EINVAL;

	type = get_fs_type(fstype);
	if (!type)
		return -ENODEV;

	if (user_ns != &init_user_ns) {
		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
			put_filesystem(type);
			return -EPERM;
		}
		/* Only in special cases allow devices from mounts
		 * created outside the initial user namespace.
		 */
		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
			flags |= MS_NODEV;
			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
		}
		if (type->fs_flags & FS_USERNS_VISIBLE) {
			if (!fs_fully_visible(type, &mnt_flags)) {
				put_filesystem(type);
				return -EPERM;
			}
		}
	}

	mnt = vfs_kern_mount(type, flags, name, data);
	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
	    !mnt->mnt_sb->s_subtype)
		mnt = fs_set_subtype(mnt, fstype);

	put_filesystem(type);
	if (IS_ERR(mnt))
		return PTR_ERR(mnt);

	err = do_add_mount(real_mount(mnt), path, mnt_flags);
	if (err)
		mntput(mnt);
	return err;
}

int finish_automount(struct vfsmount *m, struct path *path)
{
	struct mount *mnt = real_mount(m);
	int err;
	/* The new mount record should have at least 2 refs to prevent it being
	 * expired before we get a chance to add it
	 */
	BUG_ON(mnt_get_count(mnt) < 2);

	if (m->mnt_sb == path->mnt->mnt_sb &&
	    m->mnt_root == path->dentry) {
		err = -ELOOP;
		goto fail;
	}

	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
	if (!err)
		return 0;
fail:
	/* remove m from any expiration list it may be on */
	if (!list_empty(&mnt->mnt_expire)) {
		namespace_lock();
		list_del_init(&mnt->mnt_expire);
		namespace_unlock();
	}
	mntput(m);
	mntput(m);
	return err;
}

/**
 * mnt_set_expiry - Put a mount on an expiration list
 * @mnt: The mount to list.
 * @expiry_list: The list to add the mount to.
 */
void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
{
	namespace_lock();

	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);

	namespace_unlock();
}
EXPORT_SYMBOL(mnt_set_expiry);

/*
 * process a list of expirable mountpoints with the intent of discarding any
 * mountpoints that aren't in use and haven't been touched since last we came
 * here
 */
void mark_mounts_for_expiry(struct list_head *mounts)
{
	struct mount *mnt, *next;
	LIST_HEAD(graveyard);

	if (list_empty(mounts))
		return;

	namespace_lock();
	lock_mount_hash();

	/* extract from the expiration list every vfsmount that matches the
	 * following criteria:
	 * - only referenced by its parent vfsmount
	 * - still marked for expiry (marked on the last call here; marks are
	 *   cleared by mntput())
	 */
	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
			propagate_mount_busy(mnt, 1))
			continue;
		list_move(&mnt->mnt_expire, &graveyard);
	}
	while (!list_empty(&graveyard)) {
		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
		touch_mnt_namespace(mnt->mnt_ns);
		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
	}
	unlock_mount_hash();
	namespace_unlock();
}

EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);

/*
 * Ripoff of 'select_parent()'
 *
 * search the list of submounts for a given mountpoint, and move any
 * shrinkable submounts to the 'graveyard' list.
 */
static int select_submounts(struct mount *parent, struct list_head *graveyard)
{
	struct mount *this_parent = parent;
	struct list_head *next;
	int found = 0;

repeat:
	next = this_parent->mnt_mounts.next;
resume:
	while (next != &this_parent->mnt_mounts) {
		struct list_head *tmp = next;
		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);

		next = tmp->next;
		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
			continue;
		/*
		 * Descend a level if the d_mounts list is non-empty.
		 */
		if (!list_empty(&mnt->mnt_mounts)) {
			this_parent = mnt;
			goto repeat;
		}

		if (!propagate_mount_busy(mnt, 1)) {
			list_move_tail(&mnt->mnt_expire, graveyard);
			found++;
		}
	}
	/*
	 * All done at this level ... ascend and resume the search
	 */
	if (this_parent != parent) {
		next = this_parent->mnt_child.next;
		this_parent = this_parent->mnt_parent;
		goto resume;
	}
	return found;
}

/*
 * process a list of expirable mountpoints with the intent of discarding any
 * submounts of a specific parent mountpoint
 *
 * mount_lock must be held for write
 */
static void shrink_submounts(struct mount *mnt)
{
	LIST_HEAD(graveyard);
	struct mount *m;

	/* extract submounts of 'mountpoint' from the expiration list */
	while (select_submounts(mnt, &graveyard)) {
		while (!list_empty(&graveyard)) {
			m = list_first_entry(&graveyard, struct mount,
						mnt_expire);
			touch_mnt_namespace(m->mnt_ns);
			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
		}
	}
}

/*
 * Some copy_from_user() implementations do not return the exact number of
 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
 * Note that this function differs from copy_from_user() in that it will oops
 * on bad values of `to', rather than returning a short copy.
 */
static long exact_copy_from_user(void *to, const void __user * from,
				 unsigned long n)
{
	char *t = to;
	const char __user *f = from;
	char c;

	if (!access_ok(VERIFY_READ, from, n))
		return n;

	while (n) {
		if (__get_user(c, f)) {
			memset(t, 0, n);
			break;
		}
		*t++ = c;
		f++;
		n--;
	}
	return n;
}

int copy_mount_options(const void __user * data, unsigned long *where)
{
	int i;
	unsigned long page;
	unsigned long size;

	*where = 0;
	if (!data)
		return 0;

	if (!(page = __get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	/* We only care that *some* data at the address the user
	 * gave us is valid.  Just in case, we'll zero
	 * the remainder of the page.
	 */
	/* copy_from_user cannot cross TASK_SIZE ! */
	size = TASK_SIZE - (unsigned long)data;
	if (size > PAGE_SIZE)
		size = PAGE_SIZE;

	i = size - exact_copy_from_user((void *)page, data, size);
	if (!i) {
		free_page(page);
		return -EFAULT;
	}
	if (i != PAGE_SIZE)
		memset((char *)page + i, 0, PAGE_SIZE - i);
	*where = page;
	return 0;
}

char *copy_mount_string(const void __user *data)
{
	return data ? strndup_user(data, PAGE_SIZE) : NULL;
}

/*
 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
 *
 * data is a (void *) that can point to any structure up to
 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
 * information (or be NULL).
 *
 * Pre-0.97 versions of mount() didn't have a flags word.
 * When the flags word was introduced its top half was required
 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
 * Therefore, if this magic number is present, it carries no information
 * and must be discarded.
 */
long do_mount(const char *dev_name, const char __user *dir_name,
		const char *type_page, unsigned long flags, void *data_page)
{
	struct path path;
	int retval = 0;
	int mnt_flags = 0;

	/* Discard magic */
	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
		flags &= ~MS_MGC_MSK;

	/* Basic sanity checks */
	if (data_page)
		((char *)data_page)[PAGE_SIZE - 1] = 0;

	/* ... and get the mountpoint */
	retval = user_path(dir_name, &path);
	if (retval)
		return retval;

	retval = security_sb_mount(dev_name, &path,
				   type_page, flags, data_page);
	if (!retval && !may_mount())
		retval = -EPERM;
	if (retval)
		goto dput_out;

	/* Default to relatime unless overriden */
	if (!(flags & MS_NOATIME))
		mnt_flags |= MNT_RELATIME;

	/* Separate the per-mountpoint flags */
	if (flags & MS_NOSUID)
		mnt_flags |= MNT_NOSUID;
	if (flags & MS_NODEV)
		mnt_flags |= MNT_NODEV;
	if (flags & MS_NOEXEC)
		mnt_flags |= MNT_NOEXEC;
	if (flags & MS_NOATIME)
		mnt_flags |= MNT_NOATIME;
	if (flags & MS_NODIRATIME)
		mnt_flags |= MNT_NODIRATIME;
	if (flags & MS_STRICTATIME)
		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
	if (flags & MS_RDONLY)
		mnt_flags |= MNT_READONLY;

	/* The default atime for remount is preservation */
	if ((flags & MS_REMOUNT) &&
	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
		       MS_STRICTATIME)) == 0)) {
		mnt_flags &= ~MNT_ATIME_MASK;
		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
	}

	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
		   MS_STRICTATIME);

	if (flags & MS_REMOUNT)
		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
				    data_page);
	else if (flags & MS_BIND)
		retval = do_loopback(&path, dev_name, flags & MS_REC);
	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
		retval = do_change_type(&path, flags);
	else if (flags & MS_MOVE)
		retval = do_move_mount(&path, dev_name);
	else
		retval = do_new_mount(&path, type_page, flags, mnt_flags,
				      dev_name, data_page);
dput_out:
	path_put(&path);
	return retval;
}

static void free_mnt_ns(struct mnt_namespace *ns)
{
	ns_free_inum(&ns->ns);
	put_user_ns(ns->user_ns);
	kfree(ns);
}

/*
 * Assign a sequence number so we can detect when we attempt to bind
 * mount a reference to an older mount namespace into the current
 * mount namespace, preventing reference counting loops.  A 64bit
 * number incrementing at 10Ghz will take 12,427 years to wrap which
 * is effectively never, so we can ignore the possibility.
 */
static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);

static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
{
	struct mnt_namespace *new_ns;
	int ret;

	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
	if (!new_ns)
		return ERR_PTR(-ENOMEM);
	ret = ns_alloc_inum(&new_ns->ns);
	if (ret) {
		kfree(new_ns);
		return ERR_PTR(ret);
	}
	new_ns->ns.ops = &mntns_operations;
	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
	atomic_set(&new_ns->count, 1);
	new_ns->root = NULL;
	INIT_LIST_HEAD(&new_ns->list);
	init_waitqueue_head(&new_ns->poll);
	new_ns->event = 0;
	new_ns->user_ns = get_user_ns(user_ns);
	return new_ns;
}

struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
		struct user_namespace *user_ns, struct fs_struct *new_fs)
{
	struct mnt_namespace *new_ns;
	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
	struct mount *p, *q;
	struct mount *old;
	struct mount *new;
	int copy_flags;

	BUG_ON(!ns);

	if (likely(!(flags & CLONE_NEWNS))) {
		get_mnt_ns(ns);
		return ns;
	}

	old = ns->root;

	new_ns = alloc_mnt_ns(user_ns);
	if (IS_ERR(new_ns))
		return new_ns;

	namespace_lock();
	/* First pass: copy the tree topology */
	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
	if (user_ns != ns->user_ns)
		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
	if (IS_ERR(new)) {
		namespace_unlock();
		free_mnt_ns(new_ns);
		return ERR_CAST(new);
	}
	new_ns->root = new;
	list_add_tail(&new_ns->list, &new->mnt_list);

	/*
	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
	 * as belonging to new namespace.  We have already acquired a private
	 * fs_struct, so tsk->fs->lock is not needed.
	 */
	p = old;
	q = new;
	while (p) {
		q->mnt_ns = new_ns;
		if (new_fs) {
			if (&p->mnt == new_fs->root.mnt) {
				new_fs->root.mnt = mntget(&q->mnt);
				rootmnt = &p->mnt;
			}
			if (&p->mnt == new_fs->pwd.mnt) {
				new_fs->pwd.mnt = mntget(&q->mnt);
				pwdmnt = &p->mnt;
			}
		}
		p = next_mnt(p, old);
		q = next_mnt(q, new);
		if (!q)
			break;
		while (p->mnt.mnt_root != q->mnt.mnt_root)
			p = next_mnt(p, old);
	}
	namespace_unlock();

	if (rootmnt)
		mntput(rootmnt);
	if (pwdmnt)
		mntput(pwdmnt);

	return new_ns;
}

/**
 * create_mnt_ns - creates a private namespace and adds a root filesystem
 * @mnt: pointer to the new root filesystem mountpoint
 */
static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
{
	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
	if (!IS_ERR(new_ns)) {
		struct mount *mnt = real_mount(m);
		mnt->mnt_ns = new_ns;
		new_ns->root = mnt;
		list_add(&mnt->mnt_list, &new_ns->list);
	} else {
		mntput(m);
	}
	return new_ns;
}

struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
{
	struct mnt_namespace *ns;
	struct super_block *s;
	struct path path;
	int err;

	ns = create_mnt_ns(mnt);
	if (IS_ERR(ns))
		return ERR_CAST(ns);

	err = vfs_path_lookup(mnt->mnt_root, mnt,
			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);

	put_mnt_ns(ns);

	if (err)
		return ERR_PTR(err);

	/* trade a vfsmount reference for active sb one */
	s = path.mnt->mnt_sb;
	atomic_inc(&s->s_active);
	mntput(path.mnt);
	/* lock the sucker */
	down_write(&s->s_umount);
	/* ... and return the root of (sub)tree on it */
	return path.dentry;
}
EXPORT_SYMBOL(mount_subtree);

SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
		char __user *, type, unsigned long, flags, void __user *, data)
{
	int ret;
	char *kernel_type;
	char *kernel_dev;
	unsigned long data_page;

	kernel_type = copy_mount_string(type);
	ret = PTR_ERR(kernel_type);
	if (IS_ERR(kernel_type))
		goto out_type;

	kernel_dev = copy_mount_string(dev_name);
	ret = PTR_ERR(kernel_dev);
	if (IS_ERR(kernel_dev))
		goto out_dev;

	ret = copy_mount_options(data, &data_page);
	if (ret < 0)
		goto out_data;

	ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
		(void *) data_page);

	free_page(data_page);
out_data:
	kfree(kernel_dev);
out_dev:
	kfree(kernel_type);
out_type:
	return ret;
}

/*
 * Return true if path is reachable from root
 *
 * namespace_sem or mount_lock is held
 */
bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
			 const struct path *root)
{
	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
		dentry = mnt->mnt_mountpoint;
		mnt = mnt->mnt_parent;
	}
	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
}

int path_is_under(struct path *path1, struct path *path2)
{
	int res;
	read_seqlock_excl(&mount_lock);
	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
	read_sequnlock_excl(&mount_lock);
	return res;
}
EXPORT_SYMBOL(path_is_under);

/*
 * pivot_root Semantics:
 * Moves the root file system of the current process to the directory put_old,
 * makes new_root as the new root file system of the current process, and sets
 * root/cwd of all processes which had them on the current root to new_root.
 *
 * Restrictions:
 * The new_root and put_old must be directories, and  must not be on the
 * same file  system as the current process root. The put_old  must  be
 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
 * pointed to by put_old must yield the same directory as new_root. No other
 * file system may be mounted on put_old. After all, new_root is a mountpoint.
 *
 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
 * in this situation.
 *
 * Notes:
 *  - we don't move root/cwd if they are not at the root (reason: if something
 *    cared enough to change them, it's probably wrong to force them elsewhere)
 *  - it's okay to pick a root that isn't the root of a file system, e.g.
 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
 *    first.
 */
SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
		const char __user *, put_old)
{
	struct path new, old, parent_path, root_parent, root;
	struct mount *new_mnt, *root_mnt, *old_mnt;
	struct mountpoint *old_mp, *root_mp;
	int error;

	if (!may_mount())
		return -EPERM;

	error = user_path_dir(new_root, &new);
	if (error)
		goto out0;

	error = user_path_dir(put_old, &old);
	if (error)
		goto out1;

	error = security_sb_pivotroot(&old, &new);
	if (error)
		goto out2;

	get_fs_root(current->fs, &root);
	old_mp = lock_mount(&old);
	error = PTR_ERR(old_mp);
	if (IS_ERR(old_mp))
		goto out3;

	error = -EINVAL;
	new_mnt = real_mount(new.mnt);
	root_mnt = real_mount(root.mnt);
	old_mnt = real_mount(old.mnt);
	if (IS_MNT_SHARED(old_mnt) ||
		IS_MNT_SHARED(new_mnt->mnt_parent) ||
		IS_MNT_SHARED(root_mnt->mnt_parent))
		goto out4;
	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
		goto out4;
	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
		goto out4;
	error = -ENOENT;
	if (d_unlinked(new.dentry))
		goto out4;
	error = -EBUSY;
	if (new_mnt == root_mnt || old_mnt == root_mnt)
		goto out4; /* loop, on the same file system  */
	error = -EINVAL;
	if (root.mnt->mnt_root != root.dentry)
		goto out4; /* not a mountpoint */
	if (!mnt_has_parent(root_mnt))
		goto out4; /* not attached */
	root_mp = root_mnt->mnt_mp;
	if (new.mnt->mnt_root != new.dentry)
		goto out4; /* not a mountpoint */
	if (!mnt_has_parent(new_mnt))
		goto out4; /* not attached */
	/* make sure we can reach put_old from new_root */
	if (!is_path_reachable(old_mnt, old.dentry, &new))
		goto out4;
	/* make certain new is below the root */
	if (!is_path_reachable(new_mnt, new.dentry, &root))
		goto out4;
	root_mp->m_count++; /* pin it so it won't go away */
	lock_mount_hash();
	detach_mnt(new_mnt, &parent_path);
	detach_mnt(root_mnt, &root_parent);
	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
	}
	/* mount old root on put_old */
	attach_mnt(root_mnt, old_mnt, old_mp);
	/* mount new_root on / */
	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
	touch_mnt_namespace(current->nsproxy->mnt_ns);
	/* A moved mount should not expire automatically */
	list_del_init(&new_mnt->mnt_expire);
	unlock_mount_hash();
	chroot_fs_refs(&root, &new);
	put_mountpoint(root_mp);
	error = 0;
out4:
	unlock_mount(old_mp);
	if (!error) {
		path_put(&root_parent);
		path_put(&parent_path);
	}
out3:
	path_put(&root);
out2:
	path_put(&old);
out1:
	path_put(&new);
out0:
	return error;
}

static void __init init_mount_tree(void)
{
	struct vfsmount *mnt;
	struct mnt_namespace *ns;
	struct path root;
	struct file_system_type *type;

	type = get_fs_type("rootfs");
	if (!type)
		panic("Can't find rootfs type");
	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
	put_filesystem(type);
	if (IS_ERR(mnt))
		panic("Can't create rootfs");

	ns = create_mnt_ns(mnt);
	if (IS_ERR(ns))
		panic("Can't allocate initial namespace");

	init_task.nsproxy->mnt_ns = ns;
	get_mnt_ns(ns);

	root.mnt = mnt;
	root.dentry = mnt->mnt_root;
	mnt->mnt_flags |= MNT_LOCKED;

	set_fs_pwd(current->fs, &root);
	set_fs_root(current->fs, &root);
}

void __init mnt_init(void)
{
	unsigned u;
	int err;

	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);

	mount_hashtable = alloc_large_system_hash("Mount-cache",
				sizeof(struct hlist_head),
				mhash_entries, 19,
				0,
				&m_hash_shift, &m_hash_mask, 0, 0);
	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
				sizeof(struct hlist_head),
				mphash_entries, 19,
				0,
				&mp_hash_shift, &mp_hash_mask, 0, 0);

	if (!mount_hashtable || !mountpoint_hashtable)
		panic("Failed to allocate mount hash table\n");

	for (u = 0; u <= m_hash_mask; u++)
		INIT_HLIST_HEAD(&mount_hashtable[u]);
	for (u = 0; u <= mp_hash_mask; u++)
		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);

	kernfs_init();

	err = sysfs_init();
	if (err)
		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
			__func__, err);
	fs_kobj = kobject_create_and_add("fs", NULL);
	if (!fs_kobj)
		printk(KERN_WARNING "%s: kobj create error\n", __func__);
	init_rootfs();
	init_mount_tree();
}

void put_mnt_ns(struct mnt_namespace *ns)
{
	if (!atomic_dec_and_test(&ns->count))
		return;
	drop_collected_mounts(&ns->root->mnt);
	free_mnt_ns(ns);
}

struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
{
	struct vfsmount *mnt;
	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
	if (!IS_ERR(mnt)) {
		/*
		 * it is a longterm mount, don't release mnt until
		 * we unmount before file sys is unregistered
		*/
		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
	}
	return mnt;
}
EXPORT_SYMBOL_GPL(kern_mount_data);

void kern_unmount(struct vfsmount *mnt)
{
	/* release long term mount so mount point can be released */
	if (!IS_ERR_OR_NULL(mnt)) {
		real_mount(mnt)->mnt_ns = NULL;
		synchronize_rcu();	/* yecchhh... */
		mntput(mnt);
	}
}
EXPORT_SYMBOL(kern_unmount);

bool our_mnt(struct vfsmount *mnt)
{
	return check_mnt(real_mount(mnt));
}

bool current_chrooted(void)
{
	/* Does the current process have a non-standard root */
	struct path ns_root;
	struct path fs_root;
	bool chrooted;

	/* Find the namespace root */
	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
	ns_root.dentry = ns_root.mnt->mnt_root;
	path_get(&ns_root);
	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
		;

	get_fs_root(current->fs, &fs_root);

	chrooted = !path_equal(&fs_root, &ns_root);

	path_put(&fs_root);
	path_put(&ns_root);

	return chrooted;
}

static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
{
	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
	int new_flags = *new_mnt_flags;
	struct mount *mnt;
	bool visible = false;

	if (unlikely(!ns))
		return false;

	down_read(&namespace_sem);
	list_for_each_entry(mnt, &ns->list, mnt_list) {
		struct mount *child;
		int mnt_flags;

		if (mnt->mnt.mnt_sb->s_type != type)
			continue;

		/* This mount is not fully visible if it's root directory
		 * is not the root directory of the filesystem.
		 */
		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
			continue;

		/* Read the mount flags and filter out flags that
		 * may safely be ignored.
		 */
		mnt_flags = mnt->mnt.mnt_flags;
		if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
			mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);

		/* Don't miss readonly hidden in the superblock flags */
		if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
			mnt_flags |= MNT_LOCK_READONLY;

		/* Verify the mount flags are equal to or more permissive
		 * than the proposed new mount.
		 */
		if ((mnt_flags & MNT_LOCK_READONLY) &&
		    !(new_flags & MNT_READONLY))
			continue;
		if ((mnt_flags & MNT_LOCK_NODEV) &&
		    !(new_flags & MNT_NODEV))
			continue;
		if ((mnt_flags & MNT_LOCK_NOSUID) &&
		    !(new_flags & MNT_NOSUID))
			continue;
		if ((mnt_flags & MNT_LOCK_NOEXEC) &&
		    !(new_flags & MNT_NOEXEC))
			continue;
		if ((mnt_flags & MNT_LOCK_ATIME) &&
		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
			continue;

		/* This mount is not fully visible if there are any
		 * locked child mounts that cover anything except for
		 * empty directories.
		 */
		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
			struct inode *inode = child->mnt_mountpoint->d_inode;
			/* Only worry about locked mounts */
			if (!(child->mnt.mnt_flags & MNT_LOCKED))
				continue;
			/* Is the directory permanetly empty? */
			if (!is_empty_dir_inode(inode))
				goto next;
		}
		/* Preserve the locked attributes */
		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
					       MNT_LOCK_NODEV    | \
					       MNT_LOCK_NOSUID   | \
					       MNT_LOCK_NOEXEC   | \
					       MNT_LOCK_ATIME);
		visible = true;
		goto found;
	next:	;
	}
found:
	up_read(&namespace_sem);
	return visible;
}

static struct ns_common *mntns_get(struct task_struct *task)
{
	struct ns_common *ns = NULL;
	struct nsproxy *nsproxy;

	task_lock(task);
	nsproxy = task->nsproxy;
	if (nsproxy) {
		ns = &nsproxy->mnt_ns->ns;
		get_mnt_ns(to_mnt_ns(ns));
	}
	task_unlock(task);

	return ns;
}

static void mntns_put(struct ns_common *ns)
{
	put_mnt_ns(to_mnt_ns(ns));
}

static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
{
	struct fs_struct *fs = current->fs;
	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
	struct path root;

	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
		return -EPERM;

	if (fs->users != 1)
		return -EINVAL;

	get_mnt_ns(mnt_ns);
	put_mnt_ns(nsproxy->mnt_ns);
	nsproxy->mnt_ns = mnt_ns;

	/* Find the root */
	root.mnt    = &mnt_ns->root->mnt;
	root.dentry = mnt_ns->root->mnt.mnt_root;
	path_get(&root);
	while(d_mountpoint(root.dentry) && follow_down_one(&root))
		;

	/* Update the pwd and root */
	set_fs_pwd(fs, &root);
	set_fs_root(fs, &root);

	path_put(&root);
	return 0;
}

const struct proc_ns_operations mntns_operations = {
	.name		= "mnt",
	.type		= CLONE_NEWNS,
	.get		= mntns_get,
	.put		= mntns_put,
	.install	= mntns_install,
};