Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | /* * IOMMU mmap management and range allocation functions. * Based almost entirely upon the powerpc iommu allocator. */ #include <linux/export.h> #include <linux/bitmap.h> #include <linux/bug.h> #include <linux/iommu-helper.h> #include <linux/iommu-common.h> #include <linux/dma-mapping.h> #include <linux/hash.h> static unsigned long iommu_large_alloc = 15; static DEFINE_PER_CPU(unsigned int, iommu_hash_common); static inline bool need_flush(struct iommu_map_table *iommu) { return ((iommu->flags & IOMMU_NEED_FLUSH) != 0); } static inline void set_flush(struct iommu_map_table *iommu) { iommu->flags |= IOMMU_NEED_FLUSH; } static inline void clear_flush(struct iommu_map_table *iommu) { iommu->flags &= ~IOMMU_NEED_FLUSH; } static void setup_iommu_pool_hash(void) { unsigned int i; static bool do_once; if (do_once) return; do_once = true; for_each_possible_cpu(i) per_cpu(iommu_hash_common, i) = hash_32(i, IOMMU_POOL_HASHBITS); } /* * Initialize iommu_pool entries for the iommu_map_table. `num_entries' * is the number of table entries. If `large_pool' is set to true, * the top 1/4 of the table will be set aside for pool allocations * of more than iommu_large_alloc pages. */ void iommu_tbl_pool_init(struct iommu_map_table *iommu, unsigned long num_entries, u32 table_shift, void (*lazy_flush)(struct iommu_map_table *), bool large_pool, u32 npools, bool skip_span_boundary_check) { unsigned int start, i; struct iommu_pool *p = &(iommu->large_pool); setup_iommu_pool_hash(); if (npools == 0) iommu->nr_pools = IOMMU_NR_POOLS; else iommu->nr_pools = npools; BUG_ON(npools > IOMMU_NR_POOLS); iommu->table_shift = table_shift; iommu->lazy_flush = lazy_flush; start = 0; if (skip_span_boundary_check) iommu->flags |= IOMMU_NO_SPAN_BOUND; if (large_pool) iommu->flags |= IOMMU_HAS_LARGE_POOL; if (!large_pool) iommu->poolsize = num_entries/iommu->nr_pools; else iommu->poolsize = (num_entries * 3 / 4)/iommu->nr_pools; for (i = 0; i < iommu->nr_pools; i++) { spin_lock_init(&(iommu->pools[i].lock)); iommu->pools[i].start = start; iommu->pools[i].hint = start; start += iommu->poolsize; /* start for next pool */ iommu->pools[i].end = start - 1; } if (!large_pool) return; /* initialize large_pool */ spin_lock_init(&(p->lock)); p->start = start; p->hint = p->start; p->end = num_entries; } EXPORT_SYMBOL(iommu_tbl_pool_init); unsigned long iommu_tbl_range_alloc(struct device *dev, struct iommu_map_table *iommu, unsigned long npages, unsigned long *handle, unsigned long mask, unsigned int align_order) { unsigned int pool_hash = __this_cpu_read(iommu_hash_common); unsigned long n, end, start, limit, boundary_size; struct iommu_pool *pool; int pass = 0; unsigned int pool_nr; unsigned int npools = iommu->nr_pools; unsigned long flags; bool large_pool = ((iommu->flags & IOMMU_HAS_LARGE_POOL) != 0); bool largealloc = (large_pool && npages > iommu_large_alloc); unsigned long shift; unsigned long align_mask = 0; if (align_order > 0) align_mask = ~0ul >> (BITS_PER_LONG - align_order); /* Sanity check */ if (unlikely(npages == 0)) { WARN_ON_ONCE(1); return IOMMU_ERROR_CODE; } if (largealloc) { pool = &(iommu->large_pool); pool_nr = 0; /* to keep compiler happy */ } else { /* pick out pool_nr */ pool_nr = pool_hash & (npools - 1); pool = &(iommu->pools[pool_nr]); } spin_lock_irqsave(&pool->lock, flags); again: if (pass == 0 && handle && *handle && (*handle >= pool->start) && (*handle < pool->end)) start = *handle; else start = pool->hint; limit = pool->end; /* The case below can happen if we have a small segment appended * to a large, or when the previous alloc was at the very end of * the available space. If so, go back to the beginning. If a * flush is needed, it will get done based on the return value * from iommu_area_alloc() below. */ if (start >= limit) start = pool->start; shift = iommu->table_map_base >> iommu->table_shift; if (limit + shift > mask) { limit = mask - shift + 1; /* If we're constrained on address range, first try * at the masked hint to avoid O(n) search complexity, * but on second pass, start at 0 in pool 0. */ if ((start & mask) >= limit || pass > 0) { spin_unlock(&(pool->lock)); pool = &(iommu->pools[0]); spin_lock(&(pool->lock)); start = pool->start; } else { start &= mask; } } if (dev) boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, 1 << iommu->table_shift); else boundary_size = ALIGN(1ULL << 32, 1 << iommu->table_shift); boundary_size = boundary_size >> iommu->table_shift; /* * if the skip_span_boundary_check had been set during init, we set * things up so that iommu_is_span_boundary() merely checks if the * (index + npages) < num_tsb_entries */ if ((iommu->flags & IOMMU_NO_SPAN_BOUND) != 0) { shift = 0; boundary_size = iommu->poolsize * iommu->nr_pools; } n = iommu_area_alloc(iommu->map, limit, start, npages, shift, boundary_size, align_mask); if (n == -1) { if (likely(pass == 0)) { /* First failure, rescan from the beginning. */ pool->hint = pool->start; set_flush(iommu); pass++; goto again; } else if (!largealloc && pass <= iommu->nr_pools) { spin_unlock(&(pool->lock)); pool_nr = (pool_nr + 1) & (iommu->nr_pools - 1); pool = &(iommu->pools[pool_nr]); spin_lock(&(pool->lock)); pool->hint = pool->start; set_flush(iommu); pass++; goto again; } else { /* give up */ n = IOMMU_ERROR_CODE; goto bail; } } if (iommu->lazy_flush && (n < pool->hint || need_flush(iommu))) { clear_flush(iommu); iommu->lazy_flush(iommu); } end = n + npages; pool->hint = end; /* Update handle for SG allocations */ if (handle) *handle = end; bail: spin_unlock_irqrestore(&(pool->lock), flags); return n; } EXPORT_SYMBOL(iommu_tbl_range_alloc); static struct iommu_pool *get_pool(struct iommu_map_table *tbl, unsigned long entry) { struct iommu_pool *p; unsigned long largepool_start = tbl->large_pool.start; bool large_pool = ((tbl->flags & IOMMU_HAS_LARGE_POOL) != 0); /* The large pool is the last pool at the top of the table */ if (large_pool && entry >= largepool_start) { p = &tbl->large_pool; } else { unsigned int pool_nr = entry / tbl->poolsize; BUG_ON(pool_nr >= tbl->nr_pools); p = &tbl->pools[pool_nr]; } return p; } /* Caller supplies the index of the entry into the iommu map table * itself when the mapping from dma_addr to the entry is not the * default addr->entry mapping below. */ void iommu_tbl_range_free(struct iommu_map_table *iommu, u64 dma_addr, unsigned long npages, unsigned long entry) { struct iommu_pool *pool; unsigned long flags; unsigned long shift = iommu->table_shift; if (entry == IOMMU_ERROR_CODE) /* use default addr->entry mapping */ entry = (dma_addr - iommu->table_map_base) >> shift; pool = get_pool(iommu, entry); spin_lock_irqsave(&(pool->lock), flags); bitmap_clear(iommu->map, entry, npages); spin_unlock_irqrestore(&(pool->lock), flags); } EXPORT_SYMBOL(iommu_tbl_range_free); |