Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | /* * linux/arch/ia64/kernel/time.c * * Copyright (C) 1998-2003 Hewlett-Packard Co * Stephane Eranian <eranian@hpl.hp.com> * David Mosberger <davidm@hpl.hp.com> * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> * Copyright (C) 1999-2000 VA Linux Systems * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com> */ #include <linux/cpu.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/profile.h> #include <linux/sched.h> #include <linux/time.h> #include <linux/interrupt.h> #include <linux/efi.h> #include <linux/timex.h> #include <linux/timekeeper_internal.h> #include <linux/platform_device.h> #include <asm/machvec.h> #include <asm/delay.h> #include <asm/hw_irq.h> #include <asm/ptrace.h> #include <asm/sal.h> #include <asm/sections.h> #include "fsyscall_gtod_data.h" static cycle_t itc_get_cycles(struct clocksource *cs); struct fsyscall_gtod_data_t fsyscall_gtod_data; struct itc_jitter_data_t itc_jitter_data; volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */ #ifdef CONFIG_IA64_DEBUG_IRQ unsigned long last_cli_ip; EXPORT_SYMBOL(last_cli_ip); #endif static struct clocksource clocksource_itc = { .name = "itc", .rating = 350, .read = itc_get_cycles, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static struct clocksource *itc_clocksource; #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE #include <linux/kernel_stat.h> extern cputime_t cycle_to_cputime(u64 cyc); void vtime_account_user(struct task_struct *tsk) { cputime_t delta_utime; struct thread_info *ti = task_thread_info(tsk); if (ti->ac_utime) { delta_utime = cycle_to_cputime(ti->ac_utime); account_user_time(tsk, delta_utime, delta_utime); ti->ac_utime = 0; } } /* * Called from the context switch with interrupts disabled, to charge all * accumulated times to the current process, and to prepare accounting on * the next process. */ void arch_vtime_task_switch(struct task_struct *prev) { struct thread_info *pi = task_thread_info(prev); struct thread_info *ni = task_thread_info(current); pi->ac_stamp = ni->ac_stamp; ni->ac_stime = ni->ac_utime = 0; } /* * Account time for a transition between system, hard irq or soft irq state. * Note that this function is called with interrupts enabled. */ static cputime_t vtime_delta(struct task_struct *tsk) { struct thread_info *ti = task_thread_info(tsk); cputime_t delta_stime; __u64 now; WARN_ON_ONCE(!irqs_disabled()); now = ia64_get_itc(); delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp)); ti->ac_stime = 0; ti->ac_stamp = now; return delta_stime; } void vtime_account_system(struct task_struct *tsk) { cputime_t delta = vtime_delta(tsk); account_system_time(tsk, 0, delta, delta); } EXPORT_SYMBOL_GPL(vtime_account_system); void vtime_account_idle(struct task_struct *tsk) { account_idle_time(vtime_delta(tsk)); } #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ static irqreturn_t timer_interrupt (int irq, void *dev_id) { unsigned long new_itm; if (cpu_is_offline(smp_processor_id())) { return IRQ_HANDLED; } platform_timer_interrupt(irq, dev_id); new_itm = local_cpu_data->itm_next; if (!time_after(ia64_get_itc(), new_itm)) printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n", ia64_get_itc(), new_itm); profile_tick(CPU_PROFILING); while (1) { update_process_times(user_mode(get_irq_regs())); new_itm += local_cpu_data->itm_delta; if (smp_processor_id() == time_keeper_id) xtime_update(1); local_cpu_data->itm_next = new_itm; if (time_after(new_itm, ia64_get_itc())) break; /* * Allow IPIs to interrupt the timer loop. */ local_irq_enable(); local_irq_disable(); } do { /* * If we're too close to the next clock tick for * comfort, we increase the safety margin by * intentionally dropping the next tick(s). We do NOT * update itm.next because that would force us to call * xtime_update() which in turn would let our clock run * too fast (with the potentially devastating effect * of losing monotony of time). */ while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2)) new_itm += local_cpu_data->itm_delta; ia64_set_itm(new_itm); /* double check, in case we got hit by a (slow) PMI: */ } while (time_after_eq(ia64_get_itc(), new_itm)); return IRQ_HANDLED; } /* * Encapsulate access to the itm structure for SMP. */ void ia64_cpu_local_tick (void) { int cpu = smp_processor_id(); unsigned long shift = 0, delta; /* arrange for the cycle counter to generate a timer interrupt: */ ia64_set_itv(IA64_TIMER_VECTOR); delta = local_cpu_data->itm_delta; /* * Stagger the timer tick for each CPU so they don't occur all at (almost) the * same time: */ if (cpu) { unsigned long hi = 1UL << ia64_fls(cpu); shift = (2*(cpu - hi) + 1) * delta/hi/2; } local_cpu_data->itm_next = ia64_get_itc() + delta + shift; ia64_set_itm(local_cpu_data->itm_next); } static int nojitter; static int __init nojitter_setup(char *str) { nojitter = 1; printk("Jitter checking for ITC timers disabled\n"); return 1; } __setup("nojitter", nojitter_setup); void ia64_init_itm(void) { unsigned long platform_base_freq, itc_freq; struct pal_freq_ratio itc_ratio, proc_ratio; long status, platform_base_drift, itc_drift; /* * According to SAL v2.6, we need to use a SAL call to determine the platform base * frequency and then a PAL call to determine the frequency ratio between the ITC * and the base frequency. */ status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, &platform_base_freq, &platform_base_drift); if (status != 0) { printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status)); } else { status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio); if (status != 0) printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status); } if (status != 0) { /* invent "random" values */ printk(KERN_ERR "SAL/PAL failed to obtain frequency info---inventing reasonable values\n"); platform_base_freq = 100000000; platform_base_drift = -1; /* no drift info */ itc_ratio.num = 3; itc_ratio.den = 1; } if (platform_base_freq < 40000000) { printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n", platform_base_freq); platform_base_freq = 75000000; platform_base_drift = -1; } if (!proc_ratio.den) proc_ratio.den = 1; /* avoid division by zero */ if (!itc_ratio.den) itc_ratio.den = 1; /* avoid division by zero */ itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den; local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ; printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, " "ITC freq=%lu.%03luMHz", smp_processor_id(), platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000, itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000); if (platform_base_drift != -1) { itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den; printk("+/-%ldppm\n", itc_drift); } else { itc_drift = -1; printk("\n"); } local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den; local_cpu_data->itc_freq = itc_freq; local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC; local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT) + itc_freq/2)/itc_freq; if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { #ifdef CONFIG_SMP /* On IA64 in an SMP configuration ITCs are never accurately synchronized. * Jitter compensation requires a cmpxchg which may limit * the scalability of the syscalls for retrieving time. * The ITC synchronization is usually successful to within a few * ITC ticks but this is not a sure thing. If you need to improve * timer performance in SMP situations then boot the kernel with the * "nojitter" option. However, doing so may result in time fluctuating (maybe * even going backward) if the ITC offsets between the individual CPUs * are too large. */ if (!nojitter) itc_jitter_data.itc_jitter = 1; #endif } else /* * ITC is drifty and we have not synchronized the ITCs in smpboot.c. * ITC values may fluctuate significantly between processors. * Clock should not be used for hrtimers. Mark itc as only * useful for boot and testing. * * Note that jitter compensation is off! There is no point of * synchronizing ITCs since they may be large differentials * that change over time. * * The only way to fix this would be to repeatedly sync the * ITCs. Until that time we have to avoid ITC. */ clocksource_itc.rating = 50; /* avoid softlock up message when cpu is unplug and plugged again. */ touch_softlockup_watchdog(); /* Setup the CPU local timer tick */ ia64_cpu_local_tick(); if (!itc_clocksource) { clocksource_register_hz(&clocksource_itc, local_cpu_data->itc_freq); itc_clocksource = &clocksource_itc; } } static cycle_t itc_get_cycles(struct clocksource *cs) { unsigned long lcycle, now, ret; if (!itc_jitter_data.itc_jitter) return get_cycles(); lcycle = itc_jitter_data.itc_lastcycle; now = get_cycles(); if (lcycle && time_after(lcycle, now)) return lcycle; /* * Keep track of the last timer value returned. * In an SMP environment, you could lose out in contention of * cmpxchg. If so, your cmpxchg returns new value which the * winner of contention updated to. Use the new value instead. */ ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now); if (unlikely(ret != lcycle)) return ret; return now; } static struct irqaction timer_irqaction = { .handler = timer_interrupt, .flags = IRQF_IRQPOLL, .name = "timer" }; void read_persistent_clock(struct timespec *ts) { efi_gettimeofday(ts); } void __init time_init (void) { register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction); ia64_init_itm(); } /* * Generic udelay assumes that if preemption is allowed and the thread * migrates to another CPU, that the ITC values are synchronized across * all CPUs. */ static void ia64_itc_udelay (unsigned long usecs) { unsigned long start = ia64_get_itc(); unsigned long end = start + usecs*local_cpu_data->cyc_per_usec; while (time_before(ia64_get_itc(), end)) cpu_relax(); } void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay; void udelay (unsigned long usecs) { (*ia64_udelay)(usecs); } EXPORT_SYMBOL(udelay); /* IA64 doesn't cache the timezone */ void update_vsyscall_tz(void) { } void update_vsyscall_old(struct timespec *wall, struct timespec *wtm, struct clocksource *c, u32 mult, cycle_t cycle_last) { write_seqcount_begin(&fsyscall_gtod_data.seq); /* copy fsyscall clock data */ fsyscall_gtod_data.clk_mask = c->mask; fsyscall_gtod_data.clk_mult = mult; fsyscall_gtod_data.clk_shift = c->shift; fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio; fsyscall_gtod_data.clk_cycle_last = cycle_last; /* copy kernel time structures */ fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec; fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec; fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec + wall->tv_sec; fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec + wall->tv_nsec; /* normalize */ while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) { fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC; fsyscall_gtod_data.monotonic_time.tv_sec++; } write_seqcount_end(&fsyscall_gtod_data.seq); } |