Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
/*
 * Freescale QuadSPI driver.
 *
 * Copyright (C) 2013 Freescale Semiconductor, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/mutex.h>
#include <linux/pm_qos.h>
#include <linux/sizes.h>

/* Controller needs driver to swap endian */
#define QUADSPI_QUIRK_SWAP_ENDIAN	(1 << 0)
/* Controller needs 4x internal clock */
#define QUADSPI_QUIRK_4X_INT_CLK	(1 << 1)
/*
 * TKT253890, Controller needs driver to fill txfifo till 16 byte to
 * trigger data transfer even though extern data will not transferred.
 */
#define QUADSPI_QUIRK_TKT253890		(1 << 2)
/* Controller cannot wake up from wait mode, TKT245618 */
#define QUADSPI_QUIRK_TKT245618         (1 << 3)

/* The registers */
#define QUADSPI_MCR			0x00
#define QUADSPI_MCR_RESERVED_SHIFT	16
#define QUADSPI_MCR_RESERVED_MASK	(0xF << QUADSPI_MCR_RESERVED_SHIFT)
#define QUADSPI_MCR_MDIS_SHIFT		14
#define QUADSPI_MCR_MDIS_MASK		(1 << QUADSPI_MCR_MDIS_SHIFT)
#define QUADSPI_MCR_CLR_TXF_SHIFT	11
#define QUADSPI_MCR_CLR_TXF_MASK	(1 << QUADSPI_MCR_CLR_TXF_SHIFT)
#define QUADSPI_MCR_CLR_RXF_SHIFT	10
#define QUADSPI_MCR_CLR_RXF_MASK	(1 << QUADSPI_MCR_CLR_RXF_SHIFT)
#define QUADSPI_MCR_DDR_EN_SHIFT	7
#define QUADSPI_MCR_DDR_EN_MASK		(1 << QUADSPI_MCR_DDR_EN_SHIFT)
#define QUADSPI_MCR_END_CFG_SHIFT	2
#define QUADSPI_MCR_END_CFG_MASK	(3 << QUADSPI_MCR_END_CFG_SHIFT)
#define QUADSPI_MCR_SWRSTHD_SHIFT	1
#define QUADSPI_MCR_SWRSTHD_MASK	(1 << QUADSPI_MCR_SWRSTHD_SHIFT)
#define QUADSPI_MCR_SWRSTSD_SHIFT	0
#define QUADSPI_MCR_SWRSTSD_MASK	(1 << QUADSPI_MCR_SWRSTSD_SHIFT)

#define QUADSPI_IPCR			0x08
#define QUADSPI_IPCR_SEQID_SHIFT	24
#define QUADSPI_IPCR_SEQID_MASK		(0xF << QUADSPI_IPCR_SEQID_SHIFT)

#define QUADSPI_BUF0CR			0x10
#define QUADSPI_BUF1CR			0x14
#define QUADSPI_BUF2CR			0x18
#define QUADSPI_BUFXCR_INVALID_MSTRID	0xe

#define QUADSPI_BUF3CR			0x1c
#define QUADSPI_BUF3CR_ALLMST_SHIFT	31
#define QUADSPI_BUF3CR_ALLMST_MASK	(1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
#define QUADSPI_BUF3CR_ADATSZ_SHIFT		8
#define QUADSPI_BUF3CR_ADATSZ_MASK	(0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)

#define QUADSPI_BFGENCR			0x20
#define QUADSPI_BFGENCR_PAR_EN_SHIFT	16
#define QUADSPI_BFGENCR_PAR_EN_MASK	(1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
#define QUADSPI_BFGENCR_SEQID_SHIFT	12
#define QUADSPI_BFGENCR_SEQID_MASK	(0xF << QUADSPI_BFGENCR_SEQID_SHIFT)

#define QUADSPI_BUF0IND			0x30
#define QUADSPI_BUF1IND			0x34
#define QUADSPI_BUF2IND			0x38
#define QUADSPI_SFAR			0x100

#define QUADSPI_SMPR			0x108
#define QUADSPI_SMPR_DDRSMP_SHIFT	16
#define QUADSPI_SMPR_DDRSMP_MASK	(7 << QUADSPI_SMPR_DDRSMP_SHIFT)
#define QUADSPI_SMPR_FSDLY_SHIFT	6
#define QUADSPI_SMPR_FSDLY_MASK		(1 << QUADSPI_SMPR_FSDLY_SHIFT)
#define QUADSPI_SMPR_FSPHS_SHIFT	5
#define QUADSPI_SMPR_FSPHS_MASK		(1 << QUADSPI_SMPR_FSPHS_SHIFT)
#define QUADSPI_SMPR_HSENA_SHIFT	0
#define QUADSPI_SMPR_HSENA_MASK		(1 << QUADSPI_SMPR_HSENA_SHIFT)

#define QUADSPI_RBSR			0x10c
#define QUADSPI_RBSR_RDBFL_SHIFT	8
#define QUADSPI_RBSR_RDBFL_MASK		(0x3F << QUADSPI_RBSR_RDBFL_SHIFT)

#define QUADSPI_RBCT			0x110
#define QUADSPI_RBCT_WMRK_MASK		0x1F
#define QUADSPI_RBCT_RXBRD_SHIFT	8
#define QUADSPI_RBCT_RXBRD_USEIPS	(0x1 << QUADSPI_RBCT_RXBRD_SHIFT)

#define QUADSPI_TBSR			0x150
#define QUADSPI_TBDR			0x154
#define QUADSPI_SR			0x15c
#define QUADSPI_SR_IP_ACC_SHIFT		1
#define QUADSPI_SR_IP_ACC_MASK		(0x1 << QUADSPI_SR_IP_ACC_SHIFT)
#define QUADSPI_SR_AHB_ACC_SHIFT	2
#define QUADSPI_SR_AHB_ACC_MASK		(0x1 << QUADSPI_SR_AHB_ACC_SHIFT)

#define QUADSPI_FR			0x160
#define QUADSPI_FR_TFF_MASK		0x1

#define QUADSPI_SFA1AD			0x180
#define QUADSPI_SFA2AD			0x184
#define QUADSPI_SFB1AD			0x188
#define QUADSPI_SFB2AD			0x18c
#define QUADSPI_RBDR			0x200

#define QUADSPI_LUTKEY			0x300
#define QUADSPI_LUTKEY_VALUE		0x5AF05AF0

#define QUADSPI_LCKCR			0x304
#define QUADSPI_LCKER_LOCK		0x1
#define QUADSPI_LCKER_UNLOCK		0x2

#define QUADSPI_RSER			0x164
#define QUADSPI_RSER_TFIE		(0x1 << 0)

#define QUADSPI_LUT_BASE		0x310

/*
 * The definition of the LUT register shows below:
 *
 *  ---------------------------------------------------
 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 *  ---------------------------------------------------
 */
#define OPRND0_SHIFT		0
#define PAD0_SHIFT		8
#define INSTR0_SHIFT		10
#define OPRND1_SHIFT		16

/* Instruction set for the LUT register. */
#define LUT_STOP		0
#define LUT_CMD			1
#define LUT_ADDR		2
#define LUT_DUMMY		3
#define LUT_MODE		4
#define LUT_MODE2		5
#define LUT_MODE4		6
#define LUT_FSL_READ		7
#define LUT_FSL_WRITE		8
#define LUT_JMP_ON_CS		9
#define LUT_ADDR_DDR		10
#define LUT_MODE_DDR		11
#define LUT_MODE2_DDR		12
#define LUT_MODE4_DDR		13
#define LUT_FSL_READ_DDR		14
#define LUT_FSL_WRITE_DDR		15
#define LUT_DATA_LEARN		16

/*
 * The PAD definitions for LUT register.
 *
 * The pad stands for the lines number of IO[0:3].
 * For example, the Quad read need four IO lines, so you should
 * set LUT_PAD4 which means we use four IO lines.
 */
#define LUT_PAD1		0
#define LUT_PAD2		1
#define LUT_PAD4		2

/* Oprands for the LUT register. */
#define ADDR24BIT		0x18
#define ADDR32BIT		0x20

/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr)						\
		(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
		((LUT_##ins) << INSTR0_SHIFT))

#define LUT1(ins, pad, opr)	(LUT0(ins, pad, opr) << OPRND1_SHIFT)

/* other macros for LUT register. */
#define QUADSPI_LUT(x)          (QUADSPI_LUT_BASE + (x) * 4)
#define QUADSPI_LUT_NUM		64

/* SEQID -- we can have 16 seqids at most. */
#define SEQID_READ		0
#define SEQID_WREN		1
#define SEQID_WRDI		2
#define SEQID_RDSR		3
#define SEQID_SE		4
#define SEQID_CHIP_ERASE	5
#define SEQID_PP		6
#define SEQID_RDID		7
#define SEQID_WRSR		8
#define SEQID_RDCR		9
#define SEQID_EN4B		10
#define SEQID_BRWR		11

#define QUADSPI_MIN_IOMAP SZ_4M

enum fsl_qspi_devtype {
	FSL_QUADSPI_VYBRID,
	FSL_QUADSPI_IMX6SX,
	FSL_QUADSPI_IMX7D,
	FSL_QUADSPI_IMX6UL,
	FSL_QUADSPI_LS1021A,
	FSL_QUADSPI_LS2080A,
};

struct fsl_qspi_devtype_data {
	enum fsl_qspi_devtype devtype;
	int rxfifo;
	int txfifo;
	int ahb_buf_size;
	int driver_data;
};

static const struct fsl_qspi_devtype_data vybrid_data = {
	.devtype = FSL_QUADSPI_VYBRID,
	.rxfifo = 128,
	.txfifo = 64,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
};

static const struct fsl_qspi_devtype_data imx6sx_data = {
	.devtype = FSL_QUADSPI_IMX6SX,
	.rxfifo = 128,
	.txfifo = 512,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_4X_INT_CLK
		       | QUADSPI_QUIRK_TKT245618,
};

static const struct fsl_qspi_devtype_data imx7d_data = {
	.devtype = FSL_QUADSPI_IMX7D,
	.rxfifo = 512,
	.txfifo = 512,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_TKT253890
		       | QUADSPI_QUIRK_4X_INT_CLK,
};

static const struct fsl_qspi_devtype_data imx6ul_data = {
	.devtype = FSL_QUADSPI_IMX6UL,
	.rxfifo = 128,
	.txfifo = 512,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_TKT253890
		       | QUADSPI_QUIRK_4X_INT_CLK,
};

static struct fsl_qspi_devtype_data ls1021a_data = {
	.devtype = FSL_QUADSPI_LS1021A,
	.rxfifo = 128,
	.txfifo = 64,
	.ahb_buf_size = 1024,
	.driver_data = 0,
};

static const struct fsl_qspi_devtype_data ls2080a_data = {
	.devtype = FSL_QUADSPI_LS2080A,
	.rxfifo = 128,
	.txfifo = 64,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_TKT253890,
};


#define FSL_QSPI_MAX_CHIP	4
struct fsl_qspi {
	struct spi_nor nor[FSL_QSPI_MAX_CHIP];
	void __iomem *iobase;
	void __iomem *ahb_addr;
	u32 memmap_phy;
	u32 memmap_offs;
	u32 memmap_len;
	struct clk *clk, *clk_en;
	struct device *dev;
	struct completion c;
	const struct fsl_qspi_devtype_data *devtype_data;
	u32 nor_size;
	u32 nor_num;
	u32 clk_rate;
	unsigned int chip_base_addr; /* We may support two chips. */
	bool has_second_chip;
	bool big_endian;
	struct mutex lock;
	struct pm_qos_request pm_qos_req;
};

static inline int needs_swap_endian(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
}

static inline int needs_4x_clock(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
}

static inline int needs_fill_txfifo(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
}

static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
}

/*
 * R/W functions for big- or little-endian registers:
 * The qSPI controller's endian is independent of the CPU core's endian.
 * So far, although the CPU core is little-endian but the qSPI have two
 * versions for big-endian and little-endian.
 */
static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
{
	if (q->big_endian)
		iowrite32be(val, addr);
	else
		iowrite32(val, addr);
}

static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
{
	if (q->big_endian)
		return ioread32be(addr);
	else
		return ioread32(addr);
}

/*
 * An IC bug makes us to re-arrange the 32-bit data.
 * The following chips, such as IMX6SLX, have fixed this bug.
 */
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
	return needs_swap_endian(q) ? __swab32(a) : a;
}

static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
{
	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
}

static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
{
	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
}

static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
{
	struct fsl_qspi *q = dev_id;
	u32 reg;

	/* clear interrupt */
	reg = qspi_readl(q, q->iobase + QUADSPI_FR);
	qspi_writel(q, reg, q->iobase + QUADSPI_FR);

	if (reg & QUADSPI_FR_TFF_MASK)
		complete(&q->c);

	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
	return IRQ_HANDLED;
}

static void fsl_qspi_init_lut(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	int rxfifo = q->devtype_data->rxfifo;
	u32 lut_base;
	int i;

	struct spi_nor *nor = &q->nor[0];
	u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT;
	u8 read_op = nor->read_opcode;
	u8 read_dm = nor->read_dummy;

	fsl_qspi_unlock_lut(q);

	/* Clear all the LUT table */
	for (i = 0; i < QUADSPI_LUT_NUM; i++)
		qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);

	/* Read */
	lut_base = SEQID_READ * 4;

	qspi_writel(q, LUT0(CMD, PAD1, read_op) | LUT1(ADDR, PAD1, addrlen),
			base + QUADSPI_LUT(lut_base));
	qspi_writel(q, LUT0(DUMMY, PAD1, read_dm) |
		    LUT1(FSL_READ, PAD4, rxfifo),
			base + QUADSPI_LUT(lut_base + 1));

	/* Write enable */
	lut_base = SEQID_WREN * 4;
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
			base + QUADSPI_LUT(lut_base));

	/* Page Program */
	lut_base = SEQID_PP * 4;

	qspi_writel(q, LUT0(CMD, PAD1, nor->program_opcode) |
		    LUT1(ADDR, PAD1, addrlen),
			base + QUADSPI_LUT(lut_base));
	qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
			base + QUADSPI_LUT(lut_base + 1));

	/* Read Status */
	lut_base = SEQID_RDSR * 4;
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
			LUT1(FSL_READ, PAD1, 0x1),
			base + QUADSPI_LUT(lut_base));

	/* Erase a sector */
	lut_base = SEQID_SE * 4;

	qspi_writel(q, LUT0(CMD, PAD1, nor->erase_opcode) |
		    LUT1(ADDR, PAD1, addrlen),
			base + QUADSPI_LUT(lut_base));

	/* Erase the whole chip */
	lut_base = SEQID_CHIP_ERASE * 4;
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
			base + QUADSPI_LUT(lut_base));

	/* READ ID */
	lut_base = SEQID_RDID * 4;
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
			LUT1(FSL_READ, PAD1, 0x8),
			base + QUADSPI_LUT(lut_base));

	/* Write Register */
	lut_base = SEQID_WRSR * 4;
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
			LUT1(FSL_WRITE, PAD1, 0x2),
			base + QUADSPI_LUT(lut_base));

	/* Read Configuration Register */
	lut_base = SEQID_RDCR * 4;
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
			LUT1(FSL_READ, PAD1, 0x1),
			base + QUADSPI_LUT(lut_base));

	/* Write disable */
	lut_base = SEQID_WRDI * 4;
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
			base + QUADSPI_LUT(lut_base));

	/* Enter 4 Byte Mode (Micron) */
	lut_base = SEQID_EN4B * 4;
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
			base + QUADSPI_LUT(lut_base));

	/* Enter 4 Byte Mode (Spansion) */
	lut_base = SEQID_BRWR * 4;
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
			base + QUADSPI_LUT(lut_base));

	fsl_qspi_lock_lut(q);
}

/* Get the SEQID for the command */
static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
{
	switch (cmd) {
	case SPINOR_OP_READ_1_1_4:
	case SPINOR_OP_READ_1_1_4_4B:
		return SEQID_READ;
	case SPINOR_OP_WREN:
		return SEQID_WREN;
	case SPINOR_OP_WRDI:
		return SEQID_WRDI;
	case SPINOR_OP_RDSR:
		return SEQID_RDSR;
	case SPINOR_OP_SE:
		return SEQID_SE;
	case SPINOR_OP_CHIP_ERASE:
		return SEQID_CHIP_ERASE;
	case SPINOR_OP_PP:
		return SEQID_PP;
	case SPINOR_OP_RDID:
		return SEQID_RDID;
	case SPINOR_OP_WRSR:
		return SEQID_WRSR;
	case SPINOR_OP_RDCR:
		return SEQID_RDCR;
	case SPINOR_OP_EN4B:
		return SEQID_EN4B;
	case SPINOR_OP_BRWR:
		return SEQID_BRWR;
	default:
		if (cmd == q->nor[0].erase_opcode)
			return SEQID_SE;
		dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
		break;
	}
	return -EINVAL;
}

static int
fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
{
	void __iomem *base = q->iobase;
	int seqid;
	u32 reg, reg2;
	int err;

	init_completion(&q->c);
	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
			q->chip_base_addr, addr, len, cmd);

	/* save the reg */
	reg = qspi_readl(q, base + QUADSPI_MCR);

	qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
			base + QUADSPI_SFAR);
	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
			base + QUADSPI_RBCT);
	qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);

	do {
		reg2 = qspi_readl(q, base + QUADSPI_SR);
		if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
			udelay(1);
			dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
			continue;
		}
		break;
	} while (1);

	/* trigger the LUT now */
	seqid = fsl_qspi_get_seqid(q, cmd);
	if (seqid < 0)
		return seqid;

	qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
			base + QUADSPI_IPCR);

	/* Wait for the interrupt. */
	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
		dev_err(q->dev,
			"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
			cmd, addr, qspi_readl(q, base + QUADSPI_FR),
			qspi_readl(q, base + QUADSPI_SR));
		err = -ETIMEDOUT;
	} else {
		err = 0;
	}

	/* restore the MCR */
	qspi_writel(q, reg, base + QUADSPI_MCR);

	return err;
}

/* Read out the data from the QUADSPI_RBDR buffer registers. */
static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
{
	u32 tmp;
	int i = 0;

	while (len > 0) {
		tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
		tmp = fsl_qspi_endian_xchg(q, tmp);
		dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
				q->chip_base_addr, tmp);

		if (len >= 4) {
			*((u32 *)rxbuf) = tmp;
			rxbuf += 4;
		} else {
			memcpy(rxbuf, &tmp, len);
			break;
		}

		len -= 4;
		i++;
	}
}

/*
 * If we have changed the content of the flash by writing or erasing,
 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 * domain at the same time.
 */
static inline void fsl_qspi_invalid(struct fsl_qspi *q)
{
	u32 reg;

	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);

	/*
	 * The minimum delay : 1 AHB + 2 SFCK clocks.
	 * Delay 1 us is enough.
	 */
	udelay(1);

	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
}

static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
				u8 opcode, unsigned int to, u32 *txbuf,
				unsigned count)
{
	int ret, i, j;
	u32 tmp;

	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
		q->chip_base_addr, to, count);

	/* clear the TX FIFO. */
	tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
	qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);

	/* fill the TX data to the FIFO */
	for (j = 0, i = ((count + 3) / 4); j < i; j++) {
		tmp = fsl_qspi_endian_xchg(q, *txbuf);
		qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
		txbuf++;
	}

	/* fill the TXFIFO upto 16 bytes for i.MX7d */
	if (needs_fill_txfifo(q))
		for (; i < 4; i++)
			qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);

	/* Trigger it */
	ret = fsl_qspi_runcmd(q, opcode, to, count);

	if (ret == 0)
		return count;

	return ret;
}

static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
{
	int nor_size = q->nor_size;
	void __iomem *base = q->iobase;

	qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
	qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
	qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
	qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
}

/*
 * There are two different ways to read out the data from the flash:
 *  the "IP Command Read" and the "AHB Command Read".
 *
 * The IC guy suggests we use the "AHB Command Read" which is faster
 * then the "IP Command Read". (What's more is that there is a bug in
 * the "IP Command Read" in the Vybrid.)
 *
 * After we set up the registers for the "AHB Command Read", we can use
 * the memcpy to read the data directly. A "missed" access to the buffer
 * causes the controller to clear the buffer, and use the sequence pointed
 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 */
static int fsl_qspi_init_ahb_read(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	int seqid;

	/* AHB configuration for access buffer 0/1/2 .*/
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
	/*
	 * Set ADATSZ with the maximum AHB buffer size to improve the
	 * read performance.
	 */
	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
			((q->devtype_data->ahb_buf_size / 8)
			<< QUADSPI_BUF3CR_ADATSZ_SHIFT),
			base + QUADSPI_BUF3CR);

	/* We only use the buffer3 */
	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
	qspi_writel(q, 0, base + QUADSPI_BUF2IND);

	/* Set the default lut sequence for AHB Read. */
	seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
	if (seqid < 0)
		return seqid;

	qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
		q->iobase + QUADSPI_BFGENCR);

	return 0;
}

/* This function was used to prepare and enable QSPI clock */
static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
{
	int ret;

	ret = clk_prepare_enable(q->clk_en);
	if (ret)
		return ret;

	ret = clk_prepare_enable(q->clk);
	if (ret) {
		clk_disable_unprepare(q->clk_en);
		return ret;
	}

	if (needs_wakeup_wait_mode(q))
		pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);

	return 0;
}

/* This function was used to disable and unprepare QSPI clock */
static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
{
	if (needs_wakeup_wait_mode(q))
		pm_qos_remove_request(&q->pm_qos_req);

	clk_disable_unprepare(q->clk);
	clk_disable_unprepare(q->clk_en);

}

/* We use this function to do some basic init for spi_nor_scan(). */
static int fsl_qspi_nor_setup(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	u32 reg;
	int ret;

	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_qspi_clk_disable_unprep(q);

	/* the default frequency, we will change it in the future. */
	ret = clk_set_rate(q->clk, 66000000);
	if (ret)
		return ret;

	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

	/* Reset the module */
	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
		base + QUADSPI_MCR);
	udelay(1);

	/* Init the LUT table. */
	fsl_qspi_init_lut(q);

	/* Disable the module */
	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
			base + QUADSPI_MCR);

	reg = qspi_readl(q, base + QUADSPI_SMPR);
	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
			| QUADSPI_SMPR_FSPHS_MASK
			| QUADSPI_SMPR_HSENA_MASK
			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);

	/* Enable the module */
	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
			base + QUADSPI_MCR);

	/* clear all interrupt status */
	qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);

	/* enable the interrupt */
	qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);

	return 0;
}

static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
{
	unsigned long rate = q->clk_rate;
	int ret;

	if (needs_4x_clock(q))
		rate *= 4;

	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_qspi_clk_disable_unprep(q);

	ret = clk_set_rate(q->clk, rate);
	if (ret)
		return ret;

	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

	/* Init the LUT table again. */
	fsl_qspi_init_lut(q);

	/* Init for AHB read */
	return fsl_qspi_init_ahb_read(q);
}

static const struct of_device_id fsl_qspi_dt_ids[] = {
	{ .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
	{ .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
	{ .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
	{ .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
	{ .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, },
	{ .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);

static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
{
	q->chip_base_addr = q->nor_size * (nor - q->nor);
}

static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	int ret;
	struct fsl_qspi *q = nor->priv;

	ret = fsl_qspi_runcmd(q, opcode, 0, len);
	if (ret)
		return ret;

	fsl_qspi_read_data(q, len, buf);
	return 0;
}

static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	if (!buf) {
		ret = fsl_qspi_runcmd(q, opcode, 0, 1);
		if (ret)
			return ret;

		if (opcode == SPINOR_OP_CHIP_ERASE)
			fsl_qspi_invalid(q);

	} else if (len > 0) {
		ret = fsl_qspi_nor_write(q, nor, opcode, 0,
					(u32 *)buf, len);
		if (ret > 0)
			return 0;
	} else {
		dev_err(q->dev, "invalid cmd %d\n", opcode);
		ret = -EINVAL;
	}

	return ret;
}

static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to,
			      size_t len, const u_char *buf)
{
	struct fsl_qspi *q = nor->priv;
	ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
					 (u32 *)buf, len);

	/* invalid the data in the AHB buffer. */
	fsl_qspi_invalid(q);
	return ret;
}

static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from,
			     size_t len, u_char *buf)
{
	struct fsl_qspi *q = nor->priv;
	u8 cmd = nor->read_opcode;

	/* if necessary,ioremap buffer before AHB read, */
	if (!q->ahb_addr) {
		q->memmap_offs = q->chip_base_addr + from;
		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;

		q->ahb_addr = ioremap_nocache(
				q->memmap_phy + q->memmap_offs,
				q->memmap_len);
		if (!q->ahb_addr) {
			dev_err(q->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	/* ioremap if the data requested is out of range */
	} else if (q->chip_base_addr + from < q->memmap_offs
			|| q->chip_base_addr + from + len >
			q->memmap_offs + q->memmap_len) {
		iounmap(q->ahb_addr);

		q->memmap_offs = q->chip_base_addr + from;
		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
		q->ahb_addr = ioremap_nocache(
				q->memmap_phy + q->memmap_offs,
				q->memmap_len);
		if (!q->ahb_addr) {
			dev_err(q->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	}

	dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
		cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
		len);

	/* Read out the data directly from the AHB buffer.*/
	memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
		len);

	return len;
}

static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
		nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);

	ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
	if (ret)
		return ret;

	fsl_qspi_invalid(q);
	return 0;
}

static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	mutex_lock(&q->lock);

	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		goto err_mutex;

	fsl_qspi_set_base_addr(q, nor);
	return 0;

err_mutex:
	mutex_unlock(&q->lock);
	return ret;
}

static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;

	fsl_qspi_clk_disable_unprep(q);
	mutex_unlock(&q->lock);
}

static int fsl_qspi_probe(struct platform_device *pdev)
{
	const struct spi_nor_hwcaps hwcaps = {
		.mask = SNOR_HWCAPS_READ_1_1_4 |
			SNOR_HWCAPS_PP,
	};
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct fsl_qspi *q;
	struct resource *res;
	struct spi_nor *nor;
	struct mtd_info *mtd;
	int ret, i = 0;

	q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
	if (!q)
		return -ENOMEM;

	q->nor_num = of_get_child_count(dev->of_node);
	if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
		return -ENODEV;

	q->dev = dev;
	q->devtype_data = of_device_get_match_data(dev);
	if (!q->devtype_data)
		return -ENODEV;
	platform_set_drvdata(pdev, q);

	/* find the resources */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
	q->iobase = devm_ioremap_resource(dev, res);
	if (IS_ERR(q->iobase))
		return PTR_ERR(q->iobase);

	q->big_endian = of_property_read_bool(np, "big-endian");
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					"QuadSPI-memory");
	if (!devm_request_mem_region(dev, res->start, resource_size(res),
				     res->name)) {
		dev_err(dev, "can't request region for resource %pR\n", res);
		return -EBUSY;
	}

	q->memmap_phy = res->start;

	/* find the clocks */
	q->clk_en = devm_clk_get(dev, "qspi_en");
	if (IS_ERR(q->clk_en))
		return PTR_ERR(q->clk_en);

	q->clk = devm_clk_get(dev, "qspi");
	if (IS_ERR(q->clk))
		return PTR_ERR(q->clk);

	ret = fsl_qspi_clk_prep_enable(q);
	if (ret) {
		dev_err(dev, "can not enable the clock\n");
		goto clk_failed;
	}

	/* find the irq */
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "failed to get the irq: %d\n", ret);
		goto irq_failed;
	}

	ret = devm_request_irq(dev, ret,
			fsl_qspi_irq_handler, 0, pdev->name, q);
	if (ret) {
		dev_err(dev, "failed to request irq: %d\n", ret);
		goto irq_failed;
	}

	ret = fsl_qspi_nor_setup(q);
	if (ret)
		goto irq_failed;

	if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
		q->has_second_chip = true;

	mutex_init(&q->lock);

	/* iterate the subnodes. */
	for_each_available_child_of_node(dev->of_node, np) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;

		nor = &q->nor[i];
		mtd = &nor->mtd;

		nor->dev = dev;
		spi_nor_set_flash_node(nor, np);
		nor->priv = q;

		if (q->nor_num > 1 && !mtd->name) {
			int spiflash_idx;

			ret = of_property_read_u32(np, "reg", &spiflash_idx);
			if (!ret) {
				mtd->name = devm_kasprintf(dev, GFP_KERNEL,
							   "%s-%d",
							   dev_name(dev),
							   spiflash_idx);
				if (!mtd->name) {
					ret = -ENOMEM;
					goto mutex_failed;
				}
			} else {
				dev_warn(dev, "reg property is missing\n");
			}
		}

		/* fill the hooks */
		nor->read_reg = fsl_qspi_read_reg;
		nor->write_reg = fsl_qspi_write_reg;
		nor->read = fsl_qspi_read;
		nor->write = fsl_qspi_write;
		nor->erase = fsl_qspi_erase;

		nor->prepare = fsl_qspi_prep;
		nor->unprepare = fsl_qspi_unprep;

		ret = of_property_read_u32(np, "spi-max-frequency",
				&q->clk_rate);
		if (ret < 0)
			goto mutex_failed;

		/* set the chip address for READID */
		fsl_qspi_set_base_addr(q, nor);

		ret = spi_nor_scan(nor, NULL, &hwcaps);
		if (ret)
			goto mutex_failed;

		ret = mtd_device_register(mtd, NULL, 0);
		if (ret)
			goto mutex_failed;

		/* Set the correct NOR size now. */
		if (q->nor_size == 0) {
			q->nor_size = mtd->size;

			/* Map the SPI NOR to accessiable address */
			fsl_qspi_set_map_addr(q);
		}

		/*
		 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
		 * may writes 265 bytes per time. The write is working in the
		 * unit of the TX FIFO, not in the unit of the SPI NOR's page
		 * size.
		 *
		 * So shrink the spi_nor->page_size if it is larger then the
		 * TX FIFO.
		 */
		if (nor->page_size > q->devtype_data->txfifo)
			nor->page_size = q->devtype_data->txfifo;

		i++;
	}

	/* finish the rest init. */
	ret = fsl_qspi_nor_setup_last(q);
	if (ret)
		goto last_init_failed;

	fsl_qspi_clk_disable_unprep(q);
	return 0;

last_init_failed:
	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
		mtd_device_unregister(&q->nor[i].mtd);
	}
mutex_failed:
	mutex_destroy(&q->lock);
irq_failed:
	fsl_qspi_clk_disable_unprep(q);
clk_failed:
	dev_err(dev, "Freescale QuadSPI probe failed\n");
	return ret;
}

static int fsl_qspi_remove(struct platform_device *pdev)
{
	struct fsl_qspi *q = platform_get_drvdata(pdev);
	int i;

	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
		mtd_device_unregister(&q->nor[i].mtd);
	}

	/* disable the hardware */
	qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
	qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);

	mutex_destroy(&q->lock);

	if (q->ahb_addr)
		iounmap(q->ahb_addr);

	return 0;
}

static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
{
	return 0;
}

static int fsl_qspi_resume(struct platform_device *pdev)
{
	int ret;
	struct fsl_qspi *q = platform_get_drvdata(pdev);

	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

	fsl_qspi_nor_setup(q);
	fsl_qspi_set_map_addr(q);
	fsl_qspi_nor_setup_last(q);

	fsl_qspi_clk_disable_unprep(q);

	return 0;
}

static struct platform_driver fsl_qspi_driver = {
	.driver = {
		.name	= "fsl-quadspi",
		.of_match_table = fsl_qspi_dt_ids,
	},
	.probe          = fsl_qspi_probe,
	.remove		= fsl_qspi_remove,
	.suspend	= fsl_qspi_suspend,
	.resume		= fsl_qspi_resume,
};
module_platform_driver(fsl_qspi_driver);

MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_LICENSE("GPL v2");