Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
/*
 * Freescale eSPI controller driver.
 *
 * Copyright 2010 Freescale Semiconductor, Inc.
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/fsl_devices.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <sysdev/fsl_soc.h>

#include "spi-fsl-lib.h"

/* eSPI Controller registers */
struct fsl_espi_reg {
	__be32 mode;		/* 0x000 - eSPI mode register */
	__be32 event;		/* 0x004 - eSPI event register */
	__be32 mask;		/* 0x008 - eSPI mask register */
	__be32 command;		/* 0x00c - eSPI command register */
	__be32 transmit;	/* 0x010 - eSPI transmit FIFO access register*/
	__be32 receive;		/* 0x014 - eSPI receive FIFO access register*/
	u8 res[8];		/* 0x018 - 0x01c reserved */
	__be32 csmode[4];	/* 0x020 - 0x02c eSPI cs mode register */
};

struct fsl_espi_transfer {
	const void *tx_buf;
	void *rx_buf;
	unsigned len;
	unsigned n_tx;
	unsigned n_rx;
	unsigned actual_length;
	int status;
};

/* eSPI Controller mode register definitions */
#define SPMODE_ENABLE		(1 << 31)
#define SPMODE_LOOP		(1 << 30)
#define SPMODE_TXTHR(x)		((x) << 8)
#define SPMODE_RXTHR(x)		((x) << 0)

/* eSPI Controller CS mode register definitions */
#define CSMODE_CI_INACTIVEHIGH	(1 << 31)
#define CSMODE_CP_BEGIN_EDGECLK	(1 << 30)
#define CSMODE_REV		(1 << 29)
#define CSMODE_DIV16		(1 << 28)
#define CSMODE_PM(x)		((x) << 24)
#define CSMODE_POL_1		(1 << 20)
#define CSMODE_LEN(x)		((x) << 16)
#define CSMODE_BEF(x)		((x) << 12)
#define CSMODE_AFT(x)		((x) << 8)
#define CSMODE_CG(x)		((x) << 3)

/* Default mode/csmode for eSPI controller */
#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
		| CSMODE_AFT(0) | CSMODE_CG(1))

/* SPIE register values */
#define	SPIE_NE		0x00000200	/* Not empty */
#define	SPIE_NF		0x00000100	/* Not full */

/* SPIM register values */
#define	SPIM_NE		0x00000200	/* Not empty */
#define	SPIM_NF		0x00000100	/* Not full */
#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)

/* SPCOM register values */
#define SPCOM_CS(x)		((x) << 30)
#define SPCOM_TRANLEN(x)	((x) << 0)
#define	SPCOM_TRANLEN_MAX	0xFFFF	/* Max transaction length */

static void fsl_espi_change_mode(struct spi_device *spi)
{
	struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
	struct spi_mpc8xxx_cs *cs = spi->controller_state;
	struct fsl_espi_reg *reg_base = mspi->reg_base;
	__be32 __iomem *mode = &reg_base->csmode[spi->chip_select];
	__be32 __iomem *espi_mode = &reg_base->mode;
	u32 tmp;
	unsigned long flags;

	/* Turn off IRQs locally to minimize time that SPI is disabled. */
	local_irq_save(flags);

	/* Turn off SPI unit prior changing mode */
	tmp = mpc8xxx_spi_read_reg(espi_mode);
	mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE);
	mpc8xxx_spi_write_reg(mode, cs->hw_mode);
	mpc8xxx_spi_write_reg(espi_mode, tmp);

	local_irq_restore(flags);
}

static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
{
	u32 data;
	u16 data_h;
	u16 data_l;
	const u32 *tx = mpc8xxx_spi->tx;

	if (!tx)
		return 0;

	data = *tx++ << mpc8xxx_spi->tx_shift;
	data_l = data & 0xffff;
	data_h = (data >> 16) & 0xffff;
	swab16s(&data_l);
	swab16s(&data_h);
	data = data_h | data_l;

	mpc8xxx_spi->tx = tx;
	return data;
}

static int fsl_espi_setup_transfer(struct spi_device *spi,
					struct spi_transfer *t)
{
	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
	int bits_per_word = 0;
	u8 pm;
	u32 hz = 0;
	struct spi_mpc8xxx_cs *cs = spi->controller_state;

	if (t) {
		bits_per_word = t->bits_per_word;
		hz = t->speed_hz;
	}

	/* spi_transfer level calls that work per-word */
	if (!bits_per_word)
		bits_per_word = spi->bits_per_word;

	if (!hz)
		hz = spi->max_speed_hz;

	cs->rx_shift = 0;
	cs->tx_shift = 0;
	cs->get_rx = mpc8xxx_spi_rx_buf_u32;
	cs->get_tx = mpc8xxx_spi_tx_buf_u32;
	if (bits_per_word <= 8) {
		cs->rx_shift = 8 - bits_per_word;
	} else {
		cs->rx_shift = 16 - bits_per_word;
		if (spi->mode & SPI_LSB_FIRST)
			cs->get_tx = fsl_espi_tx_buf_lsb;
	}

	mpc8xxx_spi->rx_shift = cs->rx_shift;
	mpc8xxx_spi->tx_shift = cs->tx_shift;
	mpc8xxx_spi->get_rx = cs->get_rx;
	mpc8xxx_spi->get_tx = cs->get_tx;

	bits_per_word = bits_per_word - 1;

	/* mask out bits we are going to set */
	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));

	cs->hw_mode |= CSMODE_LEN(bits_per_word);

	if ((mpc8xxx_spi->spibrg / hz) > 64) {
		cs->hw_mode |= CSMODE_DIV16;
		pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4);

		WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. "
			  "Will use %d Hz instead.\n", dev_name(&spi->dev),
				hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1)));
		if (pm > 33)
			pm = 33;
	} else {
		pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4);
	}
	if (pm)
		pm--;
	if (pm < 2)
		pm = 2;

	cs->hw_mode |= CSMODE_PM(pm);

	fsl_espi_change_mode(spi);
	return 0;
}

static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t,
		unsigned int len)
{
	u32 word;
	struct fsl_espi_reg *reg_base = mspi->reg_base;

	mspi->count = len;

	/* enable rx ints */
	mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);

	/* transmit word */
	word = mspi->get_tx(mspi);
	mpc8xxx_spi_write_reg(&reg_base->transmit, word);

	return 0;
}

static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
{
	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
	struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
	unsigned int len = t->len;
	int ret;

	mpc8xxx_spi->len = t->len;
	len = roundup(len, 4) / 4;

	mpc8xxx_spi->tx = t->tx_buf;
	mpc8xxx_spi->rx = t->rx_buf;

	reinit_completion(&mpc8xxx_spi->done);

	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
	if ((t->len - 1) > SPCOM_TRANLEN_MAX) {
		dev_err(mpc8xxx_spi->dev, "Transaction length (%d)"
				" beyond the SPCOM[TRANLEN] field\n", t->len);
		return -EINVAL;
	}
	mpc8xxx_spi_write_reg(&reg_base->command,
		(SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));

	ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len);
	if (ret)
		return ret;

	wait_for_completion(&mpc8xxx_spi->done);

	/* disable rx ints */
	mpc8xxx_spi_write_reg(&reg_base->mask, 0);

	return mpc8xxx_spi->count;
}

static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd)
{
	if (cmd) {
		cmd[1] = (u8)(addr >> 16);
		cmd[2] = (u8)(addr >> 8);
		cmd[3] = (u8)(addr >> 0);
	}
}

static inline unsigned int fsl_espi_cmd2addr(u8 *cmd)
{
	if (cmd)
		return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0;

	return 0;
}

static void fsl_espi_do_trans(struct spi_message *m,
				struct fsl_espi_transfer *tr)
{
	struct spi_device *spi = m->spi;
	struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
	struct fsl_espi_transfer *espi_trans = tr;
	struct spi_message message;
	struct spi_transfer *t, *first, trans;
	int status = 0;

	spi_message_init(&message);
	memset(&trans, 0, sizeof(trans));

	first = list_first_entry(&m->transfers, struct spi_transfer,
			transfer_list);
	list_for_each_entry(t, &m->transfers, transfer_list) {
		if ((first->bits_per_word != t->bits_per_word) ||
			(first->speed_hz != t->speed_hz)) {
			espi_trans->status = -EINVAL;
			dev_err(mspi->dev,
				"bits_per_word/speed_hz should be same for the same SPI transfer\n");
			return;
		}

		trans.speed_hz = t->speed_hz;
		trans.bits_per_word = t->bits_per_word;
		trans.delay_usecs = max(first->delay_usecs, t->delay_usecs);
	}

	trans.len = espi_trans->len;
	trans.tx_buf = espi_trans->tx_buf;
	trans.rx_buf = espi_trans->rx_buf;
	spi_message_add_tail(&trans, &message);

	list_for_each_entry(t, &message.transfers, transfer_list) {
		if (t->bits_per_word || t->speed_hz) {
			status = -EINVAL;

			status = fsl_espi_setup_transfer(spi, t);
			if (status < 0)
				break;
		}

		if (t->len)
			status = fsl_espi_bufs(spi, t);

		if (status) {
			status = -EMSGSIZE;
			break;
		}

		if (t->delay_usecs)
			udelay(t->delay_usecs);
	}

	espi_trans->status = status;
	fsl_espi_setup_transfer(spi, NULL);
}

static void fsl_espi_cmd_trans(struct spi_message *m,
				struct fsl_espi_transfer *trans, u8 *rx_buff)
{
	struct spi_transfer *t;
	u8 *local_buf;
	int i = 0;
	struct fsl_espi_transfer *espi_trans = trans;

	local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
	if (!local_buf) {
		espi_trans->status = -ENOMEM;
		return;
	}

	list_for_each_entry(t, &m->transfers, transfer_list) {
		if (t->tx_buf) {
			memcpy(local_buf + i, t->tx_buf, t->len);
			i += t->len;
		}
	}

	espi_trans->tx_buf = local_buf;
	espi_trans->rx_buf = local_buf;
	fsl_espi_do_trans(m, espi_trans);

	espi_trans->actual_length = espi_trans->len;
	kfree(local_buf);
}

static void fsl_espi_rw_trans(struct spi_message *m,
				struct fsl_espi_transfer *trans, u8 *rx_buff)
{
	struct fsl_espi_transfer *espi_trans = trans;
	unsigned int total_len = espi_trans->len;
	struct spi_transfer *t;
	u8 *local_buf;
	u8 *rx_buf = rx_buff;
	unsigned int trans_len;
	unsigned int addr;
	unsigned int tx_only;
	unsigned int rx_pos = 0;
	unsigned int pos;
	int i, loop;

	local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
	if (!local_buf) {
		espi_trans->status = -ENOMEM;
		return;
	}

	for (pos = 0, loop = 0; pos < total_len; pos += trans_len, loop++) {
		trans_len = total_len - pos;

		i = 0;
		tx_only = 0;
		list_for_each_entry(t, &m->transfers, transfer_list) {
			if (t->tx_buf) {
				memcpy(local_buf + i, t->tx_buf, t->len);
				i += t->len;
				if (!t->rx_buf)
					tx_only += t->len;
			}
		}

		/* Add additional TX bytes to compensate SPCOM_TRANLEN_MAX */
		if (loop > 0)
			trans_len += tx_only;

		if (trans_len > SPCOM_TRANLEN_MAX)
			trans_len = SPCOM_TRANLEN_MAX;

		/* Update device offset */
		if (pos > 0) {
			addr = fsl_espi_cmd2addr(local_buf);
			addr += rx_pos;
			fsl_espi_addr2cmd(addr, local_buf);
		}

		espi_trans->len = trans_len;
		espi_trans->tx_buf = local_buf;
		espi_trans->rx_buf = local_buf;
		fsl_espi_do_trans(m, espi_trans);

		/* If there is at least one RX byte then copy it to rx_buf */
		if (tx_only < SPCOM_TRANLEN_MAX)
			memcpy(rx_buf + rx_pos, espi_trans->rx_buf + tx_only,
					trans_len - tx_only);

		rx_pos += trans_len - tx_only;

		if (loop > 0)
			espi_trans->actual_length += espi_trans->len - tx_only;
		else
			espi_trans->actual_length += espi_trans->len;
	}

	kfree(local_buf);
}

static int fsl_espi_do_one_msg(struct spi_master *master,
			       struct spi_message *m)
{
	struct spi_transfer *t;
	u8 *rx_buf = NULL;
	unsigned int n_tx = 0;
	unsigned int n_rx = 0;
	unsigned int xfer_len = 0;
	struct fsl_espi_transfer espi_trans;

	list_for_each_entry(t, &m->transfers, transfer_list) {
		if (t->tx_buf)
			n_tx += t->len;
		if (t->rx_buf) {
			n_rx += t->len;
			rx_buf = t->rx_buf;
		}
		if ((t->tx_buf) || (t->rx_buf))
			xfer_len += t->len;
	}

	espi_trans.n_tx = n_tx;
	espi_trans.n_rx = n_rx;
	espi_trans.len = xfer_len;
	espi_trans.actual_length = 0;
	espi_trans.status = 0;

	if (!rx_buf)
		fsl_espi_cmd_trans(m, &espi_trans, NULL);
	else
		fsl_espi_rw_trans(m, &espi_trans, rx_buf);

	m->actual_length = espi_trans.actual_length;
	m->status = espi_trans.status;
	spi_finalize_current_message(master);
	return 0;
}

static int fsl_espi_setup(struct spi_device *spi)
{
	struct mpc8xxx_spi *mpc8xxx_spi;
	struct fsl_espi_reg *reg_base;
	int retval;
	u32 hw_mode;
	u32 loop_mode;
	struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);

	if (!spi->max_speed_hz)
		return -EINVAL;

	if (!cs) {
		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
		if (!cs)
			return -ENOMEM;
		spi_set_ctldata(spi, cs);
	}

	mpc8xxx_spi = spi_master_get_devdata(spi->master);
	reg_base = mpc8xxx_spi->reg_base;

	hw_mode = cs->hw_mode; /* Save original settings */
	cs->hw_mode = mpc8xxx_spi_read_reg(
			&reg_base->csmode[spi->chip_select]);
	/* mask out bits we are going to set */
	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
			 | CSMODE_REV);

	if (spi->mode & SPI_CPHA)
		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
	if (spi->mode & SPI_CPOL)
		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
	if (!(spi->mode & SPI_LSB_FIRST))
		cs->hw_mode |= CSMODE_REV;

	/* Handle the loop mode */
	loop_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
	loop_mode &= ~SPMODE_LOOP;
	if (spi->mode & SPI_LOOP)
		loop_mode |= SPMODE_LOOP;
	mpc8xxx_spi_write_reg(&reg_base->mode, loop_mode);

	retval = fsl_espi_setup_transfer(spi, NULL);
	if (retval < 0) {
		cs->hw_mode = hw_mode; /* Restore settings */
		return retval;
	}
	return 0;
}

static void fsl_espi_cleanup(struct spi_device *spi)
{
	struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);

	kfree(cs);
	spi_set_ctldata(spi, NULL);
}

void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
{
	struct fsl_espi_reg *reg_base = mspi->reg_base;

	/* We need handle RX first */
	if (events & SPIE_NE) {
		u32 rx_data, tmp;
		u8 rx_data_8;

		/* Spin until RX is done */
		while (SPIE_RXCNT(events) < min(4, mspi->len)) {
			cpu_relax();
			events = mpc8xxx_spi_read_reg(&reg_base->event);
		}

		if (mspi->len >= 4) {
			rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
		} else {
			tmp = mspi->len;
			rx_data = 0;
			while (tmp--) {
				rx_data_8 = in_8((u8 *)&reg_base->receive);
				rx_data |= (rx_data_8 << (tmp * 8));
			}

			rx_data <<= (4 - mspi->len) * 8;
		}

		mspi->len -= 4;

		if (mspi->rx)
			mspi->get_rx(rx_data, mspi);
	}

	if (!(events & SPIE_NF)) {
		int ret;

		/* spin until TX is done */
		ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg(
				&reg_base->event)) & SPIE_NF), 1000, 0);
		if (!ret) {
			dev_err(mspi->dev, "tired waiting for SPIE_NF\n");

			/* Clear the SPIE bits */
			mpc8xxx_spi_write_reg(&reg_base->event, events);
			complete(&mspi->done);
			return;
		}
	}

	/* Clear the events */
	mpc8xxx_spi_write_reg(&reg_base->event, events);

	mspi->count -= 1;
	if (mspi->count) {
		u32 word = mspi->get_tx(mspi);

		mpc8xxx_spi_write_reg(&reg_base->transmit, word);
	} else {
		complete(&mspi->done);
	}
}

static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
{
	struct mpc8xxx_spi *mspi = context_data;
	struct fsl_espi_reg *reg_base = mspi->reg_base;
	irqreturn_t ret = IRQ_NONE;
	u32 events;

	/* Get interrupt events(tx/rx) */
	events = mpc8xxx_spi_read_reg(&reg_base->event);
	if (events)
		ret = IRQ_HANDLED;

	dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);

	fsl_espi_cpu_irq(mspi, events);

	return ret;
}

static void fsl_espi_remove(struct mpc8xxx_spi *mspi)
{
	iounmap(mspi->reg_base);
}

static int fsl_espi_suspend(struct spi_master *master)
{
	struct mpc8xxx_spi *mpc8xxx_spi;
	struct fsl_espi_reg *reg_base;
	u32 regval;

	mpc8xxx_spi = spi_master_get_devdata(master);
	reg_base = mpc8xxx_spi->reg_base;

	regval = mpc8xxx_spi_read_reg(&reg_base->mode);
	regval &= ~SPMODE_ENABLE;
	mpc8xxx_spi_write_reg(&reg_base->mode, regval);

	return 0;
}

static int fsl_espi_resume(struct spi_master *master)
{
	struct mpc8xxx_spi *mpc8xxx_spi;
	struct fsl_espi_reg *reg_base;
	u32 regval;

	mpc8xxx_spi = spi_master_get_devdata(master);
	reg_base = mpc8xxx_spi->reg_base;

	regval = mpc8xxx_spi_read_reg(&reg_base->mode);
	regval |= SPMODE_ENABLE;
	mpc8xxx_spi_write_reg(&reg_base->mode, regval);

	return 0;
}

static struct spi_master * fsl_espi_probe(struct device *dev,
		struct resource *mem, unsigned int irq)
{
	struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
	struct spi_master *master;
	struct mpc8xxx_spi *mpc8xxx_spi;
	struct fsl_espi_reg *reg_base;
	struct device_node *nc;
	const __be32 *prop;
	u32 regval, csmode;
	int i, len, ret = 0;

	master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
	if (!master) {
		ret = -ENOMEM;
		goto err;
	}

	dev_set_drvdata(dev, master);

	mpc8xxx_spi_probe(dev, mem, irq);

	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
	master->setup = fsl_espi_setup;
	master->cleanup = fsl_espi_cleanup;
	master->transfer_one_message = fsl_espi_do_one_msg;
	master->prepare_transfer_hardware = fsl_espi_resume;
	master->unprepare_transfer_hardware = fsl_espi_suspend;

	mpc8xxx_spi = spi_master_get_devdata(master);
	mpc8xxx_spi->spi_remove = fsl_espi_remove;

	mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem));
	if (!mpc8xxx_spi->reg_base) {
		ret = -ENOMEM;
		goto err_probe;
	}

	reg_base = mpc8xxx_spi->reg_base;

	/* Register for SPI Interrupt */
	ret = request_irq(mpc8xxx_spi->irq, fsl_espi_irq,
			  0, "fsl_espi", mpc8xxx_spi);
	if (ret)
		goto free_irq;

	if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
		mpc8xxx_spi->rx_shift = 16;
		mpc8xxx_spi->tx_shift = 24;
	}

	/* SPI controller initializations */
	mpc8xxx_spi_write_reg(&reg_base->mode, 0);
	mpc8xxx_spi_write_reg(&reg_base->mask, 0);
	mpc8xxx_spi_write_reg(&reg_base->command, 0);
	mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);

	/* Init eSPI CS mode register */
	for_each_available_child_of_node(master->dev.of_node, nc) {
		/* get chip select */
		prop = of_get_property(nc, "reg", &len);
		if (!prop || len < sizeof(*prop))
			continue;
		i = be32_to_cpup(prop);
		if (i < 0 || i >= pdata->max_chipselect)
			continue;

		csmode = CSMODE_INIT_VAL;
		/* check if CSBEF is set in device tree */
		prop = of_get_property(nc, "fsl,csbef", &len);
		if (prop && len >= sizeof(*prop)) {
			csmode &= ~(CSMODE_BEF(0xf));
			csmode |= CSMODE_BEF(be32_to_cpup(prop));
		}
		/* check if CSAFT is set in device tree */
		prop = of_get_property(nc, "fsl,csaft", &len);
		if (prop && len >= sizeof(*prop)) {
			csmode &= ~(CSMODE_AFT(0xf));
			csmode |= CSMODE_AFT(be32_to_cpup(prop));
		}
		mpc8xxx_spi_write_reg(&reg_base->csmode[i], csmode);

		dev_info(dev, "cs=%d, init_csmode=0x%x\n", i, csmode);
	}

	/* Enable SPI interface */
	regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;

	mpc8xxx_spi_write_reg(&reg_base->mode, regval);

	ret = spi_register_master(master);
	if (ret < 0)
		goto unreg_master;

	dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq);

	return master;

unreg_master:
	free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
free_irq:
	iounmap(mpc8xxx_spi->reg_base);
err_probe:
	spi_master_put(master);
err:
	return ERR_PTR(ret);
}

static int of_fsl_espi_get_chipselects(struct device *dev)
{
	struct device_node *np = dev->of_node;
	struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
	const u32 *prop;
	int len;

	prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
	if (!prop || len < sizeof(*prop)) {
		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
		return -EINVAL;
	}

	pdata->max_chipselect = *prop;
	pdata->cs_control = NULL;

	return 0;
}

static int of_fsl_espi_probe(struct platform_device *ofdev)
{
	struct device *dev = &ofdev->dev;
	struct device_node *np = ofdev->dev.of_node;
	struct spi_master *master;
	struct resource mem;
	unsigned int irq;
	int ret = -ENOMEM;

	ret = of_mpc8xxx_spi_probe(ofdev);
	if (ret)
		return ret;

	ret = of_fsl_espi_get_chipselects(dev);
	if (ret)
		goto err;

	ret = of_address_to_resource(np, 0, &mem);
	if (ret)
		goto err;

	irq = irq_of_parse_and_map(np, 0);
	if (!irq) {
		ret = -EINVAL;
		goto err;
	}

	master = fsl_espi_probe(dev, &mem, irq);
	if (IS_ERR(master)) {
		ret = PTR_ERR(master);
		goto err;
	}

	return 0;

err:
	return ret;
}

static int of_fsl_espi_remove(struct platform_device *dev)
{
	return mpc8xxx_spi_remove(&dev->dev);
}

#ifdef CONFIG_PM_SLEEP
static int of_fsl_espi_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	int ret;

	ret = spi_master_suspend(master);
	if (ret) {
		dev_warn(dev, "cannot suspend master\n");
		return ret;
	}

	return fsl_espi_suspend(master);
}

static int of_fsl_espi_resume(struct device *dev)
{
	struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
	struct spi_master *master = dev_get_drvdata(dev);
	struct mpc8xxx_spi *mpc8xxx_spi;
	struct fsl_espi_reg *reg_base;
	u32 regval;
	int i;

	mpc8xxx_spi = spi_master_get_devdata(master);
	reg_base = mpc8xxx_spi->reg_base;

	/* SPI controller initializations */
	mpc8xxx_spi_write_reg(&reg_base->mode, 0);
	mpc8xxx_spi_write_reg(&reg_base->mask, 0);
	mpc8xxx_spi_write_reg(&reg_base->command, 0);
	mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);

	/* Init eSPI CS mode register */
	for (i = 0; i < pdata->max_chipselect; i++)
		mpc8xxx_spi_write_reg(&reg_base->csmode[i], CSMODE_INIT_VAL);

	/* Enable SPI interface */
	regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;

	mpc8xxx_spi_write_reg(&reg_base->mode, regval);

	return spi_master_resume(master);
}
#endif /* CONFIG_PM_SLEEP */

static const struct dev_pm_ops espi_pm = {
	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
};

static const struct of_device_id of_fsl_espi_match[] = {
	{ .compatible = "fsl,mpc8536-espi" },
	{}
};
MODULE_DEVICE_TABLE(of, of_fsl_espi_match);

static struct platform_driver fsl_espi_driver = {
	.driver = {
		.name = "fsl_espi",
		.of_match_table = of_fsl_espi_match,
		.pm = &espi_pm,
	},
	.probe		= of_fsl_espi_probe,
	.remove		= of_fsl_espi_remove,
};
module_platform_driver(fsl_espi_driver);

MODULE_AUTHOR("Mingkai Hu");
MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
MODULE_LICENSE("GPL");