Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 | /* * Copyright (c) 2015 Oracle. All rights reserved. * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. */ /* Lightweight memory registration using Fast Registration Work * Requests (FRWR). Also referred to sometimes as FRMR mode. * * FRWR features ordered asynchronous registration and deregistration * of arbitrarily sized memory regions. This is the fastest and safest * but most complex memory registration mode. */ /* Normal operation * * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG * Work Request (frmr_op_map). When the RDMA operation is finished, this * Memory Region is invalidated using a LOCAL_INV Work Request * (frmr_op_unmap). * * Typically these Work Requests are not signaled, and neither are RDMA * SEND Work Requests (with the exception of signaling occasionally to * prevent provider work queue overflows). This greatly reduces HCA * interrupt workload. * * As an optimization, frwr_op_unmap marks MRs INVALID before the * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on * rb_mws immediately so that no work (like managing a linked list * under a spinlock) is needed in the completion upcall. * * But this means that frwr_op_map() can occasionally encounter an MR * that is INVALID but the LOCAL_INV WR has not completed. Work Queue * ordering prevents a subsequent FAST_REG WR from executing against * that MR while it is still being invalidated. */ /* Transport recovery * * ->op_map and the transport connect worker cannot run at the same * time, but ->op_unmap can fire while the transport connect worker * is running. Thus MR recovery is handled in ->op_map, to guarantee * that recovered MRs are owned by a sending RPC, and not one where * ->op_unmap could fire at the same time transport reconnect is * being done. * * When the underlying transport disconnects, MRs are left in one of * three states: * * INVALID: The MR was not in use before the QP entered ERROR state. * (Or, the LOCAL_INV WR has not completed or flushed yet). * * STALE: The MR was being registered or unregistered when the QP * entered ERROR state, and the pending WR was flushed. * * VALID: The MR was registered before the QP entered ERROR state. * * When frwr_op_map encounters STALE and VALID MRs, they are recovered * with ib_dereg_mr and then are re-initialized. Beause MR recovery * allocates fresh resources, it is deferred to a workqueue, and the * recovered MRs are placed back on the rb_mws list when recovery is * complete. frwr_op_map allocates another MR for the current RPC while * the broken MR is reset. * * To ensure that frwr_op_map doesn't encounter an MR that is marked * INVALID but that is about to be flushed due to a previous transport * disconnect, the transport connect worker attempts to drain all * pending send queue WRs before the transport is reconnected. */ #include "xprt_rdma.h" #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_TRANS #endif static struct workqueue_struct *frwr_recovery_wq; #define FRWR_RECOVERY_WQ_FLAGS (WQ_UNBOUND | WQ_MEM_RECLAIM) int frwr_alloc_recovery_wq(void) { frwr_recovery_wq = alloc_workqueue("frwr_recovery", FRWR_RECOVERY_WQ_FLAGS, 0); return !frwr_recovery_wq ? -ENOMEM : 0; } void frwr_destroy_recovery_wq(void) { struct workqueue_struct *wq; if (!frwr_recovery_wq) return; wq = frwr_recovery_wq; frwr_recovery_wq = NULL; destroy_workqueue(wq); } /* Deferred reset of a single FRMR. Generate a fresh rkey by * replacing the MR. * * There's no recovery if this fails. The FRMR is abandoned, but * remains in rb_all. It will be cleaned up when the transport is * destroyed. */ static void __frwr_recovery_worker(struct work_struct *work) { struct rpcrdma_mw *r = container_of(work, struct rpcrdma_mw, r.frmr.fr_work); struct rpcrdma_xprt *r_xprt = r->r.frmr.fr_xprt; unsigned int depth = r_xprt->rx_ia.ri_max_frmr_depth; struct ib_pd *pd = r_xprt->rx_ia.ri_pd; if (ib_dereg_mr(r->r.frmr.fr_mr)) goto out_fail; r->r.frmr.fr_mr = ib_alloc_fast_reg_mr(pd, depth); if (IS_ERR(r->r.frmr.fr_mr)) goto out_fail; dprintk("RPC: %s: recovered FRMR %p\n", __func__, r); r->r.frmr.fr_state = FRMR_IS_INVALID; rpcrdma_put_mw(r_xprt, r); return; out_fail: pr_warn("RPC: %s: FRMR %p unrecovered\n", __func__, r); } /* A broken MR was discovered in a context that can't sleep. * Defer recovery to the recovery worker. */ static void __frwr_queue_recovery(struct rpcrdma_mw *r) { INIT_WORK(&r->r.frmr.fr_work, __frwr_recovery_worker); queue_work(frwr_recovery_wq, &r->r.frmr.fr_work); } static int __frwr_init(struct rpcrdma_mw *r, struct ib_pd *pd, struct ib_device *device, unsigned int depth) { struct rpcrdma_frmr *f = &r->r.frmr; int rc; f->fr_mr = ib_alloc_fast_reg_mr(pd, depth); if (IS_ERR(f->fr_mr)) goto out_mr_err; f->fr_pgl = ib_alloc_fast_reg_page_list(device, depth); if (IS_ERR(f->fr_pgl)) goto out_list_err; return 0; out_mr_err: rc = PTR_ERR(f->fr_mr); dprintk("RPC: %s: ib_alloc_fast_reg_mr status %i\n", __func__, rc); return rc; out_list_err: rc = PTR_ERR(f->fr_pgl); dprintk("RPC: %s: ib_alloc_fast_reg_page_list status %i\n", __func__, rc); ib_dereg_mr(f->fr_mr); return rc; } static void __frwr_release(struct rpcrdma_mw *r) { int rc; rc = ib_dereg_mr(r->r.frmr.fr_mr); if (rc) dprintk("RPC: %s: ib_dereg_mr status %i\n", __func__, rc); ib_free_fast_reg_page_list(r->r.frmr.fr_pgl); } static int frwr_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep, struct rpcrdma_create_data_internal *cdata) { struct ib_device_attr *devattr = &ia->ri_devattr; int depth, delta; ia->ri_max_frmr_depth = min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS, devattr->max_fast_reg_page_list_len); dprintk("RPC: %s: device's max FR page list len = %u\n", __func__, ia->ri_max_frmr_depth); /* Add room for frmr register and invalidate WRs. * 1. FRMR reg WR for head * 2. FRMR invalidate WR for head * 3. N FRMR reg WRs for pagelist * 4. N FRMR invalidate WRs for pagelist * 5. FRMR reg WR for tail * 6. FRMR invalidate WR for tail * 7. The RDMA_SEND WR */ depth = 7; /* Calculate N if the device max FRMR depth is smaller than * RPCRDMA_MAX_DATA_SEGS. */ if (ia->ri_max_frmr_depth < RPCRDMA_MAX_DATA_SEGS) { delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frmr_depth; do { depth += 2; /* FRMR reg + invalidate */ delta -= ia->ri_max_frmr_depth; } while (delta > 0); } ep->rep_attr.cap.max_send_wr *= depth; if (ep->rep_attr.cap.max_send_wr > devattr->max_qp_wr) { cdata->max_requests = devattr->max_qp_wr / depth; if (!cdata->max_requests) return -EINVAL; ep->rep_attr.cap.max_send_wr = cdata->max_requests * depth; } return 0; } /* FRWR mode conveys a list of pages per chunk segment. The * maximum length of that list is the FRWR page list depth. */ static size_t frwr_op_maxpages(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_ia *ia = &r_xprt->rx_ia; return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS, rpcrdma_max_segments(r_xprt) * ia->ri_max_frmr_depth); } /* If FAST_REG or LOCAL_INV failed, indicate the frmr needs to be reset. */ static void frwr_sendcompletion(struct ib_wc *wc) { struct rpcrdma_mw *r; if (likely(wc->status == IB_WC_SUCCESS)) return; /* WARNING: Only wr_id and status are reliable at this point */ r = (struct rpcrdma_mw *)(unsigned long)wc->wr_id; pr_warn("RPC: %s: frmr %p flushed, status %s (%d)\n", __func__, r, ib_wc_status_msg(wc->status), wc->status); r->r.frmr.fr_state = FRMR_IS_STALE; } static int frwr_op_init(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_buffer *buf = &r_xprt->rx_buf; struct ib_device *device = r_xprt->rx_ia.ri_device; unsigned int depth = r_xprt->rx_ia.ri_max_frmr_depth; struct ib_pd *pd = r_xprt->rx_ia.ri_pd; int i; spin_lock_init(&buf->rb_mwlock); INIT_LIST_HEAD(&buf->rb_mws); INIT_LIST_HEAD(&buf->rb_all); i = max_t(int, RPCRDMA_MAX_DATA_SEGS / depth, 1); i += 2; /* head + tail */ i *= buf->rb_max_requests; /* one set for each RPC slot */ dprintk("RPC: %s: initalizing %d FRMRs\n", __func__, i); while (i--) { struct rpcrdma_mw *r; int rc; r = kzalloc(sizeof(*r), GFP_KERNEL); if (!r) return -ENOMEM; rc = __frwr_init(r, pd, device, depth); if (rc) { kfree(r); return rc; } list_add(&r->mw_list, &buf->rb_mws); list_add(&r->mw_all, &buf->rb_all); r->mw_sendcompletion = frwr_sendcompletion; r->r.frmr.fr_xprt = r_xprt; } return 0; } /* Post a FAST_REG Work Request to register a memory region * for remote access via RDMA READ or RDMA WRITE. */ static int frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, int nsegs, bool writing) { struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct ib_device *device = ia->ri_device; enum dma_data_direction direction = rpcrdma_data_dir(writing); struct rpcrdma_mr_seg *seg1 = seg; struct rpcrdma_mw *mw; struct rpcrdma_frmr *frmr; struct ib_mr *mr; struct ib_send_wr fastreg_wr, *bad_wr; u8 key; int len, pageoff; int i, rc; int seg_len; u64 pa; int page_no; mw = seg1->rl_mw; seg1->rl_mw = NULL; do { if (mw) __frwr_queue_recovery(mw); mw = rpcrdma_get_mw(r_xprt); if (!mw) return -ENOMEM; } while (mw->r.frmr.fr_state != FRMR_IS_INVALID); frmr = &mw->r.frmr; frmr->fr_state = FRMR_IS_VALID; pageoff = offset_in_page(seg1->mr_offset); seg1->mr_offset -= pageoff; /* start of page */ seg1->mr_len += pageoff; len = -pageoff; if (nsegs > ia->ri_max_frmr_depth) nsegs = ia->ri_max_frmr_depth; for (page_no = i = 0; i < nsegs;) { rpcrdma_map_one(device, seg, direction); pa = seg->mr_dma; for (seg_len = seg->mr_len; seg_len > 0; seg_len -= PAGE_SIZE) { frmr->fr_pgl->page_list[page_no++] = pa; pa += PAGE_SIZE; } len += seg->mr_len; ++seg; ++i; /* Check for holes */ if ((i < nsegs && offset_in_page(seg->mr_offset)) || offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) break; } dprintk("RPC: %s: Using frmr %p to map %d segments (%d bytes)\n", __func__, mw, i, len); memset(&fastreg_wr, 0, sizeof(fastreg_wr)); fastreg_wr.wr_id = (unsigned long)(void *)mw; fastreg_wr.opcode = IB_WR_FAST_REG_MR; fastreg_wr.wr.fast_reg.iova_start = seg1->mr_dma + pageoff; fastreg_wr.wr.fast_reg.page_list = frmr->fr_pgl; fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT; fastreg_wr.wr.fast_reg.page_list_len = page_no; fastreg_wr.wr.fast_reg.length = len; fastreg_wr.wr.fast_reg.access_flags = writing ? IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : IB_ACCESS_REMOTE_READ; mr = frmr->fr_mr; key = (u8)(mr->rkey & 0x000000FF); ib_update_fast_reg_key(mr, ++key); fastreg_wr.wr.fast_reg.rkey = mr->rkey; DECR_CQCOUNT(&r_xprt->rx_ep); rc = ib_post_send(ia->ri_id->qp, &fastreg_wr, &bad_wr); if (rc) goto out_senderr; seg1->rl_mw = mw; seg1->mr_rkey = mr->rkey; seg1->mr_base = seg1->mr_dma + pageoff; seg1->mr_nsegs = i; seg1->mr_len = len; return i; out_senderr: dprintk("RPC: %s: ib_post_send status %i\n", __func__, rc); while (i--) rpcrdma_unmap_one(device, --seg); __frwr_queue_recovery(mw); return rc; } /* Post a LOCAL_INV Work Request to prevent further remote access * via RDMA READ or RDMA WRITE. */ static int frwr_op_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg) { struct rpcrdma_mr_seg *seg1 = seg; struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct rpcrdma_mw *mw = seg1->rl_mw; struct ib_send_wr invalidate_wr, *bad_wr; int rc, nsegs = seg->mr_nsegs; dprintk("RPC: %s: FRMR %p\n", __func__, mw); seg1->rl_mw = NULL; mw->r.frmr.fr_state = FRMR_IS_INVALID; memset(&invalidate_wr, 0, sizeof(invalidate_wr)); invalidate_wr.wr_id = (unsigned long)(void *)mw; invalidate_wr.opcode = IB_WR_LOCAL_INV; invalidate_wr.ex.invalidate_rkey = mw->r.frmr.fr_mr->rkey; DECR_CQCOUNT(&r_xprt->rx_ep); while (seg1->mr_nsegs--) rpcrdma_unmap_one(ia->ri_device, seg++); read_lock(&ia->ri_qplock); rc = ib_post_send(ia->ri_id->qp, &invalidate_wr, &bad_wr); read_unlock(&ia->ri_qplock); if (rc) goto out_err; rpcrdma_put_mw(r_xprt, mw); return nsegs; out_err: dprintk("RPC: %s: ib_post_send status %i\n", __func__, rc); __frwr_queue_recovery(mw); return nsegs; } static void frwr_op_destroy(struct rpcrdma_buffer *buf) { struct rpcrdma_mw *r; /* Ensure stale MWs for "buf" are no longer in flight */ flush_workqueue(frwr_recovery_wq); while (!list_empty(&buf->rb_all)) { r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all); list_del(&r->mw_all); __frwr_release(r); kfree(r); } } const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops = { .ro_map = frwr_op_map, .ro_unmap = frwr_op_unmap, .ro_open = frwr_op_open, .ro_maxpages = frwr_op_maxpages, .ro_init = frwr_op_init, .ro_destroy = frwr_op_destroy, .ro_displayname = "frwr", }; |