Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 | /* * Intel MIC Platform Software Stack (MPSS) * * Copyright(c) 2014 Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Intel MIC X100 DMA Driver. * * Adapted from IOAT dma driver. */ #include <linux/module.h> #include <linux/io.h> #include <linux/seq_file.h> #include <linux/vmalloc.h> #include "mic_x100_dma.h" #define MIC_DMA_MAX_XFER_SIZE_CARD (1 * 1024 * 1024 -\ MIC_DMA_ALIGN_BYTES) #define MIC_DMA_MAX_XFER_SIZE_HOST (1 * 1024 * 1024 >> 1) #define MIC_DMA_DESC_TYPE_SHIFT 60 #define MIC_DMA_MEMCPY_LEN_SHIFT 46 #define MIC_DMA_STAT_INTR_SHIFT 59 /* high-water mark for pushing dma descriptors */ static int mic_dma_pending_level = 4; /* Status descriptor is used to write a 64 bit value to a memory location */ enum mic_dma_desc_format_type { MIC_DMA_MEMCPY = 1, MIC_DMA_STATUS, }; static inline u32 mic_dma_hw_ring_inc(u32 val) { return (val + 1) % MIC_DMA_DESC_RX_SIZE; } static inline u32 mic_dma_hw_ring_dec(u32 val) { return val ? val - 1 : MIC_DMA_DESC_RX_SIZE - 1; } static inline void mic_dma_hw_ring_inc_head(struct mic_dma_chan *ch) { ch->head = mic_dma_hw_ring_inc(ch->head); } /* Prepare a memcpy desc */ static inline void mic_dma_memcpy_desc(struct mic_dma_desc *desc, dma_addr_t src_phys, dma_addr_t dst_phys, u64 size) { u64 qw0, qw1; qw0 = src_phys; qw0 |= (size >> MIC_DMA_ALIGN_SHIFT) << MIC_DMA_MEMCPY_LEN_SHIFT; qw1 = MIC_DMA_MEMCPY; qw1 <<= MIC_DMA_DESC_TYPE_SHIFT; qw1 |= dst_phys; desc->qw0 = qw0; desc->qw1 = qw1; } /* Prepare a status desc. with @data to be written at @dst_phys */ static inline void mic_dma_prep_status_desc(struct mic_dma_desc *desc, u64 data, dma_addr_t dst_phys, bool generate_intr) { u64 qw0, qw1; qw0 = data; qw1 = (u64) MIC_DMA_STATUS << MIC_DMA_DESC_TYPE_SHIFT | dst_phys; if (generate_intr) qw1 |= (1ULL << MIC_DMA_STAT_INTR_SHIFT); desc->qw0 = qw0; desc->qw1 = qw1; } static void mic_dma_cleanup(struct mic_dma_chan *ch) { struct dma_async_tx_descriptor *tx; u32 tail; u32 last_tail; spin_lock(&ch->cleanup_lock); tail = mic_dma_read_cmp_cnt(ch); /* * This is the barrier pair for smp_wmb() in fn. * mic_dma_tx_submit_unlock. It's required so that we read the * updated cookie value from tx->cookie. */ smp_rmb(); for (last_tail = ch->last_tail; tail != last_tail;) { tx = &ch->tx_array[last_tail]; if (tx->cookie) { dma_cookie_complete(tx); dmaengine_desc_get_callback_invoke(tx, NULL); tx->callback = NULL; } last_tail = mic_dma_hw_ring_inc(last_tail); } /* finish all completion callbacks before incrementing tail */ smp_mb(); ch->last_tail = last_tail; spin_unlock(&ch->cleanup_lock); } static u32 mic_dma_ring_count(u32 head, u32 tail) { u32 count; if (head >= tail) count = (tail - 0) + (MIC_DMA_DESC_RX_SIZE - head); else count = tail - head; return count - 1; } /* Returns the num. of free descriptors on success, -ENOMEM on failure */ static int mic_dma_avail_desc_ring_space(struct mic_dma_chan *ch, int required) { struct device *dev = mic_dma_ch_to_device(ch); u32 count; count = mic_dma_ring_count(ch->head, ch->last_tail); if (count < required) { mic_dma_cleanup(ch); count = mic_dma_ring_count(ch->head, ch->last_tail); } if (count < required) { dev_dbg(dev, "Not enough desc space"); dev_dbg(dev, "%s %d required=%u, avail=%u\n", __func__, __LINE__, required, count); return -ENOMEM; } else { return count; } } /* Program memcpy descriptors into the descriptor ring and update s/w head ptr*/ static int mic_dma_prog_memcpy_desc(struct mic_dma_chan *ch, dma_addr_t src, dma_addr_t dst, size_t len) { size_t current_transfer_len; size_t max_xfer_size = to_mic_dma_dev(ch)->max_xfer_size; /* 3 is added to make sure we have enough space for status desc */ int num_desc = len / max_xfer_size + 3; int ret; if (len % max_xfer_size) num_desc++; ret = mic_dma_avail_desc_ring_space(ch, num_desc); if (ret < 0) return ret; do { current_transfer_len = min(len, max_xfer_size); mic_dma_memcpy_desc(&ch->desc_ring[ch->head], src, dst, current_transfer_len); mic_dma_hw_ring_inc_head(ch); len -= current_transfer_len; dst = dst + current_transfer_len; src = src + current_transfer_len; } while (len > 0); return 0; } /* It's a h/w quirk and h/w needs 2 status descriptors for every status desc */ static void mic_dma_prog_intr(struct mic_dma_chan *ch) { mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0, ch->status_dest_micpa, false); mic_dma_hw_ring_inc_head(ch); mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0, ch->status_dest_micpa, true); mic_dma_hw_ring_inc_head(ch); } /* Wrapper function to program memcpy descriptors/status descriptors */ static int mic_dma_do_dma(struct mic_dma_chan *ch, int flags, dma_addr_t src, dma_addr_t dst, size_t len) { if (len && -ENOMEM == mic_dma_prog_memcpy_desc(ch, src, dst, len)) { return -ENOMEM; } else { /* 3 is the maximum number of status descriptors */ int ret = mic_dma_avail_desc_ring_space(ch, 3); if (ret < 0) return ret; } /* Above mic_dma_prog_memcpy_desc() makes sure we have enough space */ if (flags & DMA_PREP_FENCE) { mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0, ch->status_dest_micpa, false); mic_dma_hw_ring_inc_head(ch); } if (flags & DMA_PREP_INTERRUPT) mic_dma_prog_intr(ch); return 0; } static inline void mic_dma_issue_pending(struct dma_chan *ch) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); spin_lock(&mic_ch->issue_lock); /* * Write to head triggers h/w to act on the descriptors. * On MIC, writing the same head value twice causes * a h/w error. On second write, h/w assumes we filled * the entire ring & overwrote some of the descriptors. */ if (mic_ch->issued == mic_ch->submitted) goto out; mic_ch->issued = mic_ch->submitted; /* * make descriptor updates visible before advancing head, * this is purposefully not smp_wmb() since we are also * publishing the descriptor updates to a dma device */ wmb(); mic_dma_write_reg(mic_ch, MIC_DMA_REG_DHPR, mic_ch->issued); out: spin_unlock(&mic_ch->issue_lock); } static inline void mic_dma_update_pending(struct mic_dma_chan *ch) { if (mic_dma_ring_count(ch->issued, ch->submitted) > mic_dma_pending_level) mic_dma_issue_pending(&ch->api_ch); } static dma_cookie_t mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor *tx) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(tx->chan); dma_cookie_t cookie; dma_cookie_assign(tx); cookie = tx->cookie; /* * We need an smp write barrier here because another CPU might see * an update to submitted and update h/w head even before we * assigned a cookie to this tx. */ smp_wmb(); mic_ch->submitted = mic_ch->head; spin_unlock(&mic_ch->prep_lock); mic_dma_update_pending(mic_ch); return cookie; } static inline struct dma_async_tx_descriptor * allocate_tx(struct mic_dma_chan *ch) { u32 idx = mic_dma_hw_ring_dec(ch->head); struct dma_async_tx_descriptor *tx = &ch->tx_array[idx]; dma_async_tx_descriptor_init(tx, &ch->api_ch); tx->tx_submit = mic_dma_tx_submit_unlock; return tx; } /* Program a status descriptor with dst as address and value to be written */ static struct dma_async_tx_descriptor * mic_dma_prep_status_lock(struct dma_chan *ch, dma_addr_t dst, u64 src_val, unsigned long flags) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); int result; spin_lock(&mic_ch->prep_lock); result = mic_dma_avail_desc_ring_space(mic_ch, 4); if (result < 0) goto error; mic_dma_prep_status_desc(&mic_ch->desc_ring[mic_ch->head], src_val, dst, false); mic_dma_hw_ring_inc_head(mic_ch); result = mic_dma_do_dma(mic_ch, flags, 0, 0, 0); if (result < 0) goto error; return allocate_tx(mic_ch); error: dev_err(mic_dma_ch_to_device(mic_ch), "Error enqueueing dma status descriptor, error=%d\n", result); spin_unlock(&mic_ch->prep_lock); return NULL; } /* * Prepare a memcpy descriptor to be added to the ring. * Note that the temporary descriptor adds an extra overhead of copying the * descriptor to ring. So, we copy directly to the descriptor ring */ static struct dma_async_tx_descriptor * mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest, dma_addr_t dma_src, size_t len, unsigned long flags) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); struct device *dev = mic_dma_ch_to_device(mic_ch); int result; if (!len && !flags) return NULL; spin_lock(&mic_ch->prep_lock); result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len); if (result >= 0) return allocate_tx(mic_ch); dev_err(dev, "Error enqueueing dma, error=%d\n", result); spin_unlock(&mic_ch->prep_lock); return NULL; } static struct dma_async_tx_descriptor * mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); int ret; spin_lock(&mic_ch->prep_lock); ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0); if (!ret) return allocate_tx(mic_ch); spin_unlock(&mic_ch->prep_lock); return NULL; } /* Return the status of the transaction */ static enum dma_status mic_dma_tx_status(struct dma_chan *ch, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); if (DMA_COMPLETE != dma_cookie_status(ch, cookie, txstate)) mic_dma_cleanup(mic_ch); return dma_cookie_status(ch, cookie, txstate); } static irqreturn_t mic_dma_thread_fn(int irq, void *data) { mic_dma_cleanup((struct mic_dma_chan *)data); return IRQ_HANDLED; } static irqreturn_t mic_dma_intr_handler(int irq, void *data) { struct mic_dma_chan *ch = ((struct mic_dma_chan *)data); mic_dma_ack_interrupt(ch); return IRQ_WAKE_THREAD; } static int mic_dma_alloc_desc_ring(struct mic_dma_chan *ch) { u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring); struct device *dev = &to_mbus_device(ch)->dev; desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES); ch->desc_ring = kzalloc(desc_ring_size, GFP_KERNEL); if (!ch->desc_ring) return -ENOMEM; ch->desc_ring_micpa = dma_map_single(dev, ch->desc_ring, desc_ring_size, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, ch->desc_ring_micpa)) goto map_error; ch->tx_array = vzalloc(array_size(MIC_DMA_DESC_RX_SIZE, sizeof(*ch->tx_array))); if (!ch->tx_array) goto tx_error; return 0; tx_error: dma_unmap_single(dev, ch->desc_ring_micpa, desc_ring_size, DMA_BIDIRECTIONAL); map_error: kfree(ch->desc_ring); return -ENOMEM; } static void mic_dma_free_desc_ring(struct mic_dma_chan *ch) { u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring); vfree(ch->tx_array); desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES); dma_unmap_single(&to_mbus_device(ch)->dev, ch->desc_ring_micpa, desc_ring_size, DMA_BIDIRECTIONAL); kfree(ch->desc_ring); ch->desc_ring = NULL; } static void mic_dma_free_status_dest(struct mic_dma_chan *ch) { dma_unmap_single(&to_mbus_device(ch)->dev, ch->status_dest_micpa, L1_CACHE_BYTES, DMA_BIDIRECTIONAL); kfree(ch->status_dest); } static int mic_dma_alloc_status_dest(struct mic_dma_chan *ch) { struct device *dev = &to_mbus_device(ch)->dev; ch->status_dest = kzalloc(L1_CACHE_BYTES, GFP_KERNEL); if (!ch->status_dest) return -ENOMEM; ch->status_dest_micpa = dma_map_single(dev, ch->status_dest, L1_CACHE_BYTES, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, ch->status_dest_micpa)) { kfree(ch->status_dest); ch->status_dest = NULL; return -ENOMEM; } return 0; } static int mic_dma_check_chan(struct mic_dma_chan *ch) { if (mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR) || mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) & MIC_DMA_CHAN_QUIESCE) { mic_dma_disable_chan(ch); mic_dma_chan_mask_intr(ch); dev_err(mic_dma_ch_to_device(ch), "%s %d error setting up mic dma chan %d\n", __func__, __LINE__, ch->ch_num); return -EBUSY; } return 0; } static int mic_dma_chan_setup(struct mic_dma_chan *ch) { if (MIC_DMA_CHAN_MIC == ch->owner) mic_dma_chan_set_owner(ch); mic_dma_disable_chan(ch); mic_dma_chan_mask_intr(ch); mic_dma_write_reg(ch, MIC_DMA_REG_DCHERRMSK, 0); mic_dma_chan_set_desc_ring(ch); ch->last_tail = mic_dma_read_reg(ch, MIC_DMA_REG_DTPR); ch->head = ch->last_tail; ch->issued = 0; mic_dma_chan_unmask_intr(ch); mic_dma_enable_chan(ch); return mic_dma_check_chan(ch); } static void mic_dma_chan_destroy(struct mic_dma_chan *ch) { mic_dma_disable_chan(ch); mic_dma_chan_mask_intr(ch); } static int mic_dma_setup_irq(struct mic_dma_chan *ch) { ch->cookie = to_mbus_hw_ops(ch)->request_threaded_irq(to_mbus_device(ch), mic_dma_intr_handler, mic_dma_thread_fn, "mic dma_channel", ch, ch->ch_num); return PTR_ERR_OR_ZERO(ch->cookie); } static inline void mic_dma_free_irq(struct mic_dma_chan *ch) { to_mbus_hw_ops(ch)->free_irq(to_mbus_device(ch), ch->cookie, ch); } static int mic_dma_chan_init(struct mic_dma_chan *ch) { int ret = mic_dma_alloc_desc_ring(ch); if (ret) goto ring_error; ret = mic_dma_alloc_status_dest(ch); if (ret) goto status_error; ret = mic_dma_chan_setup(ch); if (ret) goto chan_error; return ret; chan_error: mic_dma_free_status_dest(ch); status_error: mic_dma_free_desc_ring(ch); ring_error: return ret; } static int mic_dma_drain_chan(struct mic_dma_chan *ch) { struct dma_async_tx_descriptor *tx; int err = 0; dma_cookie_t cookie; tx = mic_dma_prep_memcpy_lock(&ch->api_ch, 0, 0, 0, DMA_PREP_FENCE); if (!tx) { err = -ENOMEM; goto error; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) err = -ENOMEM; else err = dma_sync_wait(&ch->api_ch, cookie); if (err) { dev_err(mic_dma_ch_to_device(ch), "%s %d TO chan 0x%x\n", __func__, __LINE__, ch->ch_num); err = -EIO; } error: mic_dma_cleanup(ch); return err; } static inline void mic_dma_chan_uninit(struct mic_dma_chan *ch) { mic_dma_chan_destroy(ch); mic_dma_cleanup(ch); mic_dma_free_status_dest(ch); mic_dma_free_desc_ring(ch); } static int mic_dma_init(struct mic_dma_device *mic_dma_dev, enum mic_dma_chan_owner owner) { int i, first_chan = mic_dma_dev->start_ch; struct mic_dma_chan *ch; int ret; for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) { ch = &mic_dma_dev->mic_ch[i]; ch->ch_num = i; ch->owner = owner; spin_lock_init(&ch->cleanup_lock); spin_lock_init(&ch->prep_lock); spin_lock_init(&ch->issue_lock); ret = mic_dma_setup_irq(ch); if (ret) goto error; } return 0; error: for (i = i - 1; i >= first_chan; i--) mic_dma_free_irq(ch); return ret; } static void mic_dma_uninit(struct mic_dma_device *mic_dma_dev) { int i, first_chan = mic_dma_dev->start_ch; struct mic_dma_chan *ch; for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) { ch = &mic_dma_dev->mic_ch[i]; mic_dma_free_irq(ch); } } static int mic_dma_alloc_chan_resources(struct dma_chan *ch) { int ret = mic_dma_chan_init(to_mic_dma_chan(ch)); if (ret) return ret; return MIC_DMA_DESC_RX_SIZE; } static void mic_dma_free_chan_resources(struct dma_chan *ch) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); mic_dma_drain_chan(mic_ch); mic_dma_chan_uninit(mic_ch); } /* Set the fn. handlers and register the dma device with dma api */ static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev, enum mic_dma_chan_owner owner) { int i, first_chan = mic_dma_dev->start_ch; dma_cap_zero(mic_dma_dev->dma_dev.cap_mask); /* * This dma engine is not capable of host memory to host memory * transfers */ dma_cap_set(DMA_MEMCPY, mic_dma_dev->dma_dev.cap_mask); if (MIC_DMA_CHAN_HOST == owner) dma_cap_set(DMA_PRIVATE, mic_dma_dev->dma_dev.cap_mask); mic_dma_dev->dma_dev.device_alloc_chan_resources = mic_dma_alloc_chan_resources; mic_dma_dev->dma_dev.device_free_chan_resources = mic_dma_free_chan_resources; mic_dma_dev->dma_dev.device_tx_status = mic_dma_tx_status; mic_dma_dev->dma_dev.device_prep_dma_memcpy = mic_dma_prep_memcpy_lock; mic_dma_dev->dma_dev.device_prep_dma_imm_data = mic_dma_prep_status_lock; mic_dma_dev->dma_dev.device_prep_dma_interrupt = mic_dma_prep_interrupt_lock; mic_dma_dev->dma_dev.device_issue_pending = mic_dma_issue_pending; mic_dma_dev->dma_dev.copy_align = MIC_DMA_ALIGN_SHIFT; INIT_LIST_HEAD(&mic_dma_dev->dma_dev.channels); for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) { mic_dma_dev->mic_ch[i].api_ch.device = &mic_dma_dev->dma_dev; dma_cookie_init(&mic_dma_dev->mic_ch[i].api_ch); list_add_tail(&mic_dma_dev->mic_ch[i].api_ch.device_node, &mic_dma_dev->dma_dev.channels); } return dmaenginem_async_device_register(&mic_dma_dev->dma_dev); } /* * Initializes dma channels and registers the dma device with the * dma engine api. */ static struct mic_dma_device *mic_dma_dev_reg(struct mbus_device *mbdev, enum mic_dma_chan_owner owner) { struct mic_dma_device *mic_dma_dev; int ret; struct device *dev = &mbdev->dev; mic_dma_dev = devm_kzalloc(dev, sizeof(*mic_dma_dev), GFP_KERNEL); if (!mic_dma_dev) { ret = -ENOMEM; goto alloc_error; } mic_dma_dev->mbdev = mbdev; mic_dma_dev->dma_dev.dev = dev; mic_dma_dev->mmio = mbdev->mmio_va; if (MIC_DMA_CHAN_HOST == owner) { mic_dma_dev->start_ch = 0; mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_HOST; } else { mic_dma_dev->start_ch = 4; mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_CARD; } ret = mic_dma_init(mic_dma_dev, owner); if (ret) goto init_error; ret = mic_dma_register_dma_device(mic_dma_dev, owner); if (ret) goto reg_error; return mic_dma_dev; reg_error: mic_dma_uninit(mic_dma_dev); init_error: mic_dma_dev = NULL; alloc_error: dev_err(dev, "Error at %s %d ret=%d\n", __func__, __LINE__, ret); return mic_dma_dev; } static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev) { mic_dma_uninit(mic_dma_dev); } /* DEBUGFS CODE */ static int mic_dma_reg_seq_show(struct seq_file *s, void *pos) { struct mic_dma_device *mic_dma_dev = s->private; int i, chan_num, first_chan = mic_dma_dev->start_ch; struct mic_dma_chan *ch; seq_printf(s, "SBOX_DCR: %#x\n", mic_dma_mmio_read(&mic_dma_dev->mic_ch[first_chan], MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR)); seq_puts(s, "DMA Channel Registers\n"); seq_printf(s, "%-10s| %-10s %-10s %-10s %-10s %-10s", "Channel", "DCAR", "DTPR", "DHPR", "DRAR_HI", "DRAR_LO"); seq_printf(s, " %-11s %-14s %-10s\n", "DCHERR", "DCHERRMSK", "DSTAT"); for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) { ch = &mic_dma_dev->mic_ch[i]; chan_num = ch->ch_num; seq_printf(s, "%-10i| %-#10x %-#10x %-#10x %-#10x", chan_num, mic_dma_read_reg(ch, MIC_DMA_REG_DCAR), mic_dma_read_reg(ch, MIC_DMA_REG_DTPR), mic_dma_read_reg(ch, MIC_DMA_REG_DHPR), mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_HI)); seq_printf(s, " %-#10x %-#10x %-#14x %-#10x\n", mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_LO), mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR), mic_dma_read_reg(ch, MIC_DMA_REG_DCHERRMSK), mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT)); } return 0; } static int mic_dma_reg_debug_open(struct inode *inode, struct file *file) { return single_open(file, mic_dma_reg_seq_show, inode->i_private); } static int mic_dma_reg_debug_release(struct inode *inode, struct file *file) { return single_release(inode, file); } static const struct file_operations mic_dma_reg_ops = { .owner = THIS_MODULE, .open = mic_dma_reg_debug_open, .read = seq_read, .llseek = seq_lseek, .release = mic_dma_reg_debug_release }; /* Debugfs parent dir */ static struct dentry *mic_dma_dbg; static int mic_dma_driver_probe(struct mbus_device *mbdev) { struct mic_dma_device *mic_dma_dev; enum mic_dma_chan_owner owner; if (MBUS_DEV_DMA_MIC == mbdev->id.device) owner = MIC_DMA_CHAN_MIC; else owner = MIC_DMA_CHAN_HOST; mic_dma_dev = mic_dma_dev_reg(mbdev, owner); dev_set_drvdata(&mbdev->dev, mic_dma_dev); if (mic_dma_dbg) { mic_dma_dev->dbg_dir = debugfs_create_dir(dev_name(&mbdev->dev), mic_dma_dbg); if (mic_dma_dev->dbg_dir) debugfs_create_file("mic_dma_reg", 0444, mic_dma_dev->dbg_dir, mic_dma_dev, &mic_dma_reg_ops); } return 0; } static void mic_dma_driver_remove(struct mbus_device *mbdev) { struct mic_dma_device *mic_dma_dev; mic_dma_dev = dev_get_drvdata(&mbdev->dev); debugfs_remove_recursive(mic_dma_dev->dbg_dir); mic_dma_dev_unreg(mic_dma_dev); } static struct mbus_device_id id_table[] = { {MBUS_DEV_DMA_MIC, MBUS_DEV_ANY_ID}, {MBUS_DEV_DMA_HOST, MBUS_DEV_ANY_ID}, {0}, }; static struct mbus_driver mic_dma_driver = { .driver.name = KBUILD_MODNAME, .driver.owner = THIS_MODULE, .id_table = id_table, .probe = mic_dma_driver_probe, .remove = mic_dma_driver_remove, }; static int __init mic_x100_dma_init(void) { int rc = mbus_register_driver(&mic_dma_driver); if (rc) return rc; mic_dma_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL); return 0; } static void __exit mic_x100_dma_exit(void) { debugfs_remove_recursive(mic_dma_dbg); mbus_unregister_driver(&mic_dma_driver); } module_init(mic_x100_dma_init); module_exit(mic_x100_dma_exit); MODULE_DEVICE_TABLE(mbus, id_table); MODULE_AUTHOR("Intel Corporation"); MODULE_DESCRIPTION("Intel(R) MIC X100 DMA Driver"); MODULE_LICENSE("GPL v2"); |