Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | /* * dcookies.c * * Copyright 2002 John Levon <levon@movementarian.org> * * Persistent cookie-path mappings. These are used by * profilers to convert a per-task EIP value into something * non-transitory that can be processed at a later date. * This is done by locking the dentry/vfsmnt pair in the * kernel until released by the tasks needing the persistent * objects. The tag is simply an unsigned long that refers * to the pair and can be looked up from userspace. */ #include <linux/syscalls.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/mount.h> #include <linux/capability.h> #include <linux/dcache.h> #include <linux/mm.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/dcookies.h> #include <linux/mutex.h> #include <linux/path.h> #include <linux/compat.h> #include <linux/uaccess.h> /* The dcookies are allocated from a kmem_cache and * hashed onto a small number of lists. None of the * code here is particularly performance critical */ struct dcookie_struct { struct path path; struct list_head hash_list; }; static LIST_HEAD(dcookie_users); static DEFINE_MUTEX(dcookie_mutex); static struct kmem_cache *dcookie_cache __read_mostly; static struct list_head *dcookie_hashtable __read_mostly; static size_t hash_size __read_mostly; static inline int is_live(void) { return !(list_empty(&dcookie_users)); } /* The dentry is locked, its address will do for the cookie */ static inline unsigned long dcookie_value(struct dcookie_struct * dcs) { return (unsigned long)dcs->path.dentry; } static size_t dcookie_hash(unsigned long dcookie) { return (dcookie >> L1_CACHE_SHIFT) & (hash_size - 1); } static struct dcookie_struct * find_dcookie(unsigned long dcookie) { struct dcookie_struct *found = NULL; struct dcookie_struct * dcs; struct list_head * pos; struct list_head * list; list = dcookie_hashtable + dcookie_hash(dcookie); list_for_each(pos, list) { dcs = list_entry(pos, struct dcookie_struct, hash_list); if (dcookie_value(dcs) == dcookie) { found = dcs; break; } } return found; } static void hash_dcookie(struct dcookie_struct * dcs) { struct list_head * list = dcookie_hashtable + dcookie_hash(dcookie_value(dcs)); list_add(&dcs->hash_list, list); } static struct dcookie_struct *alloc_dcookie(const struct path *path) { struct dcookie_struct *dcs = kmem_cache_alloc(dcookie_cache, GFP_KERNEL); struct dentry *d; if (!dcs) return NULL; d = path->dentry; spin_lock(&d->d_lock); d->d_flags |= DCACHE_COOKIE; spin_unlock(&d->d_lock); dcs->path = *path; path_get(path); hash_dcookie(dcs); return dcs; } /* This is the main kernel-side routine that retrieves the cookie * value for a dentry/vfsmnt pair. */ int get_dcookie(const struct path *path, unsigned long *cookie) { int err = 0; struct dcookie_struct * dcs; mutex_lock(&dcookie_mutex); if (!is_live()) { err = -EINVAL; goto out; } if (path->dentry->d_flags & DCACHE_COOKIE) { dcs = find_dcookie((unsigned long)path->dentry); } else { dcs = alloc_dcookie(path); if (!dcs) { err = -ENOMEM; goto out; } } *cookie = dcookie_value(dcs); out: mutex_unlock(&dcookie_mutex); return err; } /* And here is where the userspace process can look up the cookie value * to retrieve the path. */ static int do_lookup_dcookie(u64 cookie64, char __user *buf, size_t len) { unsigned long cookie = (unsigned long)cookie64; int err = -EINVAL; char * kbuf; char * path; size_t pathlen; struct dcookie_struct * dcs; /* we could leak path information to users * without dir read permission without this */ if (!capable(CAP_SYS_ADMIN)) return -EPERM; mutex_lock(&dcookie_mutex); if (!is_live()) { err = -EINVAL; goto out; } if (!(dcs = find_dcookie(cookie))) goto out; err = -ENOMEM; kbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!kbuf) goto out; /* FIXME: (deleted) ? */ path = d_path(&dcs->path, kbuf, PAGE_SIZE); mutex_unlock(&dcookie_mutex); if (IS_ERR(path)) { err = PTR_ERR(path); goto out_free; } err = -ERANGE; pathlen = kbuf + PAGE_SIZE - path; if (pathlen <= len) { err = pathlen; if (copy_to_user(buf, path, pathlen)) err = -EFAULT; } out_free: kfree(kbuf); return err; out: mutex_unlock(&dcookie_mutex); return err; } SYSCALL_DEFINE3(lookup_dcookie, u64, cookie64, char __user *, buf, size_t, len) { return do_lookup_dcookie(cookie64, buf, len); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(lookup_dcookie, u32, w0, u32, w1, char __user *, buf, compat_size_t, len) { #ifdef __BIG_ENDIAN return do_lookup_dcookie(((u64)w0 << 32) | w1, buf, len); #else return do_lookup_dcookie(((u64)w1 << 32) | w0, buf, len); #endif } #endif static int dcookie_init(void) { struct list_head * d; unsigned int i, hash_bits; int err = -ENOMEM; dcookie_cache = kmem_cache_create("dcookie_cache", sizeof(struct dcookie_struct), 0, 0, NULL); if (!dcookie_cache) goto out; dcookie_hashtable = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!dcookie_hashtable) goto out_kmem; err = 0; /* * Find the power-of-two list-heads that can fit into the allocation.. * We don't guarantee that "sizeof(struct list_head)" is necessarily * a power-of-two. */ hash_size = PAGE_SIZE / sizeof(struct list_head); hash_bits = 0; do { hash_bits++; } while ((hash_size >> hash_bits) != 0); hash_bits--; /* * Re-calculate the actual number of entries and the mask * from the number of bits we can fit. */ hash_size = 1UL << hash_bits; /* And initialize the newly allocated array */ d = dcookie_hashtable; i = hash_size; do { INIT_LIST_HEAD(d); d++; i--; } while (i); out: return err; out_kmem: kmem_cache_destroy(dcookie_cache); goto out; } static void free_dcookie(struct dcookie_struct * dcs) { struct dentry *d = dcs->path.dentry; spin_lock(&d->d_lock); d->d_flags &= ~DCACHE_COOKIE; spin_unlock(&d->d_lock); path_put(&dcs->path); kmem_cache_free(dcookie_cache, dcs); } static void dcookie_exit(void) { struct list_head * list; struct list_head * pos; struct list_head * pos2; struct dcookie_struct * dcs; size_t i; for (i = 0; i < hash_size; ++i) { list = dcookie_hashtable + i; list_for_each_safe(pos, pos2, list) { dcs = list_entry(pos, struct dcookie_struct, hash_list); list_del(&dcs->hash_list); free_dcookie(dcs); } } kfree(dcookie_hashtable); kmem_cache_destroy(dcookie_cache); } struct dcookie_user { struct list_head next; }; struct dcookie_user * dcookie_register(void) { struct dcookie_user * user; mutex_lock(&dcookie_mutex); user = kmalloc(sizeof(struct dcookie_user), GFP_KERNEL); if (!user) goto out; if (!is_live() && dcookie_init()) goto out_free; list_add(&user->next, &dcookie_users); out: mutex_unlock(&dcookie_mutex); return user; out_free: kfree(user); user = NULL; goto out; } void dcookie_unregister(struct dcookie_user * user) { mutex_lock(&dcookie_mutex); list_del(&user->next); kfree(user); if (!is_live()) dcookie_exit(); mutex_unlock(&dcookie_mutex); } EXPORT_SYMBOL_GPL(dcookie_register); EXPORT_SYMBOL_GPL(dcookie_unregister); EXPORT_SYMBOL_GPL(get_dcookie); |