Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
/*
 * (c) Copyright 2002-2010, Ralink Technology, Inc.
 * Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
 * Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
 * Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2
 * as published by the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include "mt76x0.h"
#include "eeprom.h"
#include "trace.h"
#include "mcu.h"
#include "usb.h"

#include "initvals.h"

static void
mt76x0_set_wlan_state(struct mt76x0_dev *dev, u32 val, bool enable)
{
	int i;

	/* Note: we don't turn off WLAN_CLK because that makes the device
	 *	 not respond properly on the probe path.
	 *	 In case anyone (PSM?) wants to use this function we can
	 *	 bring the clock stuff back and fixup the probe path.
	 */

	if (enable)
		val |= (MT_WLAN_FUN_CTRL_WLAN_EN |
			MT_WLAN_FUN_CTRL_WLAN_CLK_EN);
	else
		val &= ~(MT_WLAN_FUN_CTRL_WLAN_EN);

	mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
	udelay(20);

	if (!enable)
		return;

	for (i = 200; i; i--) {
		val = mt76_rr(dev, MT_CMB_CTRL);

		if (val & MT_CMB_CTRL_XTAL_RDY && val & MT_CMB_CTRL_PLL_LD)
			break;

		udelay(20);
	}

	/* Note: vendor driver tries to disable/enable wlan here and retry
	 *       but the code which does it is so buggy it must have never
	 *       triggered, so don't bother.
	 */
	if (!i)
		dev_err(dev->mt76.dev, "Error: PLL and XTAL check failed!\n");
}

void mt76x0_chip_onoff(struct mt76x0_dev *dev, bool enable, bool reset)
{
	u32 val;

	mutex_lock(&dev->hw_atomic_mutex);

	val = mt76_rr(dev, MT_WLAN_FUN_CTRL);

	if (reset) {
		val |= MT_WLAN_FUN_CTRL_GPIO_OUT_EN;
		val &= ~MT_WLAN_FUN_CTRL_FRC_WL_ANT_SEL;

		if (val & MT_WLAN_FUN_CTRL_WLAN_EN) {
			val |= (MT_WLAN_FUN_CTRL_WLAN_RESET |
				MT_WLAN_FUN_CTRL_WLAN_RESET_RF);
			mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
			udelay(20);

			val &= ~(MT_WLAN_FUN_CTRL_WLAN_RESET |
				 MT_WLAN_FUN_CTRL_WLAN_RESET_RF);
		}
	}

	mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
	udelay(20);

	mt76x0_set_wlan_state(dev, val, enable);

	mutex_unlock(&dev->hw_atomic_mutex);
}

static void mt76x0_reset_csr_bbp(struct mt76x0_dev *dev)
{
	u32 val;

	val = mt76_rr(dev, MT_PBF_SYS_CTRL);
	val &= ~0x2000;
	mt76_wr(dev, MT_PBF_SYS_CTRL, val);

	mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR |
					 MT_MAC_SYS_CTRL_RESET_BBP);

	msleep(200);
}

static void mt76x0_init_usb_dma(struct mt76x0_dev *dev)
{
	u32 val;

	val = mt76_rr(dev, MT_USB_DMA_CFG);

	val |= FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_TOUT, MT_USB_AGGR_TIMEOUT) |
	       FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_LMT, MT_USB_AGGR_SIZE_LIMIT) |
	       MT_USB_DMA_CFG_RX_BULK_EN |
	       MT_USB_DMA_CFG_TX_BULK_EN;
	if (dev->in_max_packet == 512)
		val |= MT_USB_DMA_CFG_RX_BULK_AGG_EN;
	mt76_wr(dev, MT_USB_DMA_CFG, val);

	val = mt76_rr(dev, MT_COM_REG0);
	if (val & 1)
		dev_dbg(dev->mt76.dev, "MCU not ready\n");

	val = mt76_rr(dev, MT_USB_DMA_CFG);

	val |= MT_USB_DMA_CFG_RX_DROP_OR_PADDING;
	mt76_wr(dev, MT_USB_DMA_CFG, val);
	val &= ~MT_USB_DMA_CFG_RX_DROP_OR_PADDING;
	mt76_wr(dev, MT_USB_DMA_CFG, val);
}

#define RANDOM_WRITE(dev, tab) \
	mt76x0_write_reg_pairs(dev, MT_MCU_MEMMAP_WLAN, tab, ARRAY_SIZE(tab));

static int mt76x0_init_bbp(struct mt76x0_dev *dev)
{
	int ret, i;

	ret = mt76x0_wait_bbp_ready(dev);
	if (ret)
		return ret;

	RANDOM_WRITE(dev, mt76x0_bbp_init_tab);

	for (i = 0; i < ARRAY_SIZE(mt76x0_bbp_switch_tab); i++) {
		const struct mt76x0_bbp_switch_item *item = &mt76x0_bbp_switch_tab[i];
		const struct mt76_reg_pair *pair = &item->reg_pair;

		if (((RF_G_BAND | RF_BW_20) & item->bw_band) == (RF_G_BAND | RF_BW_20))
			mt76_wr(dev, pair->reg, pair->value);
	}

	RANDOM_WRITE(dev, mt76x0_dcoc_tab);

	return 0;
}

static void
mt76_init_beacon_offsets(struct mt76x0_dev *dev)
{
	u16 base = MT_BEACON_BASE;
	u32 regs[4] = {};
	int i;

	for (i = 0; i < 16; i++) {
		u16 addr = dev->beacon_offsets[i];

		regs[i / 4] |= ((addr - base) / 64) << (8 * (i % 4));
	}

	for (i = 0; i < 4; i++)
		mt76_wr(dev, MT_BCN_OFFSET(i), regs[i]);
}

static void mt76x0_init_mac_registers(struct mt76x0_dev *dev)
{
	u32 reg;

	RANDOM_WRITE(dev, common_mac_reg_table);

	mt76_init_beacon_offsets(dev);

	/* Enable PBF and MAC clock SYS_CTRL[11:10] = 0x3 */
	RANDOM_WRITE(dev, mt76x0_mac_reg_table);

	/* Release BBP and MAC reset MAC_SYS_CTRL[1:0] = 0x0 */
	reg = mt76_rr(dev, MT_MAC_SYS_CTRL);
	reg &= ~0x3;
	mt76_wr(dev, MT_MAC_SYS_CTRL, reg);

	if (is_mt7610e(dev)) {
		/* Disable COEX_EN */
		reg = mt76_rr(dev, MT_COEXCFG0);
		reg &= 0xFFFFFFFE;
		mt76_wr(dev, MT_COEXCFG0, reg);
	}

	/* Set 0x141C[15:12]=0xF */
	reg = mt76_rr(dev, MT_EXT_CCA_CFG);
	reg |= 0x0000F000;
	mt76_wr(dev, MT_EXT_CCA_CFG, reg);

	mt76_clear(dev, MT_FCE_L2_STUFF, MT_FCE_L2_STUFF_WR_MPDU_LEN_EN);

	/*
		TxRing 9 is for Mgmt frame.
		TxRing 8 is for In-band command frame.
		WMM_RG0_TXQMA: This register setting is for FCE to define the rule of TxRing 9.
		WMM_RG1_TXQMA: This register setting is for FCE to define the rule of TxRing 8.
	*/
	reg = mt76_rr(dev, MT_WMM_CTRL);
	reg &= ~0x000003FF;
	reg |= 0x00000201;
	mt76_wr(dev, MT_WMM_CTRL, reg);

	/* TODO: Probably not needed */
	mt76_wr(dev, 0x7028, 0);
	mt76_wr(dev, 0x7010, 0);
	mt76_wr(dev, 0x7024, 0);
	msleep(10);
}

static int mt76x0_init_wcid_mem(struct mt76x0_dev *dev)
{
	u32 *vals;
	int i, ret;

	vals = kmalloc(sizeof(*vals) * N_WCIDS * 2, GFP_KERNEL);
	if (!vals)
		return -ENOMEM;

	for (i = 0; i < N_WCIDS; i++)  {
		vals[i * 2] = 0xffffffff;
		vals[i * 2 + 1] = 0x00ffffff;
	}

	ret = mt76x0_burst_write_regs(dev, MT_WCID_ADDR_BASE,
				      vals, N_WCIDS * 2);
	kfree(vals);

	return ret;
}

static int mt76x0_init_key_mem(struct mt76x0_dev *dev)
{
	u32 vals[4] = {};

	return mt76x0_burst_write_regs(dev, MT_SKEY_MODE_BASE_0,
					vals, ARRAY_SIZE(vals));
}

static int mt76x0_init_wcid_attr_mem(struct mt76x0_dev *dev)
{
	u32 *vals;
	int i, ret;

	vals = kmalloc(sizeof(*vals) * N_WCIDS * 2, GFP_KERNEL);
	if (!vals)
		return -ENOMEM;

	for (i = 0; i < N_WCIDS * 2; i++)
		vals[i] = 1;

	ret = mt76x0_burst_write_regs(dev, MT_WCID_ATTR_BASE,
				      vals, N_WCIDS * 2);
	kfree(vals);

	return ret;
}

static void mt76x0_reset_counters(struct mt76x0_dev *dev)
{
	mt76_rr(dev, MT_RX_STA_CNT0);
	mt76_rr(dev, MT_RX_STA_CNT1);
	mt76_rr(dev, MT_RX_STA_CNT2);
	mt76_rr(dev, MT_TX_STA_CNT0);
	mt76_rr(dev, MT_TX_STA_CNT1);
	mt76_rr(dev, MT_TX_STA_CNT2);
}

int mt76x0_mac_start(struct mt76x0_dev *dev)
{
	mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX);

	if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
		       MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 200000))
		return -ETIMEDOUT;

	dev->rxfilter = MT_RX_FILTR_CFG_CRC_ERR |
		MT_RX_FILTR_CFG_PHY_ERR | MT_RX_FILTR_CFG_PROMISC |
		MT_RX_FILTR_CFG_VER_ERR | MT_RX_FILTR_CFG_DUP |
		MT_RX_FILTR_CFG_CFACK | MT_RX_FILTR_CFG_CFEND |
		MT_RX_FILTR_CFG_ACK | MT_RX_FILTR_CFG_CTS |
		MT_RX_FILTR_CFG_RTS | MT_RX_FILTR_CFG_PSPOLL |
		MT_RX_FILTR_CFG_BA | MT_RX_FILTR_CFG_CTRL_RSV;
	mt76_wr(dev, MT_RX_FILTR_CFG, dev->rxfilter);

	mt76_wr(dev, MT_MAC_SYS_CTRL,
		   MT_MAC_SYS_CTRL_ENABLE_TX | MT_MAC_SYS_CTRL_ENABLE_RX);

	if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
		       MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 50))
		return -ETIMEDOUT;

	return 0;
}

static void mt76x0_mac_stop_hw(struct mt76x0_dev *dev)
{
	int i, ok;

	if (test_bit(MT76_REMOVED, &dev->mt76.state))
		return;

	mt76_clear(dev, MT_BEACON_TIME_CFG, MT_BEACON_TIME_CFG_TIMER_EN |
		   MT_BEACON_TIME_CFG_SYNC_MODE | MT_BEACON_TIME_CFG_TBTT_EN |
		   MT_BEACON_TIME_CFG_BEACON_TX);

	if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_TX_BUSY, 0, 1000))
		dev_warn(dev->mt76.dev, "Warning: TX DMA did not stop!\n");

	/* Page count on TxQ */
	i = 200;
	while (i-- && ((mt76_rr(dev, 0x0438) & 0xffffffff) ||
		       (mt76_rr(dev, 0x0a30) & 0x000000ff) ||
		       (mt76_rr(dev, 0x0a34) & 0x00ff00ff)))
		msleep(10);

	if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_TX, 0, 1000))
		dev_warn(dev->mt76.dev, "Warning: MAC TX did not stop!\n");

	mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_RX |
					 MT_MAC_SYS_CTRL_ENABLE_TX);

	/* Page count on RxQ */
	ok = 0;
	i = 200;
	while (i--) {
		if (!(mt76_rr(dev, MT_RXQ_STA) & 0x00ff0000) &&
		    !mt76_rr(dev, 0x0a30) &&
		    !mt76_rr(dev, 0x0a34)) {
			if (ok++ > 5)
				break;
			continue;
		}
		msleep(1);
	}

	if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_RX, 0, 1000))
		dev_warn(dev->mt76.dev, "Warning: MAC RX did not stop!\n");

	if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_RX_BUSY, 0, 1000))
		dev_warn(dev->mt76.dev, "Warning: RX DMA did not stop!\n");
}

void mt76x0_mac_stop(struct mt76x0_dev *dev)
{
	mt76x0_mac_stop_hw(dev);
	flush_delayed_work(&dev->stat_work);
	cancel_delayed_work_sync(&dev->stat_work);
}

static void mt76x0_stop_hardware(struct mt76x0_dev *dev)
{
	mt76x0_chip_onoff(dev, false, false);
}

int mt76x0_init_hardware(struct mt76x0_dev *dev, bool reset)
{
	static const u16 beacon_offsets[16] = {
		/* 512 byte per beacon */
		0xc000,	0xc200,	0xc400,	0xc600,
		0xc800,	0xca00,	0xcc00,	0xce00,
		0xd000,	0xd200,	0xd400,	0xd600,
		0xd800,	0xda00,	0xdc00,	0xde00
	};
	int ret;

	dev->beacon_offsets = beacon_offsets;

	mt76x0_chip_onoff(dev, true, reset);

	ret = mt76x0_wait_asic_ready(dev);
	if (ret)
		goto err;
	ret = mt76x0_mcu_init(dev);
	if (ret)
		goto err;

	if (!mt76_poll_msec(dev, MT_WPDMA_GLO_CFG,
			    MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
			    MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 100)) {
		ret = -EIO;
		goto err;
	}

	/* Wait for ASIC ready after FW load. */
	ret = mt76x0_wait_asic_ready(dev);
	if (ret)
		goto err;

	mt76x0_reset_csr_bbp(dev);
	mt76x0_init_usb_dma(dev);

	mt76_wr(dev, MT_HEADER_TRANS_CTRL_REG, 0x0);
	mt76_wr(dev, MT_TSO_CTRL, 0x0);

	ret = mt76x0_mcu_cmd_init(dev);
	if (ret)
		goto err;
	ret = mt76x0_dma_init(dev);
	if (ret)
		goto err_mcu;

	mt76x0_init_mac_registers(dev);

	if (!mt76_poll_msec(dev, MT_MAC_STATUS,
			    MT_MAC_STATUS_TX | MT_MAC_STATUS_RX, 0, 1000)) {
		ret = -EIO;
		goto err_rx;
	}

	ret = mt76x0_init_bbp(dev);
	if (ret)
		goto err_rx;

	ret = mt76x0_init_wcid_mem(dev);
	if (ret)
		goto err_rx;
	ret = mt76x0_init_key_mem(dev);
	if (ret)
		goto err_rx;
	ret = mt76x0_init_wcid_attr_mem(dev);
	if (ret)
		goto err_rx;

	mt76_clear(dev, MT_BEACON_TIME_CFG, (MT_BEACON_TIME_CFG_TIMER_EN |
					     MT_BEACON_TIME_CFG_SYNC_MODE |
					     MT_BEACON_TIME_CFG_TBTT_EN |
					     MT_BEACON_TIME_CFG_BEACON_TX));

	mt76x0_reset_counters(dev);

	mt76_rmw(dev, MT_US_CYC_CFG, MT_US_CYC_CNT, 0x1e);

	mt76_wr(dev, MT_TXOP_CTRL_CFG,
		   FIELD_PREP(MT_TXOP_TRUN_EN, 0x3f) |
		   FIELD_PREP(MT_TXOP_EXT_CCA_DLY, 0x58));

	ret = mt76x0_eeprom_init(dev);
	if (ret)
		goto err_rx;

	mt76x0_phy_init(dev);
	return 0;

err_rx:
	mt76x0_dma_cleanup(dev);
err_mcu:
	mt76x0_mcu_cmd_deinit(dev);
err:
	mt76x0_chip_onoff(dev, false, false);
	return ret;
}

void mt76x0_cleanup(struct mt76x0_dev *dev)
{
	if (!test_and_clear_bit(MT76_STATE_INITIALIZED, &dev->mt76.state))
		return;

	mt76x0_stop_hardware(dev);
	mt76x0_dma_cleanup(dev);
	mt76x0_mcu_cmd_deinit(dev);
}

struct mt76x0_dev *mt76x0_alloc_device(struct device *pdev)
{
	struct ieee80211_hw *hw;
	struct mt76x0_dev *dev;

	hw = ieee80211_alloc_hw(sizeof(*dev), &mt76x0_ops);
	if (!hw)
		return NULL;

	dev = hw->priv;
	dev->mt76.dev = pdev;
	dev->mt76.hw = hw;
	mutex_init(&dev->usb_ctrl_mtx);
	mutex_init(&dev->reg_atomic_mutex);
	mutex_init(&dev->hw_atomic_mutex);
	mutex_init(&dev->mutex);
	spin_lock_init(&dev->tx_lock);
	spin_lock_init(&dev->rx_lock);
	spin_lock_init(&dev->mt76.lock);
	spin_lock_init(&dev->mac_lock);
	spin_lock_init(&dev->con_mon_lock);
	atomic_set(&dev->avg_ampdu_len, 1);
	skb_queue_head_init(&dev->tx_skb_done);

	dev->stat_wq = alloc_workqueue("mt76x0", WQ_UNBOUND, 0);
	if (!dev->stat_wq) {
		ieee80211_free_hw(hw);
		return NULL;
	}

	return dev;
}

#define CHAN2G(_idx, _freq) {			\
	.band = NL80211_BAND_2GHZ,		\
	.center_freq = (_freq),			\
	.hw_value = (_idx),			\
	.max_power = 30,			\
}

static const struct ieee80211_channel mt76_channels_2ghz[] = {
	CHAN2G(1, 2412),
	CHAN2G(2, 2417),
	CHAN2G(3, 2422),
	CHAN2G(4, 2427),
	CHAN2G(5, 2432),
	CHAN2G(6, 2437),
	CHAN2G(7, 2442),
	CHAN2G(8, 2447),
	CHAN2G(9, 2452),
	CHAN2G(10, 2457),
	CHAN2G(11, 2462),
	CHAN2G(12, 2467),
	CHAN2G(13, 2472),
	CHAN2G(14, 2484),
};

#define CHAN5G(_idx, _freq) {			\
	.band = NL80211_BAND_5GHZ,		\
	.center_freq = (_freq),			\
	.hw_value = (_idx),			\
	.max_power = 30,			\
}

static const struct ieee80211_channel mt76_channels_5ghz[] = {
	CHAN5G(36, 5180),
	CHAN5G(40, 5200),
	CHAN5G(44, 5220),
	CHAN5G(46, 5230),
	CHAN5G(48, 5240),
	CHAN5G(52, 5260),
	CHAN5G(56, 5280),
	CHAN5G(60, 5300),
	CHAN5G(64, 5320),

	CHAN5G(100, 5500),
	CHAN5G(104, 5520),
	CHAN5G(108, 5540),
	CHAN5G(112, 5560),
	CHAN5G(116, 5580),
	CHAN5G(120, 5600),
	CHAN5G(124, 5620),
	CHAN5G(128, 5640),
	CHAN5G(132, 5660),
	CHAN5G(136, 5680),
	CHAN5G(140, 5700),
};

#define CCK_RATE(_idx, _rate) {					\
	.bitrate = _rate,					\
	.flags = IEEE80211_RATE_SHORT_PREAMBLE,			\
	.hw_value = (MT_PHY_TYPE_CCK << 8) | _idx,		\
	.hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + _idx),	\
}

#define OFDM_RATE(_idx, _rate) {				\
	.bitrate = _rate,					\
	.hw_value = (MT_PHY_TYPE_OFDM << 8) | _idx,		\
	.hw_value_short = (MT_PHY_TYPE_OFDM << 8) | _idx,	\
}

static struct ieee80211_rate mt76_rates[] = {
	CCK_RATE(0, 10),
	CCK_RATE(1, 20),
	CCK_RATE(2, 55),
	CCK_RATE(3, 110),
	OFDM_RATE(0, 60),
	OFDM_RATE(1, 90),
	OFDM_RATE(2, 120),
	OFDM_RATE(3, 180),
	OFDM_RATE(4, 240),
	OFDM_RATE(5, 360),
	OFDM_RATE(6, 480),
	OFDM_RATE(7, 540),
};

static int
mt76_init_sband(struct mt76x0_dev *dev, struct ieee80211_supported_band *sband,
		const struct ieee80211_channel *chan, int n_chan,
		struct ieee80211_rate *rates, int n_rates)
{
	struct ieee80211_sta_ht_cap *ht_cap;
	void *chanlist;
	int size;

	size = n_chan * sizeof(*chan);
	chanlist = devm_kmemdup(dev->mt76.dev, chan, size, GFP_KERNEL);
	if (!chanlist)
		return -ENOMEM;

	sband->channels = chanlist;
	sband->n_channels = n_chan;
	sband->bitrates = rates;
	sband->n_bitrates = n_rates;

	ht_cap = &sband->ht_cap;
	ht_cap->ht_supported = true;
	ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
		      IEEE80211_HT_CAP_GRN_FLD |
		      IEEE80211_HT_CAP_SGI_20 |
		      IEEE80211_HT_CAP_SGI_40 |
		      (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);

	ht_cap->mcs.rx_mask[0] = 0xff;
	ht_cap->mcs.rx_mask[4] = 0x1;
	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
	ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;

	return 0;
}

static int
mt76_init_sband_2g(struct mt76x0_dev *dev)
{
	dev->mt76.hw->wiphy->bands[NL80211_BAND_2GHZ] = &dev->mt76.sband_2g.sband;

	WARN_ON(dev->ee->reg.start - 1 + dev->ee->reg.num >
		ARRAY_SIZE(mt76_channels_2ghz));


	return mt76_init_sband(dev, &dev->mt76.sband_2g.sband,
			       mt76_channels_2ghz, ARRAY_SIZE(mt76_channels_2ghz),
			       mt76_rates, ARRAY_SIZE(mt76_rates));
}

static int
mt76_init_sband_5g(struct mt76x0_dev *dev)
{
	dev->mt76.hw->wiphy->bands[NL80211_BAND_5GHZ] = &dev->mt76.sband_5g.sband;

	return mt76_init_sband(dev, &dev->mt76.sband_5g.sband,
			       mt76_channels_5ghz, ARRAY_SIZE(mt76_channels_5ghz),
			       mt76_rates + 4, ARRAY_SIZE(mt76_rates) - 4);
}


int mt76x0_register_device(struct mt76x0_dev *dev)
{
	struct ieee80211_hw *hw = dev->mt76.hw;
	struct wiphy *wiphy = hw->wiphy;
	int ret;

	/* Reserve WCID 0 for mcast - thanks to this APs WCID will go to
	 * entry no. 1 like it does in the vendor driver.
	 */
	dev->wcid_mask[0] |= 1;

	/* init fake wcid for monitor interfaces */
	dev->mon_wcid = devm_kmalloc(dev->mt76.dev, sizeof(*dev->mon_wcid),
				     GFP_KERNEL);
	if (!dev->mon_wcid)
		return -ENOMEM;
	dev->mon_wcid->idx = 0xff;
	dev->mon_wcid->hw_key_idx = -1;

	SET_IEEE80211_DEV(hw, dev->mt76.dev);

	hw->queues = 4;
	ieee80211_hw_set(hw, SIGNAL_DBM);
	ieee80211_hw_set(hw, PS_NULLFUNC_STACK);
	ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
	ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
	ieee80211_hw_set(hw, MFP_CAPABLE);
	hw->max_rates = 1;
	hw->max_report_rates = 7;
	hw->max_rate_tries = 1;

	hw->sta_data_size = sizeof(struct mt76_sta);
	hw->vif_data_size = sizeof(struct mt76_vif);

	SET_IEEE80211_PERM_ADDR(hw, dev->macaddr);

	wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR;
	wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);

	if (dev->ee->has_2ghz) {
		ret = mt76_init_sband_2g(dev);
		if (ret)
			return ret;
	}

	if (dev->ee->has_5ghz) {
		ret = mt76_init_sband_5g(dev);
		if (ret)
			return ret;
	}

	dev->mt76.chandef.chan = &dev->mt76.sband_2g.sband.channels[0];

	INIT_DELAYED_WORK(&dev->mac_work, mt76x0_mac_work);
	INIT_DELAYED_WORK(&dev->stat_work, mt76x0_tx_stat);

	ret = ieee80211_register_hw(hw);
	if (ret)
		return ret;

	mt76x0_init_debugfs(dev);

	return 0;
}