Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SIGNAL_H #define _LINUX_SIGNAL_H #include <linux/bug.h> #include <linux/signal_types.h> #include <linux/string.h> struct task_struct; /* for sysctl */ extern int print_fatal_signals; static inline void copy_siginfo(struct siginfo *to, const struct siginfo *from) { memcpy(to, from, sizeof(*to)); } static inline void clear_siginfo(struct siginfo *info) { memset(info, 0, sizeof(*info)); } int copy_siginfo_to_user(struct siginfo __user *to, const struct siginfo *from); enum siginfo_layout { SIL_KILL, SIL_TIMER, SIL_POLL, SIL_FAULT, SIL_FAULT_MCEERR, SIL_FAULT_BNDERR, SIL_FAULT_PKUERR, SIL_CHLD, SIL_RT, SIL_SYS, }; enum siginfo_layout siginfo_layout(unsigned sig, int si_code); /* * Define some primitives to manipulate sigset_t. */ #ifndef __HAVE_ARCH_SIG_BITOPS #include <linux/bitops.h> /* We don't use <linux/bitops.h> for these because there is no need to be atomic. */ static inline void sigaddset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] |= 1UL << sig; else set->sig[sig / _NSIG_BPW] |= 1UL << (sig % _NSIG_BPW); } static inline void sigdelset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] &= ~(1UL << sig); else set->sig[sig / _NSIG_BPW] &= ~(1UL << (sig % _NSIG_BPW)); } static inline int sigismember(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) return 1 & (set->sig[0] >> sig); else return 1 & (set->sig[sig / _NSIG_BPW] >> (sig % _NSIG_BPW)); } #endif /* __HAVE_ARCH_SIG_BITOPS */ static inline int sigisemptyset(sigset_t *set) { switch (_NSIG_WORDS) { case 4: return (set->sig[3] | set->sig[2] | set->sig[1] | set->sig[0]) == 0; case 2: return (set->sig[1] | set->sig[0]) == 0; case 1: return set->sig[0] == 0; default: BUILD_BUG(); return 0; } } static inline int sigequalsets(const sigset_t *set1, const sigset_t *set2) { switch (_NSIG_WORDS) { case 4: return (set1->sig[3] == set2->sig[3]) && (set1->sig[2] == set2->sig[2]) && (set1->sig[1] == set2->sig[1]) && (set1->sig[0] == set2->sig[0]); case 2: return (set1->sig[1] == set2->sig[1]) && (set1->sig[0] == set2->sig[0]); case 1: return set1->sig[0] == set2->sig[0]; } return 0; } #define sigmask(sig) (1UL << ((sig) - 1)) #ifndef __HAVE_ARCH_SIG_SETOPS #include <linux/string.h> #define _SIG_SET_BINOP(name, op) \ static inline void name(sigset_t *r, const sigset_t *a, const sigset_t *b) \ { \ unsigned long a0, a1, a2, a3, b0, b1, b2, b3; \ \ switch (_NSIG_WORDS) { \ case 4: \ a3 = a->sig[3]; a2 = a->sig[2]; \ b3 = b->sig[3]; b2 = b->sig[2]; \ r->sig[3] = op(a3, b3); \ r->sig[2] = op(a2, b2); \ case 2: \ a1 = a->sig[1]; b1 = b->sig[1]; \ r->sig[1] = op(a1, b1); \ case 1: \ a0 = a->sig[0]; b0 = b->sig[0]; \ r->sig[0] = op(a0, b0); \ break; \ default: \ BUILD_BUG(); \ } \ } #define _sig_or(x,y) ((x) | (y)) _SIG_SET_BINOP(sigorsets, _sig_or) #define _sig_and(x,y) ((x) & (y)) _SIG_SET_BINOP(sigandsets, _sig_and) #define _sig_andn(x,y) ((x) & ~(y)) _SIG_SET_BINOP(sigandnsets, _sig_andn) #undef _SIG_SET_BINOP #undef _sig_or #undef _sig_and #undef _sig_andn #define _SIG_SET_OP(name, op) \ static inline void name(sigset_t *set) \ { \ switch (_NSIG_WORDS) { \ case 4: set->sig[3] = op(set->sig[3]); \ set->sig[2] = op(set->sig[2]); \ case 2: set->sig[1] = op(set->sig[1]); \ case 1: set->sig[0] = op(set->sig[0]); \ break; \ default: \ BUILD_BUG(); \ } \ } #define _sig_not(x) (~(x)) _SIG_SET_OP(signotset, _sig_not) #undef _SIG_SET_OP #undef _sig_not static inline void sigemptyset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, 0, sizeof(sigset_t)); break; case 2: set->sig[1] = 0; case 1: set->sig[0] = 0; break; } } static inline void sigfillset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, -1, sizeof(sigset_t)); break; case 2: set->sig[1] = -1; case 1: set->sig[0] = -1; break; } } /* Some extensions for manipulating the low 32 signals in particular. */ static inline void sigaddsetmask(sigset_t *set, unsigned long mask) { set->sig[0] |= mask; } static inline void sigdelsetmask(sigset_t *set, unsigned long mask) { set->sig[0] &= ~mask; } static inline int sigtestsetmask(sigset_t *set, unsigned long mask) { return (set->sig[0] & mask) != 0; } static inline void siginitset(sigset_t *set, unsigned long mask) { set->sig[0] = mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], 0, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = 0; case 1: ; } } static inline void siginitsetinv(sigset_t *set, unsigned long mask) { set->sig[0] = ~mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], -1, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = -1; case 1: ; } } #endif /* __HAVE_ARCH_SIG_SETOPS */ static inline void init_sigpending(struct sigpending *sig) { sigemptyset(&sig->signal); INIT_LIST_HEAD(&sig->list); } extern void flush_sigqueue(struct sigpending *queue); /* Test if 'sig' is valid signal. Use this instead of testing _NSIG directly */ static inline int valid_signal(unsigned long sig) { return sig <= _NSIG ? 1 : 0; } struct timespec; struct pt_regs; enum pid_type; extern int next_signal(struct sigpending *pending, sigset_t *mask); extern int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, enum pid_type type); extern int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, enum pid_type type); extern int __group_send_sig_info(int, struct siginfo *, struct task_struct *); extern int sigprocmask(int, sigset_t *, sigset_t *); extern void set_current_blocked(sigset_t *); extern void __set_current_blocked(const sigset_t *); extern int show_unhandled_signals; extern bool get_signal(struct ksignal *ksig); extern void signal_setup_done(int failed, struct ksignal *ksig, int stepping); extern void exit_signals(struct task_struct *tsk); extern void kernel_sigaction(int, __sighandler_t); #define SIG_KTHREAD ((__force __sighandler_t)2) #define SIG_KTHREAD_KERNEL ((__force __sighandler_t)3) static inline void allow_signal(int sig) { /* * Kernel threads handle their own signals. Let the signal code * know it'll be handled, so that they don't get converted to * SIGKILL or just silently dropped. */ kernel_sigaction(sig, SIG_KTHREAD); } static inline void allow_kernel_signal(int sig) { /* * Kernel threads handle their own signals. Let the signal code * know signals sent by the kernel will be handled, so that they * don't get silently dropped. */ kernel_sigaction(sig, SIG_KTHREAD_KERNEL); } static inline void disallow_signal(int sig) { kernel_sigaction(sig, SIG_IGN); } extern struct kmem_cache *sighand_cachep; extern bool unhandled_signal(struct task_struct *tsk, int sig); /* * In POSIX a signal is sent either to a specific thread (Linux task) * or to the process as a whole (Linux thread group). How the signal * is sent determines whether it's to one thread or the whole group, * which determines which signal mask(s) are involved in blocking it * from being delivered until later. When the signal is delivered, * either it's caught or ignored by a user handler or it has a default * effect that applies to the whole thread group (POSIX process). * * The possible effects an unblocked signal set to SIG_DFL can have are: * ignore - Nothing Happens * terminate - kill the process, i.e. all threads in the group, * similar to exit_group. The group leader (only) reports * WIFSIGNALED status to its parent. * coredump - write a core dump file describing all threads using * the same mm and then kill all those threads * stop - stop all the threads in the group, i.e. TASK_STOPPED state * * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. * Other signals when not blocked and set to SIG_DFL behaves as follows. * The job control signals also have other special effects. * * +--------------------+------------------+ * | POSIX signal | default action | * +--------------------+------------------+ * | SIGHUP | terminate | * | SIGINT | terminate | * | SIGQUIT | coredump | * | SIGILL | coredump | * | SIGTRAP | coredump | * | SIGABRT/SIGIOT | coredump | * | SIGBUS | coredump | * | SIGFPE | coredump | * | SIGKILL | terminate(+) | * | SIGUSR1 | terminate | * | SIGSEGV | coredump | * | SIGUSR2 | terminate | * | SIGPIPE | terminate | * | SIGALRM | terminate | * | SIGTERM | terminate | * | SIGCHLD | ignore | * | SIGCONT | ignore(*) | * | SIGSTOP | stop(*)(+) | * | SIGTSTP | stop(*) | * | SIGTTIN | stop(*) | * | SIGTTOU | stop(*) | * | SIGURG | ignore | * | SIGXCPU | coredump | * | SIGXFSZ | coredump | * | SIGVTALRM | terminate | * | SIGPROF | terminate | * | SIGPOLL/SIGIO | terminate | * | SIGSYS/SIGUNUSED | coredump | * | SIGSTKFLT | terminate | * | SIGWINCH | ignore | * | SIGPWR | terminate | * | SIGRTMIN-SIGRTMAX | terminate | * +--------------------+------------------+ * | non-POSIX signal | default action | * +--------------------+------------------+ * | SIGEMT | coredump | * +--------------------+------------------+ * * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". * (*) Special job control effects: * When SIGCONT is sent, it resumes the process (all threads in the group) * from TASK_STOPPED state and also clears any pending/queued stop signals * (any of those marked with "stop(*)"). This happens regardless of blocking, * catching, or ignoring SIGCONT. When any stop signal is sent, it clears * any pending/queued SIGCONT signals; this happens regardless of blocking, * catching, or ignored the stop signal, though (except for SIGSTOP) the * default action of stopping the process may happen later or never. */ #ifdef SIGEMT #define SIGEMT_MASK rt_sigmask(SIGEMT) #else #define SIGEMT_MASK 0 #endif #if SIGRTMIN > BITS_PER_LONG #define rt_sigmask(sig) (1ULL << ((sig)-1)) #else #define rt_sigmask(sig) sigmask(sig) #endif #define siginmask(sig, mask) \ ((sig) < SIGRTMIN && (rt_sigmask(sig) & (mask))) #define SIG_KERNEL_ONLY_MASK (\ rt_sigmask(SIGKILL) | rt_sigmask(SIGSTOP)) #define SIG_KERNEL_STOP_MASK (\ rt_sigmask(SIGSTOP) | rt_sigmask(SIGTSTP) | \ rt_sigmask(SIGTTIN) | rt_sigmask(SIGTTOU) ) #define SIG_KERNEL_COREDUMP_MASK (\ rt_sigmask(SIGQUIT) | rt_sigmask(SIGILL) | \ rt_sigmask(SIGTRAP) | rt_sigmask(SIGABRT) | \ rt_sigmask(SIGFPE) | rt_sigmask(SIGSEGV) | \ rt_sigmask(SIGBUS) | rt_sigmask(SIGSYS) | \ rt_sigmask(SIGXCPU) | rt_sigmask(SIGXFSZ) | \ SIGEMT_MASK ) #define SIG_KERNEL_IGNORE_MASK (\ rt_sigmask(SIGCONT) | rt_sigmask(SIGCHLD) | \ rt_sigmask(SIGWINCH) | rt_sigmask(SIGURG) ) #define SIG_SPECIFIC_SICODES_MASK (\ rt_sigmask(SIGILL) | rt_sigmask(SIGFPE) | \ rt_sigmask(SIGSEGV) | rt_sigmask(SIGBUS) | \ rt_sigmask(SIGTRAP) | rt_sigmask(SIGCHLD) | \ rt_sigmask(SIGPOLL) | rt_sigmask(SIGSYS) | \ SIGEMT_MASK ) #define sig_kernel_only(sig) siginmask(sig, SIG_KERNEL_ONLY_MASK) #define sig_kernel_coredump(sig) siginmask(sig, SIG_KERNEL_COREDUMP_MASK) #define sig_kernel_ignore(sig) siginmask(sig, SIG_KERNEL_IGNORE_MASK) #define sig_kernel_stop(sig) siginmask(sig, SIG_KERNEL_STOP_MASK) #define sig_specific_sicodes(sig) siginmask(sig, SIG_SPECIFIC_SICODES_MASK) #define sig_fatal(t, signr) \ (!siginmask(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) void signals_init(void); int restore_altstack(const stack_t __user *); int __save_altstack(stack_t __user *, unsigned long); #define save_altstack_ex(uss, sp) do { \ stack_t __user *__uss = uss; \ struct task_struct *t = current; \ put_user_ex((void __user *)t->sas_ss_sp, &__uss->ss_sp); \ put_user_ex(t->sas_ss_flags, &__uss->ss_flags); \ put_user_ex(t->sas_ss_size, &__uss->ss_size); \ if (t->sas_ss_flags & SS_AUTODISARM) \ sas_ss_reset(t); \ } while (0); #ifdef CONFIG_PROC_FS struct seq_file; extern void render_sigset_t(struct seq_file *, const char *, sigset_t *); #endif #endif /* _LINUX_SIGNAL_H */ |