Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com> * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org> * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. */ #include <linux/dma-direct.h> #include <linux/dma-noncoherent.h> #include <linux/dma-contiguous.h> #include <linux/highmem.h> #include <asm/cache.h> #include <asm/cpu-type.h> #include <asm/dma-coherence.h> #include <asm/io.h> #ifdef CONFIG_DMA_PERDEV_COHERENT static inline int dev_is_coherent(struct device *dev) { return dev->archdata.dma_coherent; } #else static inline int dev_is_coherent(struct device *dev) { switch (coherentio) { default: case IO_COHERENCE_DEFAULT: return hw_coherentio; case IO_COHERENCE_ENABLED: return 1; case IO_COHERENCE_DISABLED: return 0; } } #endif /* CONFIG_DMA_PERDEV_COHERENT */ /* * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively * fill random cachelines with stale data at any time, requiring an extra * flush post-DMA. * * Warning on the terminology - Linux calls an uncached area coherent; MIPS * terminology calls memory areas with hardware maintained coherency coherent. * * Note that the R14000 and R16000 should also be checked for in this condition. * However this function is only called on non-I/O-coherent systems and only the * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp. * SGI IP32 aka O2. */ static inline bool cpu_needs_post_dma_flush(struct device *dev) { if (dev_is_coherent(dev)) return false; switch (boot_cpu_type()) { case CPU_R10000: case CPU_R12000: case CPU_BMIPS5000: return true; default: /* * Presence of MAARs suggests that the CPU supports * speculatively prefetching data, and therefore requires * the post-DMA flush/invalidate. */ return cpu_has_maar; } } void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { void *ret; ret = dma_direct_alloc(dev, size, dma_handle, gfp, attrs); if (!ret) return NULL; if (!dev_is_coherent(dev) && !(attrs & DMA_ATTR_NON_CONSISTENT)) { dma_cache_wback_inv((unsigned long) ret, size); ret = (void *)UNCAC_ADDR(ret); } return ret; } void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !dev_is_coherent(dev)) cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr); dma_direct_free(dev, size, cpu_addr, dma_addr, attrs); } int arch_dma_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { unsigned long user_count = vma_pages(vma); unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long addr = (unsigned long)cpu_addr; unsigned long off = vma->vm_pgoff; unsigned long pfn; int ret = -ENXIO; if (!dev_is_coherent(dev)) addr = CAC_ADDR(addr); pfn = page_to_pfn(virt_to_page((void *)addr)); if (attrs & DMA_ATTR_WRITE_COMBINE) vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); else vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) return ret; if (off < count && user_count <= (count - off)) { ret = remap_pfn_range(vma, vma->vm_start, pfn + off, user_count << PAGE_SHIFT, vma->vm_page_prot); } return ret; } static inline void dma_sync_virt(void *addr, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_TO_DEVICE: dma_cache_wback((unsigned long)addr, size); break; case DMA_FROM_DEVICE: dma_cache_inv((unsigned long)addr, size); break; case DMA_BIDIRECTIONAL: dma_cache_wback_inv((unsigned long)addr, size); break; default: BUG(); } } /* * A single sg entry may refer to multiple physically contiguous pages. But * we still need to process highmem pages individually. If highmem is not * configured then the bulk of this loop gets optimized out. */ static inline void dma_sync_phys(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { struct page *page = pfn_to_page(paddr >> PAGE_SHIFT); unsigned long offset = paddr & ~PAGE_MASK; size_t left = size; do { size_t len = left; if (PageHighMem(page)) { void *addr; if (offset + len > PAGE_SIZE) { if (offset >= PAGE_SIZE) { page += offset >> PAGE_SHIFT; offset &= ~PAGE_MASK; } len = PAGE_SIZE - offset; } addr = kmap_atomic(page); dma_sync_virt(addr + offset, len, dir); kunmap_atomic(addr); } else dma_sync_virt(page_address(page) + offset, size, dir); offset = 0; page++; left -= len; } while (left); } void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir) { if (!dev_is_coherent(dev)) dma_sync_phys(paddr, size, dir); } void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir) { if (cpu_needs_post_dma_flush(dev)) dma_sync_phys(paddr, size, dir); } void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction) { BUG_ON(direction == DMA_NONE); if (!dev_is_coherent(dev)) dma_sync_virt(vaddr, size, direction); } |