Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | // SPDX-License-Identifier: GPL-2.0 /* * This file implements KASLR memory randomization for x86_64. It randomizes * the virtual address space of kernel memory regions (physical memory * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates * exploits relying on predictable kernel addresses. * * Entropy is generated using the KASLR early boot functions now shared in * the lib directory (originally written by Kees Cook). Randomization is * done on PGD & P4D/PUD page table levels to increase possible addresses. * The physical memory mapping code was adapted to support P4D/PUD level * virtual addresses. This implementation on the best configuration provides * 30,000 possible virtual addresses in average for each memory region. * An additional low memory page is used to ensure each CPU can start with * a PGD aligned virtual address (for realmode). * * The order of each memory region is not changed. The feature looks at * the available space for the regions based on different configuration * options and randomizes the base and space between each. The size of the * physical memory mapping is the available physical memory. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/random.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/setup.h> #include <asm/kaslr.h> #include "mm_internal.h" #define TB_SHIFT 40 /* * The end address could depend on more configuration options to make the * highest amount of space for randomization available, but that's too hard * to keep straight and caused issues already. */ static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE; /* * Memory regions randomized by KASLR (except modules that use a separate logic * earlier during boot). The list is ordered based on virtual addresses. This * order is kept after randomization. */ static __initdata struct kaslr_memory_region { unsigned long *base; unsigned long size_tb; } kaslr_regions[] = { { &page_offset_base, 0 }, { &vmalloc_base, 0 }, { &vmemmap_base, 1 }, }; /* Get size in bytes used by the memory region */ static inline unsigned long get_padding(struct kaslr_memory_region *region) { return (region->size_tb << TB_SHIFT); } /* * Apply no randomization if KASLR was disabled at boot or if KASAN * is enabled. KASAN shadow mappings rely on regions being PGD aligned. */ static inline bool kaslr_memory_enabled(void) { return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN); } /* Initialize base and padding for each memory region randomized with KASLR */ void __init kernel_randomize_memory(void) { size_t i; unsigned long vaddr_start, vaddr; unsigned long rand, memory_tb; struct rnd_state rand_state; unsigned long remain_entropy; vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4; vaddr = vaddr_start; /* * These BUILD_BUG_ON checks ensure the memory layout is consistent * with the vaddr_start/vaddr_end variables. These checks are very * limited.... */ BUILD_BUG_ON(vaddr_start >= vaddr_end); BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE); BUILD_BUG_ON(vaddr_end > __START_KERNEL_map); if (!kaslr_memory_enabled()) return; kaslr_regions[0].size_tb = 1 << (__PHYSICAL_MASK_SHIFT - TB_SHIFT); kaslr_regions[1].size_tb = VMALLOC_SIZE_TB; /* * Update Physical memory mapping to available and * add padding if needed (especially for memory hotplug support). */ BUG_ON(kaslr_regions[0].base != &page_offset_base); memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) + CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING; /* Adapt phyiscal memory region size based on available memory */ if (memory_tb < kaslr_regions[0].size_tb) kaslr_regions[0].size_tb = memory_tb; /* Calculate entropy available between regions */ remain_entropy = vaddr_end - vaddr_start; for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) remain_entropy -= get_padding(&kaslr_regions[i]); prandom_seed_state(&rand_state, kaslr_get_random_long("Memory")); for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) { unsigned long entropy; /* * Select a random virtual address using the extra entropy * available. */ entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i); prandom_bytes_state(&rand_state, &rand, sizeof(rand)); if (pgtable_l5_enabled()) entropy = (rand % (entropy + 1)) & P4D_MASK; else entropy = (rand % (entropy + 1)) & PUD_MASK; vaddr += entropy; *kaslr_regions[i].base = vaddr; /* * Jump the region and add a minimum padding based on * randomization alignment. */ vaddr += get_padding(&kaslr_regions[i]); if (pgtable_l5_enabled()) vaddr = round_up(vaddr + 1, P4D_SIZE); else vaddr = round_up(vaddr + 1, PUD_SIZE); remain_entropy -= entropy; } } static void __meminit init_trampoline_pud(void) { unsigned long paddr, paddr_next; pgd_t *pgd; pud_t *pud_page, *pud_page_tramp; int i; pud_page_tramp = alloc_low_page(); paddr = 0; pgd = pgd_offset_k((unsigned long)__va(paddr)); pud_page = (pud_t *) pgd_page_vaddr(*pgd); for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) { pud_t *pud, *pud_tramp; unsigned long vaddr = (unsigned long)__va(paddr); pud_tramp = pud_page_tramp + pud_index(paddr); pud = pud_page + pud_index(vaddr); paddr_next = (paddr & PUD_MASK) + PUD_SIZE; *pud_tramp = *pud; } set_pgd(&trampoline_pgd_entry, __pgd(_KERNPG_TABLE | __pa(pud_page_tramp))); } static void __meminit init_trampoline_p4d(void) { unsigned long paddr, paddr_next; pgd_t *pgd; p4d_t *p4d_page, *p4d_page_tramp; int i; p4d_page_tramp = alloc_low_page(); paddr = 0; pgd = pgd_offset_k((unsigned long)__va(paddr)); p4d_page = (p4d_t *) pgd_page_vaddr(*pgd); for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) { p4d_t *p4d, *p4d_tramp; unsigned long vaddr = (unsigned long)__va(paddr); p4d_tramp = p4d_page_tramp + p4d_index(paddr); p4d = p4d_page + p4d_index(vaddr); paddr_next = (paddr & P4D_MASK) + P4D_SIZE; *p4d_tramp = *p4d; } set_pgd(&trampoline_pgd_entry, __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp))); } /* * Create PGD aligned trampoline table to allow real mode initialization * of additional CPUs. Consume only 1 low memory page. */ void __meminit init_trampoline(void) { if (!kaslr_memory_enabled()) { init_trampoline_default(); return; } if (pgtable_l5_enabled()) init_trampoline_p4d(); else init_trampoline_pud(); } |