Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 | /* * linux/arch/arm/vfp/vfp.h * * Copyright (C) 2004 ARM Limited. * Written by Deep Blue Solutions Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) { if (shift) { if (shift < 32) val = val >> shift | ((val << (32 - shift)) != 0); else val = val != 0; } return val; } static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) { if (shift) { if (shift < 64) val = val >> shift | ((val << (64 - shift)) != 0); else val = val != 0; } return val; } static inline u32 vfp_hi64to32jamming(u64 val) { u32 v; asm( "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t" "movcc %0, %R1\n\t" "orrcs %0, %R1, #1" : "=r" (v) : "r" (val) : "cc"); return v; } static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) { asm( "adds %Q0, %Q2, %Q4\n\t" "adcs %R0, %R2, %R4\n\t" "adcs %Q1, %Q3, %Q5\n\t" "adc %R1, %R3, %R5" : "=r" (nl), "=r" (nh) : "0" (nl), "1" (nh), "r" (ml), "r" (mh) : "cc"); *resh = nh; *resl = nl; } static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) { asm( "subs %Q0, %Q2, %Q4\n\t" "sbcs %R0, %R2, %R4\n\t" "sbcs %Q1, %Q3, %Q5\n\t" "sbc %R1, %R3, %R5\n\t" : "=r" (nl), "=r" (nh) : "0" (nl), "1" (nh), "r" (ml), "r" (mh) : "cc"); *resh = nh; *resl = nl; } static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m) { u32 nh, nl, mh, ml; u64 rh, rma, rmb, rl; nl = n; ml = m; rl = (u64)nl * ml; nh = n >> 32; rma = (u64)nh * ml; mh = m >> 32; rmb = (u64)nl * mh; rma += rmb; rh = (u64)nh * mh; rh += ((u64)(rma < rmb) << 32) + (rma >> 32); rma <<= 32; rl += rma; rh += (rl < rma); *resl = rl; *resh = rh; } static inline void shift64left(u64 *resh, u64 *resl, u64 n) { *resh = n >> 63; *resl = n << 1; } static inline u64 vfp_hi64multiply64(u64 n, u64 m) { u64 rh, rl; mul64to128(&rh, &rl, n, m); return rh | (rl != 0); } static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) { u64 mh, ml, remh, reml, termh, terml, z; if (nh >= m) return ~0ULL; mh = m >> 32; if (mh << 32 <= nh) { z = 0xffffffff00000000ULL; } else { z = nh; do_div(z, mh); z <<= 32; } mul64to128(&termh, &terml, m, z); sub128(&remh, &reml, nh, nl, termh, terml); ml = m << 32; while ((s64)remh < 0) { z -= 0x100000000ULL; add128(&remh, &reml, remh, reml, mh, ml); } remh = (remh << 32) | (reml >> 32); if (mh << 32 <= remh) { z |= 0xffffffff; } else { do_div(remh, mh); z |= remh; } return z; } /* * Operations on unpacked elements */ #define vfp_sign_negate(sign) (sign ^ 0x8000) /* * Single-precision */ struct vfp_single { s16 exponent; u16 sign; u32 significand; }; asmlinkage s32 vfp_get_float(unsigned int reg); asmlinkage void vfp_put_float(s32 val, unsigned int reg); /* * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand * which are not propagated to the float upon packing. */ #define VFP_SINGLE_MANTISSA_BITS (23) #define VFP_SINGLE_EXPONENT_BITS (8) #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2) #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) /* * The bit in an unpacked float which indicates that it is a quiet NaN */ #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) /* * Operations on packed single-precision numbers */ #define vfp_single_packed_sign(v) ((v) & 0x80000000) #define vfp_single_packed_negate(v) ((v) ^ 0x80000000) #define vfp_single_packed_abs(v) ((v) & ~0x80000000) #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) /* * Unpack a single-precision float. Note that this returns the magnitude * of the single-precision float mantissa with the 1. if necessary, * aligned to bit 30. */ static inline void vfp_single_unpack(struct vfp_single *s, s32 val) { u32 significand; s->sign = vfp_single_packed_sign(val) >> 16, s->exponent = vfp_single_packed_exponent(val); significand = (u32) val; significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; if (s->exponent && s->exponent != 255) significand |= 0x40000000; s->significand = significand; } /* * Re-pack a single-precision float. This assumes that the float is * already normalised such that the MSB is bit 30, _not_ bit 31. */ static inline s32 vfp_single_pack(struct vfp_single *s) { u32 val; val = (s->sign << 16) + (s->exponent << VFP_SINGLE_MANTISSA_BITS) + (s->significand >> VFP_SINGLE_LOW_BITS); return (s32)val; } #define VFP_NUMBER (1<<0) #define VFP_ZERO (1<<1) #define VFP_DENORMAL (1<<2) #define VFP_INFINITY (1<<3) #define VFP_NAN (1<<4) #define VFP_NAN_SIGNAL (1<<5) #define VFP_QNAN (VFP_NAN) #define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL) static inline int vfp_single_type(struct vfp_single *s) { int type = VFP_NUMBER; if (s->exponent == 255) { if (s->significand == 0) type = VFP_INFINITY; else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) type = VFP_QNAN; else type = VFP_SNAN; } else if (s->exponent == 0) { if (s->significand == 0) type |= VFP_ZERO; else type |= VFP_DENORMAL; } return type; } #ifndef DEBUG #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions); #else u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func); #endif /* * Double-precision */ struct vfp_double { s16 exponent; u16 sign; u64 significand; }; /* * VFP_REG_ZERO is a special register number for vfp_get_double * which returns (double)0.0. This is useful for the compare with * zero instructions. */ #ifdef CONFIG_VFPv3 #define VFP_REG_ZERO 32 #else #define VFP_REG_ZERO 16 #endif asmlinkage u64 vfp_get_double(unsigned int reg); asmlinkage void vfp_put_double(u64 val, unsigned int reg); #define VFP_DOUBLE_MANTISSA_BITS (52) #define VFP_DOUBLE_EXPONENT_BITS (11) #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) /* * The bit in an unpacked double which indicates that it is a quiet NaN */ #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) /* * Operations on packed single-precision numbers */ #define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) /* * Unpack a double-precision float. Note that this returns the magnitude * of the double-precision float mantissa with the 1. if necessary, * aligned to bit 62. */ static inline void vfp_double_unpack(struct vfp_double *s, s64 val) { u64 significand; s->sign = vfp_double_packed_sign(val) >> 48; s->exponent = vfp_double_packed_exponent(val); significand = (u64) val; significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; if (s->exponent && s->exponent != 2047) significand |= (1ULL << 62); s->significand = significand; } /* * Re-pack a double-precision float. This assumes that the float is * already normalised such that the MSB is bit 30, _not_ bit 31. */ static inline s64 vfp_double_pack(struct vfp_double *s) { u64 val; val = ((u64)s->sign << 48) + ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + (s->significand >> VFP_DOUBLE_LOW_BITS); return (s64)val; } static inline int vfp_double_type(struct vfp_double *s) { int type = VFP_NUMBER; if (s->exponent == 2047) { if (s->significand == 0) type = VFP_INFINITY; else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) type = VFP_QNAN; else type = VFP_SNAN; } else if (s->exponent == 0) { if (s->significand == 0) type |= VFP_ZERO; else type |= VFP_DENORMAL; } return type; } u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); /* * A special flag to tell the normalisation code not to normalise. */ #define VFP_NAN_FLAG 0x100 /* * A bit pattern used to indicate the initial (unset) value of the * exception mask, in case nothing handles an instruction. This * doesn't include the NAN flag, which get masked out before * we check for an error. */ #define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG) /* * A flag to tell vfp instruction type. * OP_SCALAR - this operation always operates in scalar mode * OP_SD - the instruction exceptionally writes to a single precision result. * OP_DD - the instruction exceptionally writes to a double precision result. * OP_SM - the instruction exceptionally reads from a single precision operand. */ #define OP_SCALAR (1 << 0) #define OP_SD (1 << 1) #define OP_DD (1 << 1) #define OP_SM (1 << 2) struct op { u32 (* const fn)(int dd, int dn, int dm, u32 fpscr); u32 flags; }; asmlinkage void vfp_save_state(void *location, u32 fpexc); |