Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | // SPDX-License-Identifier: GPL-2.0 #include <linux/export.h> #include <linux/errno.h> #include <linux/gpio.h> #include <linux/spi/spi.h> #include "fbtft.h" int fbtft_write_spi(struct fbtft_par *par, void *buf, size_t len) { struct spi_transfer t = { .tx_buf = buf, .len = len, }; struct spi_message m; fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len, "%s(len=%d): ", __func__, len); if (!par->spi) { dev_err(par->info->device, "%s: par->spi is unexpectedly NULL\n", __func__); return -1; } spi_message_init(&m); spi_message_add_tail(&t, &m); return spi_sync(par->spi, &m); } EXPORT_SYMBOL(fbtft_write_spi); /** * fbtft_write_spi_emulate_9() - write SPI emulating 9-bit * @par: Driver data * @buf: Buffer to write * @len: Length of buffer (must be divisible by 8) * * When 9-bit SPI is not available, this function can be used to emulate that. * par->extra must hold a transformation buffer used for transfer. */ int fbtft_write_spi_emulate_9(struct fbtft_par *par, void *buf, size_t len) { u16 *src = buf; u8 *dst = par->extra; size_t size = len / 2; size_t added = 0; int bits, i, j; u64 val, dc, tmp; fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len, "%s(len=%d): ", __func__, len); if (!par->extra) { dev_err(par->info->device, "%s: error: par->extra is NULL\n", __func__); return -EINVAL; } if ((len % 8) != 0) { dev_err(par->info->device, "error: len=%zu must be divisible by 8\n", len); return -EINVAL; } for (i = 0; i < size; i += 8) { tmp = 0; bits = 63; for (j = 0; j < 7; j++) { dc = (*src & 0x0100) ? 1 : 0; val = *src & 0x00FF; tmp |= dc << bits; bits -= 8; tmp |= val << bits--; src++; } tmp |= ((*src & 0x0100) ? 1 : 0); *(__be64 *)dst = cpu_to_be64(tmp); dst += 8; *dst++ = (u8)(*src++ & 0x00FF); added++; } return spi_write(par->spi, par->extra, size + added); } EXPORT_SYMBOL(fbtft_write_spi_emulate_9); int fbtft_read_spi(struct fbtft_par *par, void *buf, size_t len) { int ret; u8 txbuf[32] = { 0, }; struct spi_transfer t = { .speed_hz = 2000000, .rx_buf = buf, .len = len, }; struct spi_message m; if (!par->spi) { dev_err(par->info->device, "%s: par->spi is unexpectedly NULL\n", __func__); return -ENODEV; } if (par->startbyte) { if (len > 32) { dev_err(par->info->device, "len=%zu can't be larger than 32 when using 'startbyte'\n", len); return -EINVAL; } txbuf[0] = par->startbyte | 0x3; t.tx_buf = txbuf; fbtft_par_dbg_hex(DEBUG_READ, par, par->info->device, u8, txbuf, len, "%s(len=%d) txbuf => ", __func__, len); } spi_message_init(&m); spi_message_add_tail(&t, &m); ret = spi_sync(par->spi, &m); fbtft_par_dbg_hex(DEBUG_READ, par, par->info->device, u8, buf, len, "%s(len=%d) buf <= ", __func__, len); return ret; } EXPORT_SYMBOL(fbtft_read_spi); /* * Optimized use of gpiolib is twice as fast as no optimization * only one driver can use the optimized version at a time */ int fbtft_write_gpio8_wr(struct fbtft_par *par, void *buf, size_t len) { u8 data; int i; #ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO static u8 prev_data; #endif fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len, "%s(len=%d): ", __func__, len); while (len--) { data = *(u8 *)buf; /* Start writing by pulling down /WR */ gpio_set_value(par->gpio.wr, 0); /* Set data */ #ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO if (data == prev_data) { gpio_set_value(par->gpio.wr, 0); /* used as delay */ } else { for (i = 0; i < 8; i++) { if ((data & 1) != (prev_data & 1)) gpio_set_value(par->gpio.db[i], data & 1); data >>= 1; prev_data >>= 1; } } #else for (i = 0; i < 8; i++) { gpio_set_value(par->gpio.db[i], data & 1); data >>= 1; } #endif /* Pullup /WR */ gpio_set_value(par->gpio.wr, 1); #ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO prev_data = *(u8 *)buf; #endif buf++; } return 0; } EXPORT_SYMBOL(fbtft_write_gpio8_wr); int fbtft_write_gpio16_wr(struct fbtft_par *par, void *buf, size_t len) { u16 data; int i; #ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO static u16 prev_data; #endif fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len, "%s(len=%d): ", __func__, len); while (len) { data = *(u16 *)buf; /* Start writing by pulling down /WR */ gpio_set_value(par->gpio.wr, 0); /* Set data */ #ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO if (data == prev_data) { gpio_set_value(par->gpio.wr, 0); /* used as delay */ } else { for (i = 0; i < 16; i++) { if ((data & 1) != (prev_data & 1)) gpio_set_value(par->gpio.db[i], data & 1); data >>= 1; prev_data >>= 1; } } #else for (i = 0; i < 16; i++) { gpio_set_value(par->gpio.db[i], data & 1); data >>= 1; } #endif /* Pullup /WR */ gpio_set_value(par->gpio.wr, 1); #ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO prev_data = *(u16 *)buf; #endif buf += 2; len -= 2; } return 0; } EXPORT_SYMBOL(fbtft_write_gpio16_wr); int fbtft_write_gpio16_wr_latched(struct fbtft_par *par, void *buf, size_t len) { dev_err(par->info->device, "%s: function not implemented\n", __func__); return -1; } EXPORT_SYMBOL(fbtft_write_gpio16_wr_latched); |