/*
* Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/moduleparam.h>
#include <linux/if_arp.h>
#include <linux/etherdevice.h>
#include "wil6210.h"
#include "txrx.h"
#include "wmi.h"
#include "boot_loader.h"
#define WAIT_FOR_HALP_VOTE_MS 100
#define WAIT_FOR_SCAN_ABORT_MS 1000
bool debug_fw; /* = false; */
module_param(debug_fw, bool, 0444);
MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
static u8 oob_mode;
module_param(oob_mode, byte, 0444);
MODULE_PARM_DESC(oob_mode,
" enable out of the box (OOB) mode in FW, for diagnostics and certification");
bool no_fw_recovery;
module_param(no_fw_recovery, bool, 0644);
MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
/* if not set via modparam, will be set to default value of 1/8 of
* rx ring size during init flow
*/
unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
module_param(rx_ring_overflow_thrsh, ushort, 0444);
MODULE_PARM_DESC(rx_ring_overflow_thrsh,
" RX ring overflow threshold in descriptors.");
/* We allow allocation of more than 1 page buffers to support large packets.
* It is suboptimal behavior performance wise in case MTU above page size.
*/
unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
static int mtu_max_set(const char *val, const struct kernel_param *kp)
{
int ret;
/* sets mtu_max directly. no need to restore it in case of
* illegal value since we assume this will fail insmod
*/
ret = param_set_uint(val, kp);
if (ret)
return ret;
if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
ret = -EINVAL;
return ret;
}
static const struct kernel_param_ops mtu_max_ops = {
.set = mtu_max_set,
.get = param_get_uint,
};
module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
MODULE_PARM_DESC(mtu_max, " Max MTU value.");
static uint rx_ring_order = WIL_RX_RING_SIZE_ORDER_DEFAULT;
static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
static int ring_order_set(const char *val, const struct kernel_param *kp)
{
int ret;
uint x;
ret = kstrtouint(val, 0, &x);
if (ret)
return ret;
if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
return -EINVAL;
*((uint *)kp->arg) = x;
return 0;
}
static const struct kernel_param_ops ring_order_ops = {
.set = ring_order_set,
.get = param_get_uint,
};
module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
#define RST_DELAY (20) /* msec, for loop in @wil_target_reset */
#define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
/*
* Due to a hardware issue,
* one has to read/write to/from NIC in 32-bit chunks;
* regular memcpy_fromio and siblings will
* not work on 64-bit platform - it uses 64-bit transactions
*
* Force 32-bit transactions to enable NIC on 64-bit platforms
*
* To avoid byte swap on big endian host, __raw_{read|write}l
* should be used - {read|write}l would swap bytes to provide
* little endian on PCI value in host endianness.
*/
void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
size_t count)
{
u32 *d = dst;
const volatile u32 __iomem *s = src;
for (; count >= 4; count -= 4)
*d++ = __raw_readl(s++);
if (unlikely(count)) {
/* count can be 1..3 */
u32 tmp = __raw_readl(s);
memcpy(d, &tmp, count);
}
}
void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
size_t count)
{
volatile u32 __iomem *d = dst;
const u32 *s = src;
for (; count >= 4; count -= 4)
__raw_writel(*s++, d++);
if (unlikely(count)) {
/* count can be 1..3 */
u32 tmp = 0;
memcpy(&tmp, s, count);
__raw_writel(tmp, d);
}
}
static void wil_disconnect_cid(struct wil6210_priv *wil, int cid,
u16 reason_code, bool from_event)
__acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
{
uint i;
struct net_device *ndev = wil_to_ndev(wil);
struct wireless_dev *wdev = wil->wdev;
struct wil_sta_info *sta = &wil->sta[cid];
might_sleep();
wil_dbg_misc(wil, "disconnect_cid: CID %d, status %d\n",
cid, sta->status);
/* inform upper/lower layers */
if (sta->status != wil_sta_unused) {
if (!from_event) {
bool del_sta = (wdev->iftype == NL80211_IFTYPE_AP) ?
disable_ap_sme : false;
wmi_disconnect_sta(wil, sta->addr, reason_code,
true, del_sta);
}
switch (wdev->iftype) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
/* AP-like interface */
cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
break;
default:
break;
}
sta->status = wil_sta_unused;
}
/* reorder buffers */
for (i = 0; i < WIL_STA_TID_NUM; i++) {
struct wil_tid_ampdu_rx *r;
spin_lock_bh(&sta->tid_rx_lock);
r = sta->tid_rx[i];
sta->tid_rx[i] = NULL;
wil_tid_ampdu_rx_free(wil, r);
spin_unlock_bh(&sta->tid_rx_lock);
}
/* crypto context */
memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
/* release vrings */
for (i = 0; i < ARRAY_SIZE(wil->vring_tx); i++) {
if (wil->vring2cid_tid[i][0] == cid)
wil_vring_fini_tx(wil, i);
}
/* statistics */
memset(&sta->stats, 0, sizeof(sta->stats));
}
static bool wil_is_connected(struct wil6210_priv *wil)
{
int i;
for (i = 0; i < ARRAY_SIZE(wil->sta); i++) {
if (wil->sta[i].status == wil_sta_connected)
return true;
}
return false;
}
static void _wil6210_disconnect(struct wil6210_priv *wil, const u8 *bssid,
u16 reason_code, bool from_event)
{
int cid = -ENOENT;
struct net_device *ndev = wil_to_ndev(wil);
struct wireless_dev *wdev = wil->wdev;
if (unlikely(!ndev))
return;
might_sleep();
wil_info(wil, "bssid=%pM, reason=%d, ev%s\n", bssid,
reason_code, from_event ? "+" : "-");
/* Cases are:
* - disconnect single STA, still connected
* - disconnect single STA, already disconnected
* - disconnect all
*
* For "disconnect all", there are 3 options:
* - bssid == NULL
* - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
* - bssid is our MAC address
*/
if (bssid && !is_broadcast_ether_addr(bssid) &&
!ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
cid = wil_find_cid(wil, bssid);
wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
bssid, cid, reason_code);
if (cid >= 0) /* disconnect 1 peer */
wil_disconnect_cid(wil, cid, reason_code, from_event);
} else { /* all */
wil_dbg_misc(wil, "Disconnect all\n");
for (cid = 0; cid < WIL6210_MAX_CID; cid++)
wil_disconnect_cid(wil, cid, reason_code, from_event);
}
/* link state */
switch (wdev->iftype) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
wil_bcast_fini(wil);
wil_update_net_queues_bh(wil, NULL, true);
netif_carrier_off(ndev);
wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
if (test_bit(wil_status_fwconnected, wil->status)) {
clear_bit(wil_status_fwconnected, wil->status);
cfg80211_disconnected(ndev, reason_code,
NULL, 0,
wil->locally_generated_disc,
GFP_KERNEL);
wil->locally_generated_disc = false;
} else if (test_bit(wil_status_fwconnecting, wil->status)) {
cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
WLAN_STATUS_UNSPECIFIED_FAILURE,
GFP_KERNEL);
wil->bss = NULL;
}
clear_bit(wil_status_fwconnecting, wil->status);
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
if (!wil_is_connected(wil)) {
wil_update_net_queues_bh(wil, NULL, true);
clear_bit(wil_status_fwconnected, wil->status);
} else {
wil_update_net_queues_bh(wil, NULL, false);
}
break;
default:
break;
}
}
static void wil_disconnect_worker(struct work_struct *work)
{
struct wil6210_priv *wil = container_of(work,
struct wil6210_priv, disconnect_worker);
struct net_device *ndev = wil_to_ndev(wil);
int rc;
struct {
struct wmi_cmd_hdr wmi;
struct wmi_disconnect_event evt;
} __packed reply;
if (test_bit(wil_status_fwconnected, wil->status))
/* connect succeeded after all */
return;
if (!test_bit(wil_status_fwconnecting, wil->status))
/* already disconnected */
return;
rc = wmi_call(wil, WMI_DISCONNECT_CMDID, NULL, 0,
WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
WIL6210_DISCONNECT_TO_MS);
if (rc) {
wil_err(wil, "disconnect error %d\n", rc);
return;
}
wil_update_net_queues_bh(wil, NULL, true);
netif_carrier_off(ndev);
cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
clear_bit(wil_status_fwconnecting, wil->status);
}
static void wil_connect_timer_fn(struct timer_list *t)
{
struct wil6210_priv *wil = from_timer(wil, t, connect_timer);
bool q;
wil_err(wil, "Connect timeout detected, disconnect station\n");
/* reschedule to thread context - disconnect won't
* run from atomic context.
* queue on wmi_wq to prevent race with connect event.
*/
q = queue_work(wil->wmi_wq, &wil->disconnect_worker);
wil_dbg_wmi(wil, "queue_work of disconnect_worker -> %d\n", q);
}
static void wil_scan_timer_fn(struct timer_list *t)
{
struct wil6210_priv *wil = from_timer(wil, t, scan_timer);
clear_bit(wil_status_fwready, wil->status);
wil_err(wil, "Scan timeout detected, start fw error recovery\n");
wil_fw_error_recovery(wil);
}
static int wil_wait_for_recovery(struct wil6210_priv *wil)
{
if (wait_event_interruptible(wil->wq, wil->recovery_state !=
fw_recovery_pending)) {
wil_err(wil, "Interrupt, canceling recovery\n");
return -ERESTARTSYS;
}
if (wil->recovery_state != fw_recovery_running) {
wil_info(wil, "Recovery cancelled\n");
return -EINTR;
}
wil_info(wil, "Proceed with recovery\n");
return 0;
}
void wil_set_recovery_state(struct wil6210_priv *wil, int state)
{
wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
wil->recovery_state, state);
wil->recovery_state = state;
wake_up_interruptible(&wil->wq);
}
bool wil_is_recovery_blocked(struct wil6210_priv *wil)
{
return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
}
static void wil_fw_error_worker(struct work_struct *work)
{
struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
fw_error_worker);
struct wireless_dev *wdev = wil->wdev;
struct net_device *ndev = wil_to_ndev(wil);
wil_dbg_misc(wil, "fw error worker\n");
if (!(ndev->flags & IFF_UP)) {
wil_info(wil, "No recovery - interface is down\n");
return;
}
/* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
* passed since last recovery attempt
*/
if (time_is_after_jiffies(wil->last_fw_recovery +
WIL6210_FW_RECOVERY_TO))
wil->recovery_count++;
else
wil->recovery_count = 1; /* fw was alive for a long time */
if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
wil_err(wil, "too many recovery attempts (%d), giving up\n",
wil->recovery_count);
return;
}
wil->last_fw_recovery = jiffies;
wil_info(wil, "fw error recovery requested (try %d)...\n",
wil->recovery_count);
if (!no_fw_recovery)
wil->recovery_state = fw_recovery_running;
if (wil_wait_for_recovery(wil) != 0)
return;
mutex_lock(&wil->mutex);
switch (wdev->iftype) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_MONITOR:
/* silent recovery, upper layers will see disconnect */
__wil_down(wil);
__wil_up(wil);
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
wil_info(wil, "No recovery for AP-like interface\n");
/* recovery in these modes is done by upper layers */
break;
default:
wil_err(wil, "No recovery - unknown interface type %d\n",
wdev->iftype);
break;
}
mutex_unlock(&wil->mutex);
}
static int wil_find_free_vring(struct wil6210_priv *wil)
{
int i;
for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
if (!wil->vring_tx[i].va)
return i;
}
return -EINVAL;
}
int wil_tx_init(struct wil6210_priv *wil, int cid)
{
int rc = -EINVAL, ringid;
if (cid < 0) {
wil_err(wil, "No connection pending\n");
goto out;
}
ringid = wil_find_free_vring(wil);
if (ringid < 0) {
wil_err(wil, "No free vring found\n");
goto out;
}
wil_dbg_wmi(wil, "Configure for connection CID %d vring %d\n",
cid, ringid);
rc = wil_vring_init_tx(wil, ringid, 1 << tx_ring_order, cid, 0);
if (rc)
wil_err(wil, "wil_vring_init_tx for CID %d vring %d failed\n",
cid, ringid);
out:
return rc;
}
int wil_bcast_init(struct wil6210_priv *wil)
{
int ri = wil->bcast_vring, rc;
if ((ri >= 0) && wil->vring_tx[ri].va)
return 0;
ri = wil_find_free_vring(wil);
if (ri < 0)
return ri;
wil->bcast_vring = ri;
rc = wil_vring_init_bcast(wil, ri, 1 << bcast_ring_order);
if (rc)
wil->bcast_vring = -1;
return rc;
}
void wil_bcast_fini(struct wil6210_priv *wil)
{
int ri = wil->bcast_vring;
if (ri < 0)
return;
wil->bcast_vring = -1;
wil_vring_fini_tx(wil, ri);
}
int wil_priv_init(struct wil6210_priv *wil)
{
uint i;
wil_dbg_misc(wil, "priv_init\n");
memset(wil->sta, 0, sizeof(wil->sta));
for (i = 0; i < WIL6210_MAX_CID; i++)
spin_lock_init(&wil->sta[i].tid_rx_lock);
for (i = 0; i < WIL6210_MAX_TX_RINGS; i++)
spin_lock_init(&wil->vring_tx_data[i].lock);
mutex_init(&wil->mutex);
mutex_init(&wil->wmi_mutex);
mutex_init(&wil->probe_client_mutex);
mutex_init(&wil->p2p_wdev_mutex);
mutex_init(&wil->halp.lock);
init_completion(&wil->wmi_ready);
init_completion(&wil->wmi_call);
init_completion(&wil->halp.comp);
wil->bcast_vring = -1;
timer_setup(&wil->connect_timer, wil_connect_timer_fn, 0);
timer_setup(&wil->scan_timer, wil_scan_timer_fn, 0);
timer_setup(&wil->p2p.discovery_timer, wil_p2p_discovery_timer_fn, 0);
INIT_WORK(&wil->disconnect_worker, wil_disconnect_worker);
INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
INIT_WORK(&wil->probe_client_worker, wil_probe_client_worker);
INIT_WORK(&wil->p2p.delayed_listen_work, wil_p2p_delayed_listen_work);
INIT_LIST_HEAD(&wil->pending_wmi_ev);
INIT_LIST_HEAD(&wil->probe_client_pending);
spin_lock_init(&wil->wmi_ev_lock);
spin_lock_init(&wil->net_queue_lock);
wil->net_queue_stopped = 1;
init_waitqueue_head(&wil->wq);
wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
if (!wil->wmi_wq)
return -EAGAIN;
wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
if (!wil->wq_service)
goto out_wmi_wq;
wil->last_fw_recovery = jiffies;
wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
wil->ps_profile = WMI_PS_PROFILE_TYPE_DEFAULT;
wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
WMI_WAKEUP_TRIGGER_BCAST;
memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
wil->suspend_stats.min_suspend_time = ULONG_MAX;
wil->vring_idle_trsh = 16;
return 0;
out_wmi_wq:
destroy_workqueue(wil->wmi_wq);
return -EAGAIN;
}
void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
{
if (wil->platform_ops.bus_request) {
wil->bus_request_kbps = kbps;
wil->platform_ops.bus_request(wil->platform_handle, kbps);
}
}
/**
* wil6210_disconnect - disconnect one connection
* @wil: driver context
* @bssid: peer to disconnect, NULL to disconnect all
* @reason_code: Reason code for the Disassociation frame
* @from_event: whether is invoked from FW event handler
*
* Disconnect and release associated resources. If invoked not from the
* FW event handler, issue WMI command(s) to trigger MAC disconnect.
*/
void wil6210_disconnect(struct wil6210_priv *wil, const u8 *bssid,
u16 reason_code, bool from_event)
{
wil_dbg_misc(wil, "disconnect\n");
del_timer_sync(&wil->connect_timer);
_wil6210_disconnect(wil, bssid, reason_code, from_event);
}
void wil_priv_deinit(struct wil6210_priv *wil)
{
wil_dbg_misc(wil, "priv_deinit\n");
wil_set_recovery_state(wil, fw_recovery_idle);
del_timer_sync(&wil->scan_timer);
del_timer_sync(&wil->p2p.discovery_timer);
cancel_work_sync(&wil->disconnect_worker);
cancel_work_sync(&wil->fw_error_worker);
cancel_work_sync(&wil->p2p.discovery_expired_work);
cancel_work_sync(&wil->p2p.delayed_listen_work);
mutex_lock(&wil->mutex);
wil6210_disconnect(wil, NULL, WLAN_REASON_DEAUTH_LEAVING, false);
mutex_unlock(&wil->mutex);
wmi_event_flush(wil);
wil_probe_client_flush(wil);
cancel_work_sync(&wil->probe_client_worker);
destroy_workqueue(wil->wq_service);
destroy_workqueue(wil->wmi_wq);
}
static inline void wil_halt_cpu(struct wil6210_priv *wil)
{
wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
wil_w(wil, RGF_USER_MAC_CPU_0, BIT_USER_MAC_CPU_MAN_RST);
}
static inline void wil_release_cpu(struct wil6210_priv *wil)
{
/* Start CPU */
wil_w(wil, RGF_USER_USER_CPU_0, 1);
}
static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
{
wil_info(wil, "oob_mode to %d\n", mode);
switch (mode) {
case 0:
wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
BIT_USER_OOB_R2_MODE);
break;
case 1:
wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
break;
case 2:
wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
break;
default:
wil_err(wil, "invalid oob_mode: %d\n", mode);
}
}
static int wil_target_reset(struct wil6210_priv *wil)
{
int delay = 0;
u32 x, x1 = 0;
wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
/* Clear MAC link up */
wil_s(wil, RGF_HP_CTRL, BIT(15));
wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_HPAL_PERST_FROM_PAD);
wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
wil_halt_cpu(wil);
/* clear all boot loader "ready" bits */
wil_w(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v0, boot_loader_ready), 0);
/* Clear Fw Download notification */
wil_c(wil, RGF_USER_USAGE_6, BIT(0));
wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
/* XTAL stabilization should take about 3ms */
usleep_range(5000, 7000);
x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
wil_err(wil, "Xtal stabilization timeout\n"
"RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
return -ETIME;
}
/* switch 10k to XTAL*/
wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
/* 40 MHz */
wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xFE000000);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003F);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xFFE7FE00);
wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
/* reset A2 PCIE AHB */
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
/* wait until device ready. typical time is 20..80 msec */
do {
msleep(RST_DELAY);
x = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v0,
boot_loader_ready));
if (x1 != x) {
wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n", x1, x);
x1 = x;
}
if (delay++ > RST_COUNT) {
wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
x);
return -ETIME;
}
} while (x != BL_READY);
wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
/* enable fix for HW bug related to the SA/DA swap in AP Rx */
wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
wil_dbg_misc(wil, "Reset completed in %d ms\n", delay * RST_DELAY);
return 0;
}
static void wil_collect_fw_info(struct wil6210_priv *wil)
{
struct wiphy *wiphy = wil_to_wiphy(wil);
u8 retry_short;
int rc;
rc = wmi_get_mgmt_retry(wil, &retry_short);
if (!rc) {
wiphy->retry_short = retry_short;
wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
}
}
void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
{
le32_to_cpus(&r->base);
le16_to_cpus(&r->entry_size);
le16_to_cpus(&r->size);
le32_to_cpus(&r->tail);
le32_to_cpus(&r->head);
}
static int wil_get_bl_info(struct wil6210_priv *wil)
{
struct net_device *ndev = wil_to_ndev(wil);
struct wiphy *wiphy = wil_to_wiphy(wil);
union {
struct bl_dedicated_registers_v0 bl0;
struct bl_dedicated_registers_v1 bl1;
} bl;
u32 bl_ver;
u8 *mac;
u16 rf_status;
wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
sizeof(bl));
bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
mac = bl.bl0.mac_address;
if (bl_ver == 0) {
le32_to_cpus(&bl.bl0.rf_type);
le32_to_cpus(&bl.bl0.baseband_type);
rf_status = 0; /* actually, unknown */
wil_info(wil,
"Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
bl_ver, mac,
bl.bl0.rf_type, bl.bl0.baseband_type);
wil_info(wil, "Boot Loader build unknown for struct v0\n");
} else {
le16_to_cpus(&bl.bl1.rf_type);
rf_status = le16_to_cpu(bl.bl1.rf_status);
le32_to_cpus(&bl.bl1.baseband_type);
le16_to_cpus(&bl.bl1.bl_version_subminor);
le16_to_cpus(&bl.bl1.bl_version_build);
wil_info(wil,
"Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
bl_ver, mac,
bl.bl1.rf_type, rf_status,
bl.bl1.baseband_type);
wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
}
if (!is_valid_ether_addr(mac)) {
wil_err(wil, "BL: Invalid MAC %pM\n", mac);
return -EINVAL;
}
ether_addr_copy(ndev->perm_addr, mac);
ether_addr_copy(wiphy->perm_addr, mac);
if (!is_valid_ether_addr(ndev->dev_addr))
ether_addr_copy(ndev->dev_addr, mac);
if (rf_status) {/* bad RF cable? */
wil_err(wil, "RF communication error 0x%04x",
rf_status);
return -EAGAIN;
}
return 0;
}
static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
{
u32 bl_assert_code, bl_assert_blink, bl_magic_number;
u32 bl_ver = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v0,
boot_loader_struct_version));
if (bl_ver < 2)
return;
bl_assert_code = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v1,
bl_assert_code));
bl_assert_blink = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v1,
bl_assert_blink));
bl_magic_number = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v1,
bl_magic_number));
if (is_err) {
wil_err(wil,
"BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
bl_assert_code, bl_assert_blink, bl_magic_number);
} else {
wil_dbg_misc(wil,
"BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
bl_assert_code, bl_assert_blink, bl_magic_number);
}
}
static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
{
ulong to = msecs_to_jiffies(1000);
ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
if (0 == left) {
wil_err(wil, "Firmware not ready\n");
return -ETIME;
} else {
wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
jiffies_to_msecs(to-left), wil->hw_version);
}
return 0;
}
void wil_abort_scan(struct wil6210_priv *wil, bool sync)
{
int rc;
struct cfg80211_scan_info info = {
.aborted = true,
};
lockdep_assert_held(&wil->p2p_wdev_mutex);
if (!wil->scan_request)
return;
wil_dbg_misc(wil, "Abort scan_request 0x%p\n", wil->scan_request);
del_timer_sync(&wil->scan_timer);
mutex_unlock(&wil->p2p_wdev_mutex);
rc = wmi_abort_scan(wil);
if (!rc && sync)
wait_event_interruptible_timeout(wil->wq, !wil->scan_request,
msecs_to_jiffies(
WAIT_FOR_SCAN_ABORT_MS));
mutex_lock(&wil->p2p_wdev_mutex);
if (wil->scan_request) {
cfg80211_scan_done(wil->scan_request, &info);
wil->scan_request = NULL;
}
}
int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
{
int rc;
if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
wil_err(wil, "set_power_mgmt not supported\n");
return -EOPNOTSUPP;
}
rc = wmi_ps_dev_profile_cfg(wil, ps_profile);
if (rc)
wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
else
wil->ps_profile = ps_profile;
return rc;
}
static void wil_pre_fw_config(struct wil6210_priv *wil)
{
/* Mark FW as loaded from host */
wil_s(wil, RGF_USER_USAGE_6, 1);
/* clear any interrupts which on-card-firmware
* may have set
*/
wil6210_clear_irq(wil);
/* CAF_ICR - clear and mask */
/* it is W1C, clear by writing back same value */
wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
/* clear PAL_UNIT_ICR (potential D0->D3 leftover) */
wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR), 0);
if (wil->fw_calib_result > 0) {
__le32 val = cpu_to_le32(wil->fw_calib_result |
(CALIB_RESULT_SIGNATURE << 8));
wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
}
}
/*
* We reset all the structures, and we reset the UMAC.
* After calling this routine, you're expected to reload
* the firmware.
*/
int wil_reset(struct wil6210_priv *wil, bool load_fw)
{
int rc;
wil_dbg_misc(wil, "reset\n");
WARN_ON(!mutex_is_locked(&wil->mutex));
WARN_ON(test_bit(wil_status_napi_en, wil->status));
if (debug_fw) {
static const u8 mac[ETH_ALEN] = {
0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
};
struct net_device *ndev = wil_to_ndev(wil);
ether_addr_copy(ndev->perm_addr, mac);
ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
return 0;
}
if (wil->hw_version == HW_VER_UNKNOWN)
return -ENODEV;
if (wil->platform_ops.notify) {
rc = wil->platform_ops.notify(wil->platform_handle,
WIL_PLATFORM_EVT_PRE_RESET);
if (rc)
wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
rc);
}
set_bit(wil_status_resetting, wil->status);
cancel_work_sync(&wil->disconnect_worker);
wil6210_disconnect(wil, NULL, WLAN_REASON_DEAUTH_LEAVING, false);
wil_bcast_fini(wil);
/* Disable device led before reset*/
wmi_led_cfg(wil, false);
mutex_lock(&wil->p2p_wdev_mutex);
wil_abort_scan(wil, false);
mutex_unlock(&wil->p2p_wdev_mutex);
/* prevent NAPI from being scheduled and prevent wmi commands */
mutex_lock(&wil->wmi_mutex);
bitmap_zero(wil->status, wil_status_last);
mutex_unlock(&wil->wmi_mutex);
wil_mask_irq(wil);
wmi_event_flush(wil);
flush_workqueue(wil->wq_service);
flush_workqueue(wil->wmi_wq);
wil_bl_crash_info(wil, false);
wil_disable_irq(wil);
rc = wil_target_reset(wil);
wil6210_clear_irq(wil);
wil_enable_irq(wil);
wil_rx_fini(wil);
if (rc) {
wil_bl_crash_info(wil, true);
return rc;
}
rc = wil_get_bl_info(wil);
if (rc == -EAGAIN && !load_fw) /* ignore RF error if not going up */
rc = 0;
if (rc)
return rc;
wil_set_oob_mode(wil, oob_mode);
if (load_fw) {
wil_info(wil, "Use firmware <%s> + board <%s>\n",
wil->wil_fw_name, WIL_BOARD_FILE_NAME);
wil_halt_cpu(wil);
memset(wil->fw_version, 0, sizeof(wil->fw_version));
/* Loading f/w from the file */
rc = wil_request_firmware(wil, wil->wil_fw_name, true);
if (rc)
return rc;
rc = wil_request_firmware(wil, WIL_BOARD_FILE_NAME, true);
if (rc)
return rc;
wil_pre_fw_config(wil);
wil_release_cpu(wil);
}
/* init after reset */
wil->ap_isolate = 0;
reinit_completion(&wil->wmi_ready);
reinit_completion(&wil->wmi_call);
reinit_completion(&wil->halp.comp);
if (load_fw) {
wil_configure_interrupt_moderation(wil);
wil_unmask_irq(wil);
/* we just started MAC, wait for FW ready */
rc = wil_wait_for_fw_ready(wil);
if (rc)
return rc;
/* check FW is responsive */
rc = wmi_echo(wil);
if (rc) {
wil_err(wil, "wmi_echo failed, rc %d\n", rc);
return rc;
}
if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
wil_ps_update(wil, wil->ps_profile);
wil_collect_fw_info(wil);
if (wil->platform_ops.notify) {
rc = wil->platform_ops.notify(wil->platform_handle,
WIL_PLATFORM_EVT_FW_RDY);
if (rc) {
wil_err(wil, "FW_RDY notify failed, rc %d\n",
rc);
rc = 0;
}
}
}
return rc;
}
void wil_fw_error_recovery(struct wil6210_priv *wil)
{
wil_dbg_misc(wil, "starting fw error recovery\n");
if (test_bit(wil_status_resetting, wil->status)) {
wil_info(wil, "Reset already in progress\n");
return;
}
wil->recovery_state = fw_recovery_pending;
schedule_work(&wil->fw_error_worker);
}
int __wil_up(struct wil6210_priv *wil)
{
struct net_device *ndev = wil_to_ndev(wil);
struct wireless_dev *wdev = wil->wdev;
int rc;
WARN_ON(!mutex_is_locked(&wil->mutex));
rc = wil_reset(wil, true);
if (rc)
return rc;
/* Rx VRING. After MAC and beacon */
rc = wil_rx_init(wil, 1 << rx_ring_order);
if (rc)
return rc;
switch (wdev->iftype) {
case NL80211_IFTYPE_STATION:
wil_dbg_misc(wil, "type: STATION\n");
ndev->type = ARPHRD_ETHER;
break;
case NL80211_IFTYPE_AP:
wil_dbg_misc(wil, "type: AP\n");
ndev->type = ARPHRD_ETHER;
break;
case NL80211_IFTYPE_P2P_CLIENT:
wil_dbg_misc(wil, "type: P2P_CLIENT\n");
ndev->type = ARPHRD_ETHER;
break;
case NL80211_IFTYPE_P2P_GO:
wil_dbg_misc(wil, "type: P2P_GO\n");
ndev->type = ARPHRD_ETHER;
break;
case NL80211_IFTYPE_MONITOR:
wil_dbg_misc(wil, "type: Monitor\n");
ndev->type = ARPHRD_IEEE80211_RADIOTAP;
/* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
break;
default:
return -EOPNOTSUPP;
}
/* MAC address - pre-requisite for other commands */
wmi_set_mac_address(wil, ndev->dev_addr);
wil_dbg_misc(wil, "NAPI enable\n");
napi_enable(&wil->napi_rx);
napi_enable(&wil->napi_tx);
set_bit(wil_status_napi_en, wil->status);
wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
return 0;
}
int wil_up(struct wil6210_priv *wil)
{
int rc;
wil_dbg_misc(wil, "up\n");
mutex_lock(&wil->mutex);
rc = __wil_up(wil);
mutex_unlock(&wil->mutex);
return rc;
}
int __wil_down(struct wil6210_priv *wil)
{
WARN_ON(!mutex_is_locked(&wil->mutex));
set_bit(wil_status_resetting, wil->status);
wil6210_bus_request(wil, 0);
wil_disable_irq(wil);
if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
napi_disable(&wil->napi_rx);
napi_disable(&wil->napi_tx);
wil_dbg_misc(wil, "NAPI disable\n");
}
wil_enable_irq(wil);
mutex_lock(&wil->p2p_wdev_mutex);
wil_p2p_stop_radio_operations(wil);
wil_abort_scan(wil, false);
mutex_unlock(&wil->p2p_wdev_mutex);
wil_reset(wil, false);
return 0;
}
int wil_down(struct wil6210_priv *wil)
{
int rc;
wil_dbg_misc(wil, "down\n");
wil_set_recovery_state(wil, fw_recovery_idle);
mutex_lock(&wil->mutex);
rc = __wil_down(wil);
mutex_unlock(&wil->mutex);
return rc;
}
int wil_find_cid(struct wil6210_priv *wil, const u8 *mac)
{
int i;
int rc = -ENOENT;
for (i = 0; i < ARRAY_SIZE(wil->sta); i++) {
if ((wil->sta[i].status != wil_sta_unused) &&
ether_addr_equal(wil->sta[i].addr, mac)) {
rc = i;
break;
}
}
return rc;
}
void wil_halp_vote(struct wil6210_priv *wil)
{
unsigned long rc;
unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
mutex_lock(&wil->halp.lock);
wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
wil->halp.ref_cnt);
if (++wil->halp.ref_cnt == 1) {
reinit_completion(&wil->halp.comp);
wil6210_set_halp(wil);
rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
if (!rc) {
wil_err(wil, "HALP vote timed out\n");
/* Mask HALP as done in case the interrupt is raised */
wil6210_mask_halp(wil);
} else {
wil_dbg_irq(wil,
"halp_vote: HALP vote completed after %d ms\n",
jiffies_to_msecs(to_jiffies - rc));
}
}
wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
wil->halp.ref_cnt);
mutex_unlock(&wil->halp.lock);
}
void wil_halp_unvote(struct wil6210_priv *wil)
{
WARN_ON(wil->halp.ref_cnt == 0);
mutex_lock(&wil->halp.lock);
wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
wil->halp.ref_cnt);
if (--wil->halp.ref_cnt == 0) {
wil6210_clear_halp(wil);
wil_dbg_irq(wil, "HALP unvote\n");
}
wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
wil->halp.ref_cnt);
mutex_unlock(&wil->halp.lock);
}