Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | /* * algif_skcipher: User-space interface for skcipher algorithms * * This file provides the user-space API for symmetric key ciphers. * * Copyright (c) 2010 Herbert Xu <herbert@gondor.apana.org.au> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * The following concept of the memory management is used: * * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is * filled by user space with the data submitted via sendpage/sendmsg. Filling * up the TX SGL does not cause a crypto operation -- the data will only be * tracked by the kernel. Upon receipt of one recvmsg call, the caller must * provide a buffer which is tracked with the RX SGL. * * During the processing of the recvmsg operation, the cipher request is * allocated and prepared. As part of the recvmsg operation, the processed * TX buffers are extracted from the TX SGL into a separate SGL. * * After the completion of the crypto operation, the RX SGL and the cipher * request is released. The extracted TX SGL parts are released together with * the RX SGL release. */ #include <crypto/scatterwalk.h> #include <crypto/skcipher.h> #include <crypto/if_alg.h> #include <linux/init.h> #include <linux/list.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/net.h> #include <net/sock.h> struct skcipher_tfm { struct crypto_skcipher *skcipher; bool has_key; }; static int skcipher_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) { struct sock *sk = sock->sk; struct alg_sock *ask = alg_sk(sk); struct sock *psk = ask->parent; struct alg_sock *pask = alg_sk(psk); struct skcipher_tfm *skc = pask->private; struct crypto_skcipher *tfm = skc->skcipher; unsigned ivsize = crypto_skcipher_ivsize(tfm); return af_alg_sendmsg(sock, msg, size, ivsize); } static int _skcipher_recvmsg(struct socket *sock, struct msghdr *msg, size_t ignored, int flags) { struct sock *sk = sock->sk; struct alg_sock *ask = alg_sk(sk); struct sock *psk = ask->parent; struct alg_sock *pask = alg_sk(psk); struct af_alg_ctx *ctx = ask->private; struct skcipher_tfm *skc = pask->private; struct crypto_skcipher *tfm = skc->skcipher; unsigned int bs = crypto_skcipher_blocksize(tfm); struct af_alg_async_req *areq; int err = 0; size_t len = 0; if (!ctx->used) { err = af_alg_wait_for_data(sk, flags); if (err) return err; } /* Allocate cipher request for current operation. */ areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) + crypto_skcipher_reqsize(tfm)); if (IS_ERR(areq)) return PTR_ERR(areq); /* convert iovecs of output buffers into RX SGL */ err = af_alg_get_rsgl(sk, msg, flags, areq, -1, &len); if (err) goto free; /* Process only as much RX buffers for which we have TX data */ if (len > ctx->used) len = ctx->used; /* * If more buffers are to be expected to be processed, process only * full block size buffers. */ if (ctx->more || len < ctx->used) len -= len % bs; /* * Create a per request TX SGL for this request which tracks the * SG entries from the global TX SGL. */ areq->tsgl_entries = af_alg_count_tsgl(sk, len, 0); if (!areq->tsgl_entries) areq->tsgl_entries = 1; areq->tsgl = sock_kmalloc(sk, sizeof(*areq->tsgl) * areq->tsgl_entries, GFP_KERNEL); if (!areq->tsgl) { err = -ENOMEM; goto free; } sg_init_table(areq->tsgl, areq->tsgl_entries); af_alg_pull_tsgl(sk, len, areq->tsgl, 0); /* Initialize the crypto operation */ skcipher_request_set_tfm(&areq->cra_u.skcipher_req, tfm); skcipher_request_set_crypt(&areq->cra_u.skcipher_req, areq->tsgl, areq->first_rsgl.sgl.sg, len, ctx->iv); if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) { /* AIO operation */ sock_hold(sk); areq->iocb = msg->msg_iocb; /* Remember output size that will be generated. */ areq->outlen = len; skcipher_request_set_callback(&areq->cra_u.skcipher_req, CRYPTO_TFM_REQ_MAY_SLEEP, af_alg_async_cb, areq); err = ctx->enc ? crypto_skcipher_encrypt(&areq->cra_u.skcipher_req) : crypto_skcipher_decrypt(&areq->cra_u.skcipher_req); /* AIO operation in progress */ if (err == -EINPROGRESS || err == -EBUSY) return -EIOCBQUEUED; sock_put(sk); } else { /* Synchronous operation */ skcipher_request_set_callback(&areq->cra_u.skcipher_req, CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG, af_alg_complete, &ctx->completion); err = af_alg_wait_for_completion(ctx->enc ? crypto_skcipher_encrypt(&areq->cra_u.skcipher_req) : crypto_skcipher_decrypt(&areq->cra_u.skcipher_req), &ctx->completion); } free: af_alg_free_resources(areq); return err ? err : len; } static int skcipher_recvmsg(struct socket *sock, struct msghdr *msg, size_t ignored, int flags) { struct sock *sk = sock->sk; int ret = 0; lock_sock(sk); while (msg_data_left(msg)) { int err = _skcipher_recvmsg(sock, msg, ignored, flags); /* * This error covers -EIOCBQUEUED which implies that we can * only handle one AIO request. If the caller wants to have * multiple AIO requests in parallel, he must make multiple * separate AIO calls. * * Also return the error if no data has been processed so far. */ if (err <= 0) { if (err == -EIOCBQUEUED || !ret) ret = err; goto out; } ret += err; } out: af_alg_wmem_wakeup(sk); release_sock(sk); return ret; } static struct proto_ops algif_skcipher_ops = { .family = PF_ALG, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .getname = sock_no_getname, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .getsockopt = sock_no_getsockopt, .mmap = sock_no_mmap, .bind = sock_no_bind, .accept = sock_no_accept, .setsockopt = sock_no_setsockopt, .release = af_alg_release, .sendmsg = skcipher_sendmsg, .sendpage = af_alg_sendpage, .recvmsg = skcipher_recvmsg, .poll = af_alg_poll, }; static int skcipher_check_key(struct socket *sock) { int err = 0; struct sock *psk; struct alg_sock *pask; struct skcipher_tfm *tfm; struct sock *sk = sock->sk; struct alg_sock *ask = alg_sk(sk); lock_sock(sk); if (ask->refcnt) goto unlock_child; psk = ask->parent; pask = alg_sk(ask->parent); tfm = pask->private; err = -ENOKEY; lock_sock_nested(psk, SINGLE_DEPTH_NESTING); if (!tfm->has_key) goto unlock; if (!pask->refcnt++) sock_hold(psk); ask->refcnt = 1; sock_put(psk); err = 0; unlock: release_sock(psk); unlock_child: release_sock(sk); return err; } static int skcipher_sendmsg_nokey(struct socket *sock, struct msghdr *msg, size_t size) { int err; err = skcipher_check_key(sock); if (err) return err; return skcipher_sendmsg(sock, msg, size); } static ssize_t skcipher_sendpage_nokey(struct socket *sock, struct page *page, int offset, size_t size, int flags) { int err; err = skcipher_check_key(sock); if (err) return err; return af_alg_sendpage(sock, page, offset, size, flags); } static int skcipher_recvmsg_nokey(struct socket *sock, struct msghdr *msg, size_t ignored, int flags) { int err; err = skcipher_check_key(sock); if (err) return err; return skcipher_recvmsg(sock, msg, ignored, flags); } static struct proto_ops algif_skcipher_ops_nokey = { .family = PF_ALG, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .getname = sock_no_getname, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .getsockopt = sock_no_getsockopt, .mmap = sock_no_mmap, .bind = sock_no_bind, .accept = sock_no_accept, .setsockopt = sock_no_setsockopt, .release = af_alg_release, .sendmsg = skcipher_sendmsg_nokey, .sendpage = skcipher_sendpage_nokey, .recvmsg = skcipher_recvmsg_nokey, .poll = af_alg_poll, }; static void *skcipher_bind(const char *name, u32 type, u32 mask) { struct skcipher_tfm *tfm; struct crypto_skcipher *skcipher; tfm = kzalloc(sizeof(*tfm), GFP_KERNEL); if (!tfm) return ERR_PTR(-ENOMEM); skcipher = crypto_alloc_skcipher(name, type, mask); if (IS_ERR(skcipher)) { kfree(tfm); return ERR_CAST(skcipher); } tfm->skcipher = skcipher; return tfm; } static void skcipher_release(void *private) { struct skcipher_tfm *tfm = private; crypto_free_skcipher(tfm->skcipher); kfree(tfm); } static int skcipher_setkey(void *private, const u8 *key, unsigned int keylen) { struct skcipher_tfm *tfm = private; int err; err = crypto_skcipher_setkey(tfm->skcipher, key, keylen); tfm->has_key = !err; return err; } static void skcipher_sock_destruct(struct sock *sk) { struct alg_sock *ask = alg_sk(sk); struct af_alg_ctx *ctx = ask->private; struct sock *psk = ask->parent; struct alg_sock *pask = alg_sk(psk); struct skcipher_tfm *skc = pask->private; struct crypto_skcipher *tfm = skc->skcipher; af_alg_pull_tsgl(sk, ctx->used, NULL, 0); sock_kzfree_s(sk, ctx->iv, crypto_skcipher_ivsize(tfm)); sock_kfree_s(sk, ctx, ctx->len); af_alg_release_parent(sk); } static int skcipher_accept_parent_nokey(void *private, struct sock *sk) { struct af_alg_ctx *ctx; struct alg_sock *ask = alg_sk(sk); struct skcipher_tfm *tfm = private; struct crypto_skcipher *skcipher = tfm->skcipher; unsigned int len = sizeof(*ctx); ctx = sock_kmalloc(sk, len, GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->iv = sock_kmalloc(sk, crypto_skcipher_ivsize(skcipher), GFP_KERNEL); if (!ctx->iv) { sock_kfree_s(sk, ctx, len); return -ENOMEM; } memset(ctx->iv, 0, crypto_skcipher_ivsize(skcipher)); INIT_LIST_HEAD(&ctx->tsgl_list); ctx->len = len; ctx->used = 0; atomic_set(&ctx->rcvused, 0); ctx->more = 0; ctx->merge = 0; ctx->enc = 0; af_alg_init_completion(&ctx->completion); ask->private = ctx; sk->sk_destruct = skcipher_sock_destruct; return 0; } static int skcipher_accept_parent(void *private, struct sock *sk) { struct skcipher_tfm *tfm = private; if (!tfm->has_key && crypto_skcipher_has_setkey(tfm->skcipher)) return -ENOKEY; return skcipher_accept_parent_nokey(private, sk); } static const struct af_alg_type algif_type_skcipher = { .bind = skcipher_bind, .release = skcipher_release, .setkey = skcipher_setkey, .accept = skcipher_accept_parent, .accept_nokey = skcipher_accept_parent_nokey, .ops = &algif_skcipher_ops, .ops_nokey = &algif_skcipher_ops_nokey, .name = "skcipher", .owner = THIS_MODULE }; static int __init algif_skcipher_init(void) { return af_alg_register_type(&algif_type_skcipher); } static void __exit algif_skcipher_exit(void) { int err = af_alg_unregister_type(&algif_type_skcipher); BUG_ON(err); } module_init(algif_skcipher_init); module_exit(algif_skcipher_exit); MODULE_LICENSE("GPL"); |