Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | // SPDX-License-Identifier: GPL-2.0 /* * super.c * * Copyright (c) 1999 Al Smith * * Portions derived from work (c) 1995,1996 Christian Vogelgsang. */ #include <linux/init.h> #include <linux/module.h> #include <linux/exportfs.h> #include <linux/slab.h> #include <linux/buffer_head.h> #include <linux/vfs.h> #include "efs.h" #include <linux/efs_vh.h> #include <linux/efs_fs_sb.h> static int efs_statfs(struct dentry *dentry, struct kstatfs *buf); static int efs_fill_super(struct super_block *s, void *d, int silent); static struct dentry *efs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super); } static void efs_kill_sb(struct super_block *s) { struct efs_sb_info *sbi = SUPER_INFO(s); kill_block_super(s); kfree(sbi); } static struct file_system_type efs_fs_type = { .owner = THIS_MODULE, .name = "efs", .mount = efs_mount, .kill_sb = efs_kill_sb, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("efs"); static struct pt_types sgi_pt_types[] = { {0x00, "SGI vh"}, {0x01, "SGI trkrepl"}, {0x02, "SGI secrepl"}, {0x03, "SGI raw"}, {0x04, "SGI bsd"}, {SGI_SYSV, "SGI sysv"}, {0x06, "SGI vol"}, {SGI_EFS, "SGI efs"}, {0x08, "SGI lv"}, {0x09, "SGI rlv"}, {0x0A, "SGI xfs"}, {0x0B, "SGI xfslog"}, {0x0C, "SGI xlv"}, {0x82, "Linux swap"}, {0x83, "Linux native"}, {0, NULL} }; static struct kmem_cache * efs_inode_cachep; static struct inode *efs_alloc_inode(struct super_block *sb) { struct efs_inode_info *ei; ei = kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL); if (!ei) return NULL; return &ei->vfs_inode; } static void efs_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); kmem_cache_free(efs_inode_cachep, INODE_INFO(inode)); } static void efs_destroy_inode(struct inode *inode) { call_rcu(&inode->i_rcu, efs_i_callback); } static void init_once(void *foo) { struct efs_inode_info *ei = (struct efs_inode_info *) foo; inode_init_once(&ei->vfs_inode); } static int __init init_inodecache(void) { efs_inode_cachep = kmem_cache_create("efs_inode_cache", sizeof(struct efs_inode_info), 0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| SLAB_ACCOUNT, init_once); if (efs_inode_cachep == NULL) return -ENOMEM; return 0; } static void destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(efs_inode_cachep); } static int efs_remount(struct super_block *sb, int *flags, char *data) { sync_filesystem(sb); *flags |= MS_RDONLY; return 0; } static const struct super_operations efs_superblock_operations = { .alloc_inode = efs_alloc_inode, .destroy_inode = efs_destroy_inode, .statfs = efs_statfs, .remount_fs = efs_remount, }; static const struct export_operations efs_export_ops = { .fh_to_dentry = efs_fh_to_dentry, .fh_to_parent = efs_fh_to_parent, .get_parent = efs_get_parent, }; static int __init init_efs_fs(void) { int err; pr_info(EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n"); err = init_inodecache(); if (err) goto out1; err = register_filesystem(&efs_fs_type); if (err) goto out; return 0; out: destroy_inodecache(); out1: return err; } static void __exit exit_efs_fs(void) { unregister_filesystem(&efs_fs_type); destroy_inodecache(); } module_init(init_efs_fs) module_exit(exit_efs_fs) static efs_block_t efs_validate_vh(struct volume_header *vh) { int i; __be32 cs, *ui; int csum; efs_block_t sblock = 0; /* shuts up gcc */ struct pt_types *pt_entry; int pt_type, slice = -1; if (be32_to_cpu(vh->vh_magic) != VHMAGIC) { /* * assume that we're dealing with a partition and allow * read_super() to try and detect a valid superblock * on the next block. */ return 0; } ui = ((__be32 *) (vh + 1)) - 1; for(csum = 0; ui >= ((__be32 *) vh);) { cs = *ui--; csum += be32_to_cpu(cs); } if (csum) { pr_warn("SGI disklabel: checksum bad, label corrupted\n"); return 0; } #ifdef DEBUG pr_debug("bf: \"%16s\"\n", vh->vh_bootfile); for(i = 0; i < NVDIR; i++) { int j; char name[VDNAMESIZE+1]; for(j = 0; j < VDNAMESIZE; j++) { name[j] = vh->vh_vd[i].vd_name[j]; } name[j] = (char) 0; if (name[0]) { pr_debug("vh: %8s block: 0x%08x size: 0x%08x\n", name, (int) be32_to_cpu(vh->vh_vd[i].vd_lbn), (int) be32_to_cpu(vh->vh_vd[i].vd_nbytes)); } } #endif for(i = 0; i < NPARTAB; i++) { pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type); for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) { if (pt_type == pt_entry->pt_type) break; } #ifdef DEBUG if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) { pr_debug("pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n", i, (int)be32_to_cpu(vh->vh_pt[i].pt_firstlbn), (int)be32_to_cpu(vh->vh_pt[i].pt_nblks), pt_type, (pt_entry->pt_name) ? pt_entry->pt_name : "unknown"); } #endif if (IS_EFS(pt_type)) { sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn); slice = i; } } if (slice == -1) { pr_notice("partition table contained no EFS partitions\n"); #ifdef DEBUG } else { pr_info("using slice %d (type %s, offset 0x%x)\n", slice, (pt_entry->pt_name) ? pt_entry->pt_name : "unknown", sblock); #endif } return sblock; } static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) { if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic))) return -1; sb->fs_magic = be32_to_cpu(super->fs_magic); sb->total_blocks = be32_to_cpu(super->fs_size); sb->first_block = be32_to_cpu(super->fs_firstcg); sb->group_size = be32_to_cpu(super->fs_cgfsize); sb->data_free = be32_to_cpu(super->fs_tfree); sb->inode_free = be32_to_cpu(super->fs_tinode); sb->inode_blocks = be16_to_cpu(super->fs_cgisize); sb->total_groups = be16_to_cpu(super->fs_ncg); return 0; } static int efs_fill_super(struct super_block *s, void *d, int silent) { struct efs_sb_info *sb; struct buffer_head *bh; struct inode *root; sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL); if (!sb) return -ENOMEM; s->s_fs_info = sb; s->s_magic = EFS_SUPER_MAGIC; if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) { pr_err("device does not support %d byte blocks\n", EFS_BLOCKSIZE); return -EINVAL; } /* read the vh (volume header) block */ bh = sb_bread(s, 0); if (!bh) { pr_err("cannot read volume header\n"); return -EIO; } /* * if this returns zero then we didn't find any partition table. * this isn't (yet) an error - just assume for the moment that * the device is valid and go on to search for a superblock. */ sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data); brelse(bh); if (sb->fs_start == -1) { return -EINVAL; } bh = sb_bread(s, sb->fs_start + EFS_SUPER); if (!bh) { pr_err("cannot read superblock\n"); return -EIO; } if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) { #ifdef DEBUG pr_warn("invalid superblock at block %u\n", sb->fs_start + EFS_SUPER); #endif brelse(bh); return -EINVAL; } brelse(bh); if (!sb_rdonly(s)) { #ifdef DEBUG pr_info("forcing read-only mode\n"); #endif s->s_flags |= MS_RDONLY; } s->s_op = &efs_superblock_operations; s->s_export_op = &efs_export_ops; root = efs_iget(s, EFS_ROOTINODE); if (IS_ERR(root)) { pr_err("get root inode failed\n"); return PTR_ERR(root); } s->s_root = d_make_root(root); if (!(s->s_root)) { pr_err("get root dentry failed\n"); return -ENOMEM; } return 0; } static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct efs_sb_info *sbi = SUPER_INFO(sb); u64 id = huge_encode_dev(sb->s_bdev->bd_dev); buf->f_type = EFS_SUPER_MAGIC; /* efs magic number */ buf->f_bsize = EFS_BLOCKSIZE; /* blocksize */ buf->f_blocks = sbi->total_groups * /* total data blocks */ (sbi->group_size - sbi->inode_blocks); buf->f_bfree = sbi->data_free; /* free data blocks */ buf->f_bavail = sbi->data_free; /* free blocks for non-root */ buf->f_files = sbi->total_groups * /* total inodes */ sbi->inode_blocks * (EFS_BLOCKSIZE / sizeof(struct efs_dinode)); buf->f_ffree = sbi->inode_free; /* free inodes */ buf->f_fsid.val[0] = (u32)id; buf->f_fsid.val[1] = (u32)(id >> 32); buf->f_namelen = EFS_MAXNAMELEN; /* max filename length */ return 0; } |