Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | /* * arch/arm/probes/decode.h * * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>. * * Some contents moved here from arch/arm/include/asm/kprobes.h which is * Copyright (C) 2006, 2007 Motorola Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #ifndef _ARM_KERNEL_PROBES_H #define _ARM_KERNEL_PROBES_H #include <linux/types.h> #include <linux/stddef.h> #include <asm/probes.h> #include <asm/kprobes.h> void __init arm_probes_decode_init(void); extern probes_check_cc * const probes_condition_checks[16]; #if __LINUX_ARM_ARCH__ >= 7 /* str_pc_offset is architecturally defined from ARMv7 onwards */ #define str_pc_offset 8 #define find_str_pc_offset() #else /* __LINUX_ARM_ARCH__ < 7 */ /* We need a run-time check to determine str_pc_offset */ extern int str_pc_offset; void __init find_str_pc_offset(void); #endif /* * Update ITSTATE after normal execution of an IT block instruction. * * The 8 IT state bits are split into two parts in CPSR: * ITSTATE<1:0> are in CPSR<26:25> * ITSTATE<7:2> are in CPSR<15:10> */ static inline unsigned long it_advance(unsigned long cpsr) { if ((cpsr & 0x06000400) == 0) { /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */ cpsr &= ~PSR_IT_MASK; } else { /* We need to shift left ITSTATE<4:0> */ const unsigned long mask = 0x06001c00; /* Mask ITSTATE<4:0> */ unsigned long it = cpsr & mask; it <<= 1; it |= it >> (27 - 10); /* Carry ITSTATE<2> to correct place */ it &= mask; cpsr &= ~mask; cpsr |= it; } return cpsr; } static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs) { long cpsr = regs->ARM_cpsr; if (pcv & 0x1) { cpsr |= PSR_T_BIT; pcv &= ~0x1; } else { cpsr &= ~PSR_T_BIT; pcv &= ~0x2; /* Avoid UNPREDICTABLE address allignment */ } regs->ARM_cpsr = cpsr; regs->ARM_pc = pcv; } #if __LINUX_ARM_ARCH__ >= 6 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */ #define load_write_pc_interworks true #define test_load_write_pc_interworking() #else /* __LINUX_ARM_ARCH__ < 6 */ /* We need run-time testing to determine if load_write_pc() should interwork. */ extern bool load_write_pc_interworks; void __init test_load_write_pc_interworking(void); #endif static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs) { if (load_write_pc_interworks) bx_write_pc(pcv, regs); else regs->ARM_pc = pcv; } #if __LINUX_ARM_ARCH__ >= 7 #define alu_write_pc_interworks true #define test_alu_write_pc_interworking() #elif __LINUX_ARM_ARCH__ <= 5 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */ #define alu_write_pc_interworks false #define test_alu_write_pc_interworking() #else /* __LINUX_ARM_ARCH__ == 6 */ /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */ extern bool alu_write_pc_interworks; void __init test_alu_write_pc_interworking(void); #endif /* __LINUX_ARM_ARCH__ == 6 */ static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs) { if (alu_write_pc_interworks) bx_write_pc(pcv, regs); else regs->ARM_pc = pcv; } /* * Test if load/store instructions writeback the address register. * if P (bit 24) == 0 or W (bit 21) == 1 */ #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000) /* * The following definitions and macros are used to build instruction * decoding tables for use by probes_decode_insn. * * These tables are a concatenation of entries each of which consist of one of * the decode_* structs. All of the fields in every type of decode structure * are of the union type decode_item, therefore the entire decode table can be * viewed as an array of these and declared like: * * static const union decode_item table_name[] = {}; * * In order to construct each entry in the table, macros are used to * initialise a number of sequential decode_item values in a layout which * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct * decode_simulate by initialising four decode_item objects like this... * * {.bits = _type}, * {.bits = _mask}, * {.bits = _value}, * {.action = _handler}, * * Initialising a specified member of the union means that the compiler * will produce a warning if the argument is of an incorrect type. * * Below is a list of each of the macros used to initialise entries and a * description of the action performed when that entry is matched to an * instruction. A match is found when (instruction & mask) == value. * * DECODE_TABLE(mask, value, table) * Instruction decoding jumps to parsing the new sub-table 'table'. * * DECODE_CUSTOM(mask, value, decoder) * The value of 'decoder' is used as an index into the array of * action functions, and the retrieved decoder function is invoked * to complete decoding of the instruction. * * DECODE_SIMULATE(mask, value, handler) * The probes instruction handler is set to the value found by * indexing into the action array using the value of 'handler'. This * will be used to simulate the instruction when the probe is hit. * Decoding returns with INSN_GOOD_NO_SLOT. * * DECODE_EMULATE(mask, value, handler) * The probes instruction handler is set to the value found by * indexing into the action array using the value of 'handler'. This * will be used to emulate the instruction when the probe is hit. The * modified instruction (see below) is placed in the probes instruction * slot so it may be called by the emulation code. Decoding returns * with INSN_GOOD. * * DECODE_REJECT(mask, value) * Instruction decoding fails with INSN_REJECTED * * DECODE_OR(mask, value) * This allows the mask/value test of multiple table entries to be * logically ORed. Once an 'or' entry is matched the decoding action to * be performed is that of the next entry which isn't an 'or'. E.g. * * DECODE_OR (mask1, value1) * DECODE_OR (mask2, value2) * DECODE_SIMULATE (mask3, value3, simulation_handler) * * This means that if any of the three mask/value pairs match the * instruction being decoded, then 'simulation_handler' will be used * for it. * * Both the SIMULATE and EMULATE macros have a second form which take an * additional 'regs' argument. * * DECODE_SIMULATEX(mask, value, handler, regs) * DECODE_EMULATEX (mask, value, handler, regs) * * These are used to specify what kind of CPU register is encoded in each of the * least significant 5 nibbles of the instruction being decoded. The regs value * is specified using the REGS macro, this takes any of the REG_TYPE_* values * from enum decode_reg_type as arguments; only the '*' part of the name is * given. E.g. * * REGS(0, ANY, NOPC, 0, ANY) * * This indicates an instruction is encoded like: * * bits 19..16 ignore * bits 15..12 any register allowed here * bits 11.. 8 any register except PC allowed here * bits 7.. 4 ignore * bits 3.. 0 any register allowed here * * This register specification is checked after a decode table entry is found to * match an instruction (through the mask/value test). Any invalid register then * found in the instruction will cause decoding to fail with INSN_REJECTED. In * the above example this would happen if bits 11..8 of the instruction were * 1111, indicating R15 or PC. * * As well as checking for legal combinations of registers, this data is also * used to modify the registers encoded in the instructions so that an * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.) * * Here is a real example which matches ARM instructions of the form * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>" * * DECODE_EMULATEX (0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG, * REGS(ANY, ANY, NOPC, 0, ANY)), * ^ ^ ^ ^ * Rn Rd Rs Rm * * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because * Rs == R15 * * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into * the kprobes instruction slot. This can then be called later by the handler * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from * the indicated slot in the action array), in order to simulate the instruction. */ enum decode_type { DECODE_TYPE_END, DECODE_TYPE_TABLE, DECODE_TYPE_CUSTOM, DECODE_TYPE_SIMULATE, DECODE_TYPE_EMULATE, DECODE_TYPE_OR, DECODE_TYPE_REJECT, NUM_DECODE_TYPES /* Must be last enum */ }; #define DECODE_TYPE_BITS 4 #define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1) enum decode_reg_type { REG_TYPE_NONE = 0, /* Not a register, ignore */ REG_TYPE_ANY, /* Any register allowed */ REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */ REG_TYPE_SP, /* Register must be SP */ REG_TYPE_PC, /* Register must be PC */ REG_TYPE_NOSP, /* Register must not be SP */ REG_TYPE_NOSPPC, /* Register must not be SP or PC */ REG_TYPE_NOPC, /* Register must not be PC */ REG_TYPE_NOPCWB, /* No PC if load/store write-back flag also set */ /* The following types are used when the encoding for PC indicates * another instruction form. This distiction only matters for test * case coverage checks. */ REG_TYPE_NOPCX, /* Register must not be PC */ REG_TYPE_NOSPPCX, /* Register must not be SP or PC */ /* Alias to allow '0' arg to be used in REGS macro. */ REG_TYPE_0 = REG_TYPE_NONE }; #define REGS(r16, r12, r8, r4, r0) \ (((REG_TYPE_##r16) << 16) + \ ((REG_TYPE_##r12) << 12) + \ ((REG_TYPE_##r8) << 8) + \ ((REG_TYPE_##r4) << 4) + \ (REG_TYPE_##r0)) union decode_item { u32 bits; const union decode_item *table; int action; }; struct decode_header; typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t, struct arch_probes_insn *, const struct decode_header *); union decode_action { probes_insn_handler_t *handler; probes_custom_decode_t *decoder; }; typedef enum probes_insn (probes_check_t)(probes_opcode_t, struct arch_probes_insn *, const struct decode_header *); struct decode_checker { probes_check_t *checker; }; #define DECODE_END \ {.bits = DECODE_TYPE_END} struct decode_header { union decode_item type_regs; union decode_item mask; union decode_item value; }; #define DECODE_HEADER(_type, _mask, _value, _regs) \ {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \ {.bits = (_mask)}, \ {.bits = (_value)} struct decode_table { struct decode_header header; union decode_item table; }; #define DECODE_TABLE(_mask, _value, _table) \ DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \ {.table = (_table)} struct decode_custom { struct decode_header header; union decode_item decoder; }; #define DECODE_CUSTOM(_mask, _value, _decoder) \ DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \ {.action = (_decoder)} struct decode_simulate { struct decode_header header; union decode_item handler; }; #define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \ DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \ {.action = (_handler)} #define DECODE_SIMULATE(_mask, _value, _handler) \ DECODE_SIMULATEX(_mask, _value, _handler, 0) struct decode_emulate { struct decode_header header; union decode_item handler; }; #define DECODE_EMULATEX(_mask, _value, _handler, _regs) \ DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \ {.action = (_handler)} #define DECODE_EMULATE(_mask, _value, _handler) \ DECODE_EMULATEX(_mask, _value, _handler, 0) struct decode_or { struct decode_header header; }; #define DECODE_OR(_mask, _value) \ DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0) enum probes_insn { INSN_REJECTED, INSN_GOOD, INSN_GOOD_NO_SLOT }; struct decode_reject { struct decode_header header; }; #define DECODE_REJECT(_mask, _value) \ DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0) probes_insn_handler_t probes_simulate_nop; probes_insn_handler_t probes_emulate_none; int __kprobes probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi, const union decode_item *table, bool thumb, bool emulate, const union decode_action *actions, const struct decode_checker **checkers); #endif |