Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | /* * kmod - the kernel module loader */ #include <linux/module.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/binfmts.h> #include <linux/syscalls.h> #include <linux/unistd.h> #include <linux/kmod.h> #include <linux/slab.h> #include <linux/completion.h> #include <linux/cred.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/workqueue.h> #include <linux/security.h> #include <linux/mount.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/resource.h> #include <linux/notifier.h> #include <linux/suspend.h> #include <linux/rwsem.h> #include <linux/ptrace.h> #include <linux/async.h> #include <linux/uaccess.h> #include <trace/events/module.h> /* * Assuming: * * threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE, * (u64) THREAD_SIZE * 8UL); * * If you need less than 50 threads would mean we're dealing with systems * smaller than 3200 pages. This assuems you are capable of having ~13M memory, * and this would only be an be an upper limit, after which the OOM killer * would take effect. Systems like these are very unlikely if modules are * enabled. */ #define MAX_KMOD_CONCURRENT 50 static atomic_t kmod_concurrent_max = ATOMIC_INIT(MAX_KMOD_CONCURRENT); static DECLARE_WAIT_QUEUE_HEAD(kmod_wq); /* * This is a restriction on having *all* MAX_KMOD_CONCURRENT threads * running at the same time without returning. When this happens we * believe you've somehow ended up with a recursive module dependency * creating a loop. * * We have no option but to fail. * * Userspace should proactively try to detect and prevent these. */ #define MAX_KMOD_ALL_BUSY_TIMEOUT 5 /* modprobe_path is set via /proc/sys. */ char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe"; static void free_modprobe_argv(struct subprocess_info *info) { kfree(info->argv[3]); /* check call_modprobe() */ kfree(info->argv); } static int call_modprobe(char *module_name, int wait) { struct subprocess_info *info; static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL }; char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL); if (!argv) goto out; module_name = kstrdup(module_name, GFP_KERNEL); if (!module_name) goto free_argv; argv[0] = modprobe_path; argv[1] = "-q"; argv[2] = "--"; argv[3] = module_name; /* check free_modprobe_argv() */ argv[4] = NULL; info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL, NULL, free_modprobe_argv, NULL); if (!info) goto free_module_name; return call_usermodehelper_exec(info, wait | UMH_KILLABLE); free_module_name: kfree(module_name); free_argv: kfree(argv); out: return -ENOMEM; } /** * __request_module - try to load a kernel module * @wait: wait (or not) for the operation to complete * @fmt: printf style format string for the name of the module * @...: arguments as specified in the format string * * Load a module using the user mode module loader. The function returns * zero on success or a negative errno code or positive exit code from * "modprobe" on failure. Note that a successful module load does not mean * the module did not then unload and exit on an error of its own. Callers * must check that the service they requested is now available not blindly * invoke it. * * If module auto-loading support is disabled then this function * simply returns -ENOENT. */ int __request_module(bool wait, const char *fmt, ...) { va_list args; char module_name[MODULE_NAME_LEN]; int ret; /* * We don't allow synchronous module loading from async. Module * init may invoke async_synchronize_full() which will end up * waiting for this task which already is waiting for the module * loading to complete, leading to a deadlock. */ WARN_ON_ONCE(wait && current_is_async()); if (!modprobe_path[0]) return -ENOENT; va_start(args, fmt); ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); va_end(args); if (ret >= MODULE_NAME_LEN) return -ENAMETOOLONG; ret = security_kernel_module_request(module_name); if (ret) return ret; if (atomic_dec_if_positive(&kmod_concurrent_max) < 0) { pr_warn_ratelimited("request_module: kmod_concurrent_max (%u) close to 0 (max_modprobes: %u), for module %s, throttling...", atomic_read(&kmod_concurrent_max), MAX_KMOD_CONCURRENT, module_name); ret = wait_event_killable_timeout(kmod_wq, atomic_dec_if_positive(&kmod_concurrent_max) >= 0, MAX_KMOD_ALL_BUSY_TIMEOUT * HZ); if (!ret) { pr_warn_ratelimited("request_module: modprobe %s cannot be processed, kmod busy with %d threads for more than %d seconds now", module_name, MAX_KMOD_CONCURRENT, MAX_KMOD_ALL_BUSY_TIMEOUT); return -ETIME; } else if (ret == -ERESTARTSYS) { pr_warn_ratelimited("request_module: sigkill sent for modprobe %s, giving up", module_name); return ret; } } trace_module_request(module_name, wait, _RET_IP_); ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC); atomic_inc(&kmod_concurrent_max); wake_up(&kmod_wq); return ret; } EXPORT_SYMBOL(__request_module); |