Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | /* * fs/kernfs/mount.c - kernfs mount implementation * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> * * This file is released under the GPLv2. */ #include <linux/fs.h> #include <linux/mount.h> #include <linux/init.h> #include <linux/magic.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/namei.h> #include <linux/seq_file.h> #include <linux/exportfs.h> #include "kernfs-internal.h" struct kmem_cache *kernfs_node_cache; static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data) { struct kernfs_root *root = kernfs_info(sb)->root; struct kernfs_syscall_ops *scops = root->syscall_ops; if (scops && scops->remount_fs) return scops->remount_fs(root, flags, data); return 0; } static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry) { struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry)); struct kernfs_syscall_ops *scops = root->syscall_ops; if (scops && scops->show_options) return scops->show_options(sf, root); return 0; } static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry) { struct kernfs_node *node = kernfs_dentry_node(dentry); struct kernfs_root *root = kernfs_root(node); struct kernfs_syscall_ops *scops = root->syscall_ops; if (scops && scops->show_path) return scops->show_path(sf, node, root); seq_dentry(sf, dentry, " \t\n\\"); return 0; } const struct super_operations kernfs_sops = { .statfs = simple_statfs, .drop_inode = generic_delete_inode, .evict_inode = kernfs_evict_inode, .remount_fs = kernfs_sop_remount_fs, .show_options = kernfs_sop_show_options, .show_path = kernfs_sop_show_path, }; /* * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode * number and generation */ struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root, const union kernfs_node_id *id) { struct kernfs_node *kn; kn = kernfs_find_and_get_node_by_ino(root, id->ino); if (!kn) return NULL; if (kn->id.generation != id->generation) { kernfs_put(kn); return NULL; } return kn; } static struct inode *kernfs_fh_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct kernfs_super_info *info = kernfs_info(sb); struct inode *inode; struct kernfs_node *kn; if (ino == 0) return ERR_PTR(-ESTALE); kn = kernfs_find_and_get_node_by_ino(info->root, ino); if (!kn) return ERR_PTR(-ESTALE); inode = kernfs_get_inode(sb, kn); kernfs_put(kn); if (!inode) return ERR_PTR(-ESTALE); if (generation && inode->i_generation != generation) { /* we didn't find the right inode.. */ iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, kernfs_fh_get_inode); } static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, kernfs_fh_get_inode); } static struct dentry *kernfs_get_parent_dentry(struct dentry *child) { struct kernfs_node *kn = kernfs_dentry_node(child); return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent)); } static const struct export_operations kernfs_export_ops = { .fh_to_dentry = kernfs_fh_to_dentry, .fh_to_parent = kernfs_fh_to_parent, .get_parent = kernfs_get_parent_dentry, }; /** * kernfs_root_from_sb - determine kernfs_root associated with a super_block * @sb: the super_block in question * * Return the kernfs_root associated with @sb. If @sb is not a kernfs one, * %NULL is returned. */ struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) { if (sb->s_op == &kernfs_sops) return kernfs_info(sb)->root; return NULL; } /* * find the next ancestor in the path down to @child, where @parent was the * ancestor whose descendant we want to find. * * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root * node. If @parent is b, then we return the node for c. * Passing in d as @parent is not ok. */ static struct kernfs_node *find_next_ancestor(struct kernfs_node *child, struct kernfs_node *parent) { if (child == parent) { pr_crit_once("BUG in find_next_ancestor: called with parent == child"); return NULL; } while (child->parent != parent) { if (!child->parent) return NULL; child = child->parent; } return child; } /** * kernfs_node_dentry - get a dentry for the given kernfs_node * @kn: kernfs_node for which a dentry is needed * @sb: the kernfs super_block */ struct dentry *kernfs_node_dentry(struct kernfs_node *kn, struct super_block *sb) { struct dentry *dentry; struct kernfs_node *knparent = NULL; BUG_ON(sb->s_op != &kernfs_sops); dentry = dget(sb->s_root); /* Check if this is the root kernfs_node */ if (!kn->parent) return dentry; knparent = find_next_ancestor(kn, NULL); if (WARN_ON(!knparent)) { dput(dentry); return ERR_PTR(-EINVAL); } do { struct dentry *dtmp; struct kernfs_node *kntmp; if (kn == knparent) return dentry; kntmp = find_next_ancestor(kn, knparent); if (WARN_ON(!kntmp)) { dput(dentry); return ERR_PTR(-EINVAL); } dtmp = lookup_one_len_unlocked(kntmp->name, dentry, strlen(kntmp->name)); dput(dentry); if (IS_ERR(dtmp)) return dtmp; knparent = kntmp; dentry = dtmp; } while (true); } static int kernfs_fill_super(struct super_block *sb, unsigned long magic) { struct kernfs_super_info *info = kernfs_info(sb); struct inode *inode; struct dentry *root; info->sb = sb; /* Userspace would break if executables or devices appear on sysfs */ sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; sb->s_blocksize = PAGE_SIZE; sb->s_blocksize_bits = PAGE_SHIFT; sb->s_magic = magic; sb->s_op = &kernfs_sops; sb->s_xattr = kernfs_xattr_handlers; if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP) sb->s_export_op = &kernfs_export_ops; sb->s_time_gran = 1; /* get root inode, initialize and unlock it */ mutex_lock(&kernfs_mutex); inode = kernfs_get_inode(sb, info->root->kn); mutex_unlock(&kernfs_mutex); if (!inode) { pr_debug("kernfs: could not get root inode\n"); return -ENOMEM; } /* instantiate and link root dentry */ root = d_make_root(inode); if (!root) { pr_debug("%s: could not get root dentry!\n", __func__); return -ENOMEM; } sb->s_root = root; sb->s_d_op = &kernfs_dops; return 0; } static int kernfs_test_super(struct super_block *sb, void *data) { struct kernfs_super_info *sb_info = kernfs_info(sb); struct kernfs_super_info *info = data; return sb_info->root == info->root && sb_info->ns == info->ns; } static int kernfs_set_super(struct super_block *sb, void *data) { int error; error = set_anon_super(sb, data); if (!error) sb->s_fs_info = data; return error; } /** * kernfs_super_ns - determine the namespace tag of a kernfs super_block * @sb: super_block of interest * * Return the namespace tag associated with kernfs super_block @sb. */ const void *kernfs_super_ns(struct super_block *sb) { struct kernfs_super_info *info = kernfs_info(sb); return info->ns; } /** * kernfs_mount_ns - kernfs mount helper * @fs_type: file_system_type of the fs being mounted * @flags: mount flags specified for the mount * @root: kernfs_root of the hierarchy being mounted * @magic: file system specific magic number * @new_sb_created: tell the caller if we allocated a new superblock * @ns: optional namespace tag of the mount * * This is to be called from each kernfs user's file_system_type->mount() * implementation, which should pass through the specified @fs_type and * @flags, and specify the hierarchy and namespace tag to mount via @root * and @ns, respectively. * * The return value can be passed to the vfs layer verbatim. */ struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags, struct kernfs_root *root, unsigned long magic, bool *new_sb_created, const void *ns) { struct super_block *sb; struct kernfs_super_info *info; int error; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return ERR_PTR(-ENOMEM); info->root = root; info->ns = ns; sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags, &init_user_ns, info); if (IS_ERR(sb) || sb->s_fs_info != info) kfree(info); if (IS_ERR(sb)) return ERR_CAST(sb); if (new_sb_created) *new_sb_created = !sb->s_root; if (!sb->s_root) { struct kernfs_super_info *info = kernfs_info(sb); error = kernfs_fill_super(sb, magic); if (error) { deactivate_locked_super(sb); return ERR_PTR(error); } sb->s_flags |= MS_ACTIVE; mutex_lock(&kernfs_mutex); list_add(&info->node, &root->supers); mutex_unlock(&kernfs_mutex); } return dget(sb->s_root); } /** * kernfs_kill_sb - kill_sb for kernfs * @sb: super_block being killed * * This can be used directly for file_system_type->kill_sb(). If a kernfs * user needs extra cleanup, it can implement its own kill_sb() and call * this function at the end. */ void kernfs_kill_sb(struct super_block *sb) { struct kernfs_super_info *info = kernfs_info(sb); mutex_lock(&kernfs_mutex); list_del(&info->node); mutex_unlock(&kernfs_mutex); /* * Remove the superblock from fs_supers/s_instances * so we can't find it, before freeing kernfs_super_info. */ kill_anon_super(sb); kfree(info); } /** * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root * @kernfs_root: the kernfs_root in question * @ns: the namespace tag * * Pin the superblock so the superblock won't be destroyed in subsequent * operations. This can be used to block ->kill_sb() which may be useful * for kernfs users which dynamically manage superblocks. * * Returns NULL if there's no superblock associated to this kernfs_root, or * -EINVAL if the superblock is being freed. */ struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns) { struct kernfs_super_info *info; struct super_block *sb = NULL; mutex_lock(&kernfs_mutex); list_for_each_entry(info, &root->supers, node) { if (info->ns == ns) { sb = info->sb; if (!atomic_inc_not_zero(&info->sb->s_active)) sb = ERR_PTR(-EINVAL); break; } } mutex_unlock(&kernfs_mutex); return sb; } void __init kernfs_init(void) { /* * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino * can access the slab lock free. This could introduce stale nodes, * please see how kernfs_find_and_get_node_by_ino filters out stale * nodes. */ kernfs_node_cache = kmem_cache_create("kernfs_node_cache", sizeof(struct kernfs_node), 0, SLAB_PANIC | SLAB_TYPESAFE_BY_RCU, NULL); } |