Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 | /* * lm80.c - From lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl> * and Philip Edelbrock <phil@netroedge.com> * * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END }; /* Many LM80 constants specified below */ /* The LM80 registers */ #define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2) #define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2) #define LM80_REG_IN(nr) (0x20 + (nr)) #define LM80_REG_FAN1 0x28 #define LM80_REG_FAN2 0x29 #define LM80_REG_FAN_MIN(nr) (0x3b + (nr)) #define LM80_REG_TEMP 0x27 #define LM80_REG_TEMP_HOT_MAX 0x38 #define LM80_REG_TEMP_HOT_HYST 0x39 #define LM80_REG_TEMP_OS_MAX 0x3a #define LM80_REG_TEMP_OS_HYST 0x3b #define LM80_REG_CONFIG 0x00 #define LM80_REG_ALARM1 0x01 #define LM80_REG_ALARM2 0x02 #define LM80_REG_MASK1 0x03 #define LM80_REG_MASK2 0x04 #define LM80_REG_FANDIV 0x05 #define LM80_REG_RES 0x06 #define LM96080_REG_CONV_RATE 0x07 #define LM96080_REG_MAN_ID 0x3e #define LM96080_REG_DEV_ID 0x3f /* * Conversions. Rounding and limit checking is only done on the TO_REG * variants. Note that you should be a bit careful with which arguments * these macros are called: arguments may be evaluated more than once. * Fixing this is just not worth it. */ #define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255)) #define IN_FROM_REG(val) ((val) * 10) static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div) { if (rpm == 0) return 255; rpm = clamp_val(rpm, 1, 1000000); return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); } #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \ (val) == 255 ? 0 : 1350000/((div) * (val))) #define TEMP_FROM_REG(reg) ((reg) * 125 / 32) #define TEMP_TO_REG(temp) (DIV_ROUND_CLOSEST(clamp_val((temp), \ -128000, 127000), 1000) << 8) #define DIV_FROM_REG(val) (1 << (val)) enum temp_index { t_input = 0, t_hot_max, t_hot_hyst, t_os_max, t_os_hyst, t_num_temp }; static const u8 temp_regs[t_num_temp] = { [t_input] = LM80_REG_TEMP, [t_hot_max] = LM80_REG_TEMP_HOT_MAX, [t_hot_hyst] = LM80_REG_TEMP_HOT_HYST, [t_os_max] = LM80_REG_TEMP_OS_MAX, [t_os_hyst] = LM80_REG_TEMP_OS_HYST, }; enum in_index { i_input = 0, i_max, i_min, i_num_in }; enum fan_index { f_input, f_min, f_num_fan }; /* * Client data (each client gets its own) */ struct lm80_data { struct i2c_client *client; struct mutex update_lock; char error; /* !=0 if error occurred during last update */ char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ u8 in[i_num_in][7]; /* Register value, 1st index is enum in_index */ u8 fan[f_num_fan][2]; /* Register value, 1st index enum fan_index */ u8 fan_div[2]; /* Register encoding, shifted right */ s16 temp[t_num_temp]; /* Register values, normalized to 16 bit */ u16 alarms; /* Register encoding, combined */ }; static int lm80_read_value(struct i2c_client *client, u8 reg) { return i2c_smbus_read_byte_data(client, reg); } static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value) { return i2c_smbus_write_byte_data(client, reg, value); } /* Called when we have found a new LM80 and after read errors */ static void lm80_init_client(struct i2c_client *client) { /* * Reset all except Watchdog values and last conversion values * This sets fan-divs to 2, among others. This makes most other * initializations unnecessary */ lm80_write_value(client, LM80_REG_CONFIG, 0x80); /* Set 11-bit temperature resolution */ lm80_write_value(client, LM80_REG_RES, 0x08); /* Start monitoring */ lm80_write_value(client, LM80_REG_CONFIG, 0x01); } static struct lm80_data *lm80_update_device(struct device *dev) { struct lm80_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int i; int rv; int prev_rv; struct lm80_data *ret = data; mutex_lock(&data->update_lock); if (data->error) lm80_init_client(client); if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) { dev_dbg(dev, "Starting lm80 update\n"); for (i = 0; i <= 6; i++) { rv = lm80_read_value(client, LM80_REG_IN(i)); if (rv < 0) goto abort; data->in[i_input][i] = rv; rv = lm80_read_value(client, LM80_REG_IN_MIN(i)); if (rv < 0) goto abort; data->in[i_min][i] = rv; rv = lm80_read_value(client, LM80_REG_IN_MAX(i)); if (rv < 0) goto abort; data->in[i_max][i] = rv; } rv = lm80_read_value(client, LM80_REG_FAN1); if (rv < 0) goto abort; data->fan[f_input][0] = rv; rv = lm80_read_value(client, LM80_REG_FAN_MIN(1)); if (rv < 0) goto abort; data->fan[f_min][0] = rv; rv = lm80_read_value(client, LM80_REG_FAN2); if (rv < 0) goto abort; data->fan[f_input][1] = rv; rv = lm80_read_value(client, LM80_REG_FAN_MIN(2)); if (rv < 0) goto abort; data->fan[f_min][1] = rv; prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP); if (rv < 0) goto abort; rv = lm80_read_value(client, LM80_REG_RES); if (rv < 0) goto abort; data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0); for (i = t_input + 1; i < t_num_temp; i++) { rv = lm80_read_value(client, temp_regs[i]); if (rv < 0) goto abort; data->temp[i] = rv << 8; } rv = lm80_read_value(client, LM80_REG_FANDIV); if (rv < 0) goto abort; data->fan_div[0] = (rv >> 2) & 0x03; data->fan_div[1] = (rv >> 4) & 0x03; prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1); if (rv < 0) goto abort; rv = lm80_read_value(client, LM80_REG_ALARM2); if (rv < 0) goto abort; data->alarms = prev_rv + (rv << 8); data->last_updated = jiffies; data->valid = 1; data->error = 0; } goto done; abort: ret = ERR_PTR(rv); data->valid = 0; data->error = 1; done: mutex_unlock(&data->update_lock); return ret; } /* * Sysfs stuff */ static ssize_t show_in(struct device *dev, struct device_attribute *attr, char *buf) { struct lm80_data *data = lm80_update_device(dev); int index = to_sensor_dev_attr_2(attr)->index; int nr = to_sensor_dev_attr_2(attr)->nr; if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index])); } static ssize_t set_in(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct lm80_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int index = to_sensor_dev_attr_2(attr)->index; int nr = to_sensor_dev_attr_2(attr)->nr; long val; u8 reg; int err = kstrtol(buf, 10, &val); if (err < 0) return err; reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index); mutex_lock(&data->update_lock); data->in[nr][index] = IN_TO_REG(val); lm80_write_value(client, reg, data->in[nr][index]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr_2(attr)->index; int nr = to_sensor_dev_attr_2(attr)->nr; struct lm80_data *data = lm80_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index], DIV_FROM_REG(data->fan_div[index]))); } static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm80_data *data = lm80_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int index = to_sensor_dev_attr_2(attr)->index; int nr = to_sensor_dev_attr_2(attr)->nr; struct lm80_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; int err = kstrtoul(buf, 10, &val); if (err < 0) return err; mutex_lock(&data->update_lock); data->fan[nr][index] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[index])); lm80_write_value(client, LM80_REG_FAN_MIN(index + 1), data->fan[nr][index]); mutex_unlock(&data->update_lock); return count; } /* * Note: we save and restore the fan minimum here, because its value is * determined in part by the fan divisor. This follows the principle of * least surprise; the user doesn't expect the fan minimum to change just * because the divisor changed. */ static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm80_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long min, val; u8 reg; int err = kstrtoul(buf, 10, &val); if (err < 0) return err; /* Save fan_min */ mutex_lock(&data->update_lock); min = FAN_FROM_REG(data->fan[f_min][nr], DIV_FROM_REG(data->fan_div[nr])); switch (val) { case 1: data->fan_div[nr] = 0; break; case 2: data->fan_div[nr] = 1; break; case 4: data->fan_div[nr] = 2; break; case 8: data->fan_div[nr] = 3; break; default: dev_err(dev, "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n", val); mutex_unlock(&data->update_lock); return -EINVAL; } reg = (lm80_read_value(client, LM80_REG_FANDIV) & ~(3 << (2 * (nr + 1)))) | (data->fan_div[nr] << (2 * (nr + 1))); lm80_write_value(client, LM80_REG_FANDIV, reg); /* Restore fan_min */ data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan[f_min][nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm80_data *data = lm80_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index])); } static ssize_t set_temp(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm80_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = attr->index; long val; int err = kstrtol(buf, 10, &val); if (err < 0) return err; mutex_lock(&data->update_lock); data->temp[nr] = TEMP_TO_REG(val); lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8); mutex_unlock(&data->update_lock); return count; } static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm80_data *data = lm80_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%u\n", data->alarms); } static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { int bitnr = to_sensor_dev_attr(attr)->index; struct lm80_data *data = lm80_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR_2(in0_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 0); static SENSOR_DEVICE_ATTR_2(in1_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 1); static SENSOR_DEVICE_ATTR_2(in2_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 2); static SENSOR_DEVICE_ATTR_2(in3_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 3); static SENSOR_DEVICE_ATTR_2(in4_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 4); static SENSOR_DEVICE_ATTR_2(in5_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 5); static SENSOR_DEVICE_ATTR_2(in6_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 6); static SENSOR_DEVICE_ATTR_2(in0_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 0); static SENSOR_DEVICE_ATTR_2(in1_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 1); static SENSOR_DEVICE_ATTR_2(in2_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 2); static SENSOR_DEVICE_ATTR_2(in3_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 3); static SENSOR_DEVICE_ATTR_2(in4_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 4); static SENSOR_DEVICE_ATTR_2(in5_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 5); static SENSOR_DEVICE_ATTR_2(in6_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 6); static SENSOR_DEVICE_ATTR_2(in0_input, S_IRUGO, show_in, NULL, i_input, 0); static SENSOR_DEVICE_ATTR_2(in1_input, S_IRUGO, show_in, NULL, i_input, 1); static SENSOR_DEVICE_ATTR_2(in2_input, S_IRUGO, show_in, NULL, i_input, 2); static SENSOR_DEVICE_ATTR_2(in3_input, S_IRUGO, show_in, NULL, i_input, 3); static SENSOR_DEVICE_ATTR_2(in4_input, S_IRUGO, show_in, NULL, i_input, 4); static SENSOR_DEVICE_ATTR_2(in5_input, S_IRUGO, show_in, NULL, i_input, 5); static SENSOR_DEVICE_ATTR_2(in6_input, S_IRUGO, show_in, NULL, i_input, 6); static SENSOR_DEVICE_ATTR_2(fan1_min, S_IWUSR | S_IRUGO, show_fan, set_fan_min, f_min, 0); static SENSOR_DEVICE_ATTR_2(fan2_min, S_IWUSR | S_IRUGO, show_fan, set_fan_min, f_min, 1); static SENSOR_DEVICE_ATTR_2(fan1_input, S_IRUGO, show_fan, NULL, f_input, 0); static SENSOR_DEVICE_ATTR_2(fan2_input, S_IRUGO, show_fan, NULL, f_input, 1); static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO, show_fan_div, set_fan_div, 0); static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO, show_fan_div, set_fan_div, 1); static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, t_input); static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp, set_temp, t_hot_max); static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp, set_temp, t_hot_hyst); static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp, set_temp, t_os_max); static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp, set_temp, t_os_hyst); static DEVICE_ATTR_RO(alarms); static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5); static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13); /* * Real code */ static struct attribute *lm80_attrs[] = { &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, &dev_attr_alarms.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_in6_alarm.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, NULL }; ATTRIBUTE_GROUPS(lm80); /* Return 0 if detection is successful, -ENODEV otherwise */ static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int i, cur, man_id, dev_id; const char *name = NULL; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; /* First check for unused bits, common to both chip types */ if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0) || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80)) return -ENODEV; /* * The LM96080 has manufacturer and stepping/die rev registers so we * can just check that. The LM80 does not have such registers so we * have to use a more expensive trick. */ man_id = lm80_read_value(client, LM96080_REG_MAN_ID); dev_id = lm80_read_value(client, LM96080_REG_DEV_ID); if (man_id == 0x01 && dev_id == 0x08) { /* Check more unused bits for confirmation */ if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe) return -ENODEV; name = "lm96080"; } else { /* Check 6-bit addressing */ for (i = 0x2a; i <= 0x3d; i++) { cur = i2c_smbus_read_byte_data(client, i); if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur) || (i2c_smbus_read_byte_data(client, i + 0x80) != cur) || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur)) return -ENODEV; } name = "lm80"; } strlcpy(info->type, name, I2C_NAME_SIZE); return 0; } static int lm80_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct device *hwmon_dev; struct lm80_data *data; data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; mutex_init(&data->update_lock); /* Initialize the LM80 chip */ lm80_init_client(client); /* A few vars need to be filled upon startup */ data->fan[f_min][0] = lm80_read_value(client, LM80_REG_FAN_MIN(1)); data->fan[f_min][1] = lm80_read_value(client, LM80_REG_FAN_MIN(2)); hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, lm80_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } /* * Driver data (common to all clients) */ static const struct i2c_device_id lm80_id[] = { { "lm80", 0 }, { "lm96080", 1 }, { } }; MODULE_DEVICE_TABLE(i2c, lm80_id); static struct i2c_driver lm80_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm80", }, .probe = lm80_probe, .id_table = lm80_id, .detect = lm80_detect, .address_list = normal_i2c, }; module_i2c_driver(lm80_driver); MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and " "Philip Edelbrock <phil@netroedge.com>"); MODULE_DESCRIPTION("LM80 driver"); MODULE_LICENSE("GPL"); |