Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | /* * Copyright (c) 2015, Linaro Limited * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/device.h> #include <linux/slab.h> #include <linux/uaccess.h> #include "optee_private.h" void optee_supp_init(struct optee_supp *supp) { memset(supp, 0, sizeof(*supp)); mutex_init(&supp->ctx_mutex); mutex_init(&supp->thrd_mutex); mutex_init(&supp->supp_mutex); init_completion(&supp->data_to_supp); init_completion(&supp->data_from_supp); } void optee_supp_uninit(struct optee_supp *supp) { mutex_destroy(&supp->ctx_mutex); mutex_destroy(&supp->thrd_mutex); mutex_destroy(&supp->supp_mutex); } /** * optee_supp_thrd_req() - request service from supplicant * @ctx: context doing the request * @func: function requested * @num_params: number of elements in @param array * @param: parameters for function * * Returns result of operation to be passed to secure world */ u32 optee_supp_thrd_req(struct tee_context *ctx, u32 func, size_t num_params, struct tee_param *param) { bool interruptable; struct optee *optee = tee_get_drvdata(ctx->teedev); struct optee_supp *supp = &optee->supp; u32 ret; /* * Other threads blocks here until we've copied our answer from * supplicant. */ while (mutex_lock_interruptible(&supp->thrd_mutex)) { /* See comment below on when the RPC can be interrupted. */ mutex_lock(&supp->ctx_mutex); interruptable = !supp->ctx; mutex_unlock(&supp->ctx_mutex); if (interruptable) return TEEC_ERROR_COMMUNICATION; } /* * We have exclusive access now since the supplicant at this * point is either doing a * wait_for_completion_interruptible(&supp->data_to_supp) or is in * userspace still about to do the ioctl() to enter * optee_supp_recv() below. */ supp->func = func; supp->num_params = num_params; supp->param = param; supp->req_posted = true; /* Let supplicant get the data */ complete(&supp->data_to_supp); /* * Wait for supplicant to process and return result, once we've * returned from wait_for_completion(data_from_supp) we have * exclusive access again. */ while (wait_for_completion_interruptible(&supp->data_from_supp)) { mutex_lock(&supp->ctx_mutex); interruptable = !supp->ctx; if (interruptable) { /* * There's no supplicant available and since the * supp->ctx_mutex currently is held none can * become available until the mutex released * again. * * Interrupting an RPC to supplicant is only * allowed as a way of slightly improving the user * experience in case the supplicant hasn't been * started yet. During normal operation the supplicant * will serve all requests in a timely manner and * interrupting then wouldn't make sense. */ supp->ret = TEEC_ERROR_COMMUNICATION; init_completion(&supp->data_to_supp); } mutex_unlock(&supp->ctx_mutex); if (interruptable) break; } ret = supp->ret; supp->param = NULL; supp->req_posted = false; /* We're done, let someone else talk to the supplicant now. */ mutex_unlock(&supp->thrd_mutex); return ret; } /** * optee_supp_recv() - receive request for supplicant * @ctx: context receiving the request * @func: requested function in supplicant * @num_params: number of elements allocated in @param, updated with number * used elements * @param: space for parameters for @func * * Returns 0 on success or <0 on failure */ int optee_supp_recv(struct tee_context *ctx, u32 *func, u32 *num_params, struct tee_param *param) { struct tee_device *teedev = ctx->teedev; struct optee *optee = tee_get_drvdata(teedev); struct optee_supp *supp = &optee->supp; int rc; /* * In case two threads in one supplicant is calling this function * simultaneously we need to protect the data with a mutex which * we'll release before returning. */ mutex_lock(&supp->supp_mutex); if (supp->supp_next_send) { /* * optee_supp_recv() has been called again without * a optee_supp_send() in between. Supplicant has * probably been restarted before it was able to * write back last result. Abort last request and * wait for a new. */ if (supp->req_posted) { supp->ret = TEEC_ERROR_COMMUNICATION; supp->supp_next_send = false; complete(&supp->data_from_supp); } } /* * This is where supplicant will be hanging most of the * time, let's make this interruptable so we can easily * restart supplicant if needed. */ if (wait_for_completion_interruptible(&supp->data_to_supp)) { rc = -ERESTARTSYS; goto out; } /* We have exlusive access to the data */ if (*num_params < supp->num_params) { /* * Not enough room for parameters, tell supplicant * it failed and abort last request. */ supp->ret = TEEC_ERROR_COMMUNICATION; rc = -EINVAL; complete(&supp->data_from_supp); goto out; } *func = supp->func; *num_params = supp->num_params; memcpy(param, supp->param, sizeof(struct tee_param) * supp->num_params); /* Allow optee_supp_send() below to do its work */ supp->supp_next_send = true; rc = 0; out: mutex_unlock(&supp->supp_mutex); return rc; } /** * optee_supp_send() - send result of request from supplicant * @ctx: context sending result * @ret: return value of request * @num_params: number of parameters returned * @param: returned parameters * * Returns 0 on success or <0 on failure. */ int optee_supp_send(struct tee_context *ctx, u32 ret, u32 num_params, struct tee_param *param) { struct tee_device *teedev = ctx->teedev; struct optee *optee = tee_get_drvdata(teedev); struct optee_supp *supp = &optee->supp; size_t n; int rc = 0; /* * We still have exclusive access to the data since that's how we * left it when returning from optee_supp_read(). */ /* See comment on mutex in optee_supp_read() above */ mutex_lock(&supp->supp_mutex); if (!supp->supp_next_send) { /* * Something strange is going on, supplicant shouldn't * enter optee_supp_send() in this state */ rc = -ENOENT; goto out; } if (num_params != supp->num_params) { /* * Something is wrong, let supplicant restart. Next call to * optee_supp_recv() will give an error to the requesting * thread and release it. */ rc = -EINVAL; goto out; } /* Update out and in/out parameters */ for (n = 0; n < num_params; n++) { struct tee_param *p = supp->param + n; switch (p->attr) { case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT: case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT: p->u.value.a = param[n].u.value.a; p->u.value.b = param[n].u.value.b; p->u.value.c = param[n].u.value.c; break; case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT: case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT: p->u.memref.size = param[n].u.memref.size; break; default: break; } } supp->ret = ret; /* Allow optee_supp_recv() above to do its work */ supp->supp_next_send = false; /* Let the requesting thread continue */ complete(&supp->data_from_supp); out: mutex_unlock(&supp->supp_mutex); return rc; } |