Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 | /* * zsmalloc memory allocator * * Copyright (C) 2011 Nitin Gupta * Copyright (C) 2012, 2013 Minchan Kim * * This code is released using a dual license strategy: BSD/GPL * You can choose the license that better fits your requirements. * * Released under the terms of 3-clause BSD License * Released under the terms of GNU General Public License Version 2.0 */ /* * Following is how we use various fields and flags of underlying * struct page(s) to form a zspage. * * Usage of struct page fields: * page->private: points to zspage * page->freelist(index): links together all component pages of a zspage * For the huge page, this is always 0, so we use this field * to store handle. * page->units: first object offset in a subpage of zspage * * Usage of struct page flags: * PG_private: identifies the first component page * PG_owner_priv_1: identifies the huge component page * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/magic.h> #include <linux/bitops.h> #include <linux/errno.h> #include <linux/highmem.h> #include <linux/string.h> #include <linux/slab.h> #include <asm/tlbflush.h> #include <asm/pgtable.h> #include <linux/cpumask.h> #include <linux/cpu.h> #include <linux/vmalloc.h> #include <linux/preempt.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/debugfs.h> #include <linux/zsmalloc.h> #include <linux/zpool.h> #include <linux/mount.h> #include <linux/migrate.h> #include <linux/pagemap.h> #define ZSPAGE_MAGIC 0x58 /* * This must be power of 2 and greater than of equal to sizeof(link_free). * These two conditions ensure that any 'struct link_free' itself doesn't * span more than 1 page which avoids complex case of mapping 2 pages simply * to restore link_free pointer values. */ #define ZS_ALIGN 8 /* * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. */ #define ZS_MAX_ZSPAGE_ORDER 2 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) #define ZS_HANDLE_SIZE (sizeof(unsigned long)) /* * Object location (<PFN>, <obj_idx>) is encoded as * as single (unsigned long) handle value. * * Note that object index <obj_idx> starts from 0. * * This is made more complicated by various memory models and PAE. */ #ifndef MAX_PHYSMEM_BITS #ifdef CONFIG_HIGHMEM64G #define MAX_PHYSMEM_BITS 36 #else /* !CONFIG_HIGHMEM64G */ /* * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just * be PAGE_SHIFT */ #define MAX_PHYSMEM_BITS BITS_PER_LONG #endif #endif #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) /* * Memory for allocating for handle keeps object position by * encoding <page, obj_idx> and the encoded value has a room * in least bit(ie, look at obj_to_location). * We use the bit to synchronize between object access by * user and migration. */ #define HANDLE_PIN_BIT 0 /* * Head in allocated object should have OBJ_ALLOCATED_TAG * to identify the object was allocated or not. * It's okay to add the status bit in the least bit because * header keeps handle which is 4byte-aligned address so we * have room for two bit at least. */ #define OBJ_ALLOCATED_TAG 1 #define OBJ_TAG_BITS 1 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) #define FULLNESS_BITS 2 #define CLASS_BITS 8 #define ISOLATED_BITS 3 #define MAGIC_VAL_BITS 8 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ #define ZS_MIN_ALLOC_SIZE \ MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) /* each chunk includes extra space to keep handle */ #define ZS_MAX_ALLOC_SIZE PAGE_SIZE /* * On systems with 4K page size, this gives 255 size classes! There is a * trader-off here: * - Large number of size classes is potentially wasteful as free page are * spread across these classes * - Small number of size classes causes large internal fragmentation * - Probably its better to use specific size classes (empirically * determined). NOTE: all those class sizes must be set as multiple of * ZS_ALIGN to make sure link_free itself never has to span 2 pages. * * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN * (reason above) */ #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ ZS_SIZE_CLASS_DELTA) + 1) enum fullness_group { ZS_EMPTY, ZS_ALMOST_EMPTY, ZS_ALMOST_FULL, ZS_FULL, NR_ZS_FULLNESS, }; enum zs_stat_type { CLASS_EMPTY, CLASS_ALMOST_EMPTY, CLASS_ALMOST_FULL, CLASS_FULL, OBJ_ALLOCATED, OBJ_USED, NR_ZS_STAT_TYPE, }; struct zs_size_stat { unsigned long objs[NR_ZS_STAT_TYPE]; }; #ifdef CONFIG_ZSMALLOC_STAT static struct dentry *zs_stat_root; #endif #ifdef CONFIG_COMPACTION static struct vfsmount *zsmalloc_mnt; #endif /* * We assign a page to ZS_ALMOST_EMPTY fullness group when: * n <= N / f, where * n = number of allocated objects * N = total number of objects zspage can store * f = fullness_threshold_frac * * Similarly, we assign zspage to: * ZS_ALMOST_FULL when n > N / f * ZS_EMPTY when n == 0 * ZS_FULL when n == N * * (see: fix_fullness_group()) */ static const int fullness_threshold_frac = 4; struct size_class { spinlock_t lock; struct list_head fullness_list[NR_ZS_FULLNESS]; /* * Size of objects stored in this class. Must be multiple * of ZS_ALIGN. */ int size; int objs_per_zspage; /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ int pages_per_zspage; unsigned int index; struct zs_size_stat stats; }; /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ static void SetPageHugeObject(struct page *page) { SetPageOwnerPriv1(page); } static void ClearPageHugeObject(struct page *page) { ClearPageOwnerPriv1(page); } static int PageHugeObject(struct page *page) { return PageOwnerPriv1(page); } /* * Placed within free objects to form a singly linked list. * For every zspage, zspage->freeobj gives head of this list. * * This must be power of 2 and less than or equal to ZS_ALIGN */ struct link_free { union { /* * Free object index; * It's valid for non-allocated object */ unsigned long next; /* * Handle of allocated object. */ unsigned long handle; }; }; struct zs_pool { const char *name; struct size_class *size_class[ZS_SIZE_CLASSES]; struct kmem_cache *handle_cachep; struct kmem_cache *zspage_cachep; atomic_long_t pages_allocated; struct zs_pool_stats stats; /* Compact classes */ struct shrinker shrinker; /* * To signify that register_shrinker() was successful * and unregister_shrinker() will not Oops. */ bool shrinker_enabled; #ifdef CONFIG_ZSMALLOC_STAT struct dentry *stat_dentry; #endif #ifdef CONFIG_COMPACTION struct inode *inode; struct work_struct free_work; #endif }; struct zspage { struct { unsigned int fullness:FULLNESS_BITS; unsigned int class:CLASS_BITS + 1; unsigned int isolated:ISOLATED_BITS; unsigned int magic:MAGIC_VAL_BITS; }; unsigned int inuse; unsigned int freeobj; struct page *first_page; struct list_head list; /* fullness list */ #ifdef CONFIG_COMPACTION rwlock_t lock; #endif }; struct mapping_area { #ifdef CONFIG_PGTABLE_MAPPING struct vm_struct *vm; /* vm area for mapping object that span pages */ #else char *vm_buf; /* copy buffer for objects that span pages */ #endif char *vm_addr; /* address of kmap_atomic()'ed pages */ enum zs_mapmode vm_mm; /* mapping mode */ }; #ifdef CONFIG_COMPACTION static int zs_register_migration(struct zs_pool *pool); static void zs_unregister_migration(struct zs_pool *pool); static void migrate_lock_init(struct zspage *zspage); static void migrate_read_lock(struct zspage *zspage); static void migrate_read_unlock(struct zspage *zspage); static void kick_deferred_free(struct zs_pool *pool); static void init_deferred_free(struct zs_pool *pool); static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); #else static int zsmalloc_mount(void) { return 0; } static void zsmalloc_unmount(void) {} static int zs_register_migration(struct zs_pool *pool) { return 0; } static void zs_unregister_migration(struct zs_pool *pool) {} static void migrate_lock_init(struct zspage *zspage) {} static void migrate_read_lock(struct zspage *zspage) {} static void migrate_read_unlock(struct zspage *zspage) {} static void kick_deferred_free(struct zs_pool *pool) {} static void init_deferred_free(struct zs_pool *pool) {} static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} #endif static int create_cache(struct zs_pool *pool) { pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 0, 0, NULL); if (!pool->handle_cachep) return 1; pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 0, 0, NULL); if (!pool->zspage_cachep) { kmem_cache_destroy(pool->handle_cachep); pool->handle_cachep = NULL; return 1; } return 0; } static void destroy_cache(struct zs_pool *pool) { kmem_cache_destroy(pool->handle_cachep); kmem_cache_destroy(pool->zspage_cachep); } static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) { return (unsigned long)kmem_cache_alloc(pool->handle_cachep, gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); } static void cache_free_handle(struct zs_pool *pool, unsigned long handle) { kmem_cache_free(pool->handle_cachep, (void *)handle); } static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) { return kmem_cache_alloc(pool->zspage_cachep, flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); } static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) { kmem_cache_free(pool->zspage_cachep, zspage); } static void record_obj(unsigned long handle, unsigned long obj) { /* * lsb of @obj represents handle lock while other bits * represent object value the handle is pointing so * updating shouldn't do store tearing. */ WRITE_ONCE(*(unsigned long *)handle, obj); } /* zpool driver */ #ifdef CONFIG_ZPOOL static void *zs_zpool_create(const char *name, gfp_t gfp, const struct zpool_ops *zpool_ops, struct zpool *zpool) { /* * Ignore global gfp flags: zs_malloc() may be invoked from * different contexts and its caller must provide a valid * gfp mask. */ return zs_create_pool(name); } static void zs_zpool_destroy(void *pool) { zs_destroy_pool(pool); } static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, unsigned long *handle) { *handle = zs_malloc(pool, size, gfp); return *handle ? 0 : -1; } static void zs_zpool_free(void *pool, unsigned long handle) { zs_free(pool, handle); } static int zs_zpool_shrink(void *pool, unsigned int pages, unsigned int *reclaimed) { return -EINVAL; } static void *zs_zpool_map(void *pool, unsigned long handle, enum zpool_mapmode mm) { enum zs_mapmode zs_mm; switch (mm) { case ZPOOL_MM_RO: zs_mm = ZS_MM_RO; break; case ZPOOL_MM_WO: zs_mm = ZS_MM_WO; break; case ZPOOL_MM_RW: /* fallthru */ default: zs_mm = ZS_MM_RW; break; } return zs_map_object(pool, handle, zs_mm); } static void zs_zpool_unmap(void *pool, unsigned long handle) { zs_unmap_object(pool, handle); } static u64 zs_zpool_total_size(void *pool) { return zs_get_total_pages(pool) << PAGE_SHIFT; } static struct zpool_driver zs_zpool_driver = { .type = "zsmalloc", .owner = THIS_MODULE, .create = zs_zpool_create, .destroy = zs_zpool_destroy, .malloc = zs_zpool_malloc, .free = zs_zpool_free, .shrink = zs_zpool_shrink, .map = zs_zpool_map, .unmap = zs_zpool_unmap, .total_size = zs_zpool_total_size, }; MODULE_ALIAS("zpool-zsmalloc"); #endif /* CONFIG_ZPOOL */ /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ static DEFINE_PER_CPU(struct mapping_area, zs_map_area); static bool is_zspage_isolated(struct zspage *zspage) { return zspage->isolated; } static __maybe_unused int is_first_page(struct page *page) { return PagePrivate(page); } /* Protected by class->lock */ static inline int get_zspage_inuse(struct zspage *zspage) { return zspage->inuse; } static inline void set_zspage_inuse(struct zspage *zspage, int val) { zspage->inuse = val; } static inline void mod_zspage_inuse(struct zspage *zspage, int val) { zspage->inuse += val; } static inline struct page *get_first_page(struct zspage *zspage) { struct page *first_page = zspage->first_page; VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); return first_page; } static inline int get_first_obj_offset(struct page *page) { return page->units; } static inline void set_first_obj_offset(struct page *page, int offset) { page->units = offset; } static inline unsigned int get_freeobj(struct zspage *zspage) { return zspage->freeobj; } static inline void set_freeobj(struct zspage *zspage, unsigned int obj) { zspage->freeobj = obj; } static void get_zspage_mapping(struct zspage *zspage, unsigned int *class_idx, enum fullness_group *fullness) { BUG_ON(zspage->magic != ZSPAGE_MAGIC); *fullness = zspage->fullness; *class_idx = zspage->class; } static void set_zspage_mapping(struct zspage *zspage, unsigned int class_idx, enum fullness_group fullness) { zspage->class = class_idx; zspage->fullness = fullness; } /* * zsmalloc divides the pool into various size classes where each * class maintains a list of zspages where each zspage is divided * into equal sized chunks. Each allocation falls into one of these * classes depending on its size. This function returns index of the * size class which has chunk size big enough to hold the give size. */ static int get_size_class_index(int size) { int idx = 0; if (likely(size > ZS_MIN_ALLOC_SIZE)) idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, ZS_SIZE_CLASS_DELTA); return min_t(int, ZS_SIZE_CLASSES - 1, idx); } static inline void zs_stat_inc(struct size_class *class, enum zs_stat_type type, unsigned long cnt) { class->stats.objs[type] += cnt; } static inline void zs_stat_dec(struct size_class *class, enum zs_stat_type type, unsigned long cnt) { class->stats.objs[type] -= cnt; } static inline unsigned long zs_stat_get(struct size_class *class, enum zs_stat_type type) { return class->stats.objs[type]; } #ifdef CONFIG_ZSMALLOC_STAT static void __init zs_stat_init(void) { if (!debugfs_initialized()) { pr_warn("debugfs not available, stat dir not created\n"); return; } zs_stat_root = debugfs_create_dir("zsmalloc", NULL); if (!zs_stat_root) pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); } static void __exit zs_stat_exit(void) { debugfs_remove_recursive(zs_stat_root); } static unsigned long zs_can_compact(struct size_class *class); static int zs_stats_size_show(struct seq_file *s, void *v) { int i; struct zs_pool *pool = s->private; struct size_class *class; int objs_per_zspage; unsigned long class_almost_full, class_almost_empty; unsigned long obj_allocated, obj_used, pages_used, freeable; unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; unsigned long total_freeable = 0; seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", "class", "size", "almost_full", "almost_empty", "obj_allocated", "obj_used", "pages_used", "pages_per_zspage", "freeable"); for (i = 0; i < ZS_SIZE_CLASSES; i++) { class = pool->size_class[i]; if (class->index != i) continue; spin_lock(&class->lock); class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); obj_used = zs_stat_get(class, OBJ_USED); freeable = zs_can_compact(class); spin_unlock(&class->lock); objs_per_zspage = class->objs_per_zspage; pages_used = obj_allocated / objs_per_zspage * class->pages_per_zspage; seq_printf(s, " %5u %5u %11lu %12lu %13lu" " %10lu %10lu %16d %8lu\n", i, class->size, class_almost_full, class_almost_empty, obj_allocated, obj_used, pages_used, class->pages_per_zspage, freeable); total_class_almost_full += class_almost_full; total_class_almost_empty += class_almost_empty; total_objs += obj_allocated; total_used_objs += obj_used; total_pages += pages_used; total_freeable += freeable; } seq_puts(s, "\n"); seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", "Total", "", total_class_almost_full, total_class_almost_empty, total_objs, total_used_objs, total_pages, "", total_freeable); return 0; } static int zs_stats_size_open(struct inode *inode, struct file *file) { return single_open(file, zs_stats_size_show, inode->i_private); } static const struct file_operations zs_stat_size_ops = { .open = zs_stats_size_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void zs_pool_stat_create(struct zs_pool *pool, const char *name) { struct dentry *entry; if (!zs_stat_root) { pr_warn("no root stat dir, not creating <%s> stat dir\n", name); return; } entry = debugfs_create_dir(name, zs_stat_root); if (!entry) { pr_warn("debugfs dir <%s> creation failed\n", name); return; } pool->stat_dentry = entry; entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, pool->stat_dentry, pool, &zs_stat_size_ops); if (!entry) { pr_warn("%s: debugfs file entry <%s> creation failed\n", name, "classes"); debugfs_remove_recursive(pool->stat_dentry); pool->stat_dentry = NULL; } } static void zs_pool_stat_destroy(struct zs_pool *pool) { debugfs_remove_recursive(pool->stat_dentry); } #else /* CONFIG_ZSMALLOC_STAT */ static void __init zs_stat_init(void) { } static void __exit zs_stat_exit(void) { } static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) { } static inline void zs_pool_stat_destroy(struct zs_pool *pool) { } #endif /* * For each size class, zspages are divided into different groups * depending on how "full" they are. This was done so that we could * easily find empty or nearly empty zspages when we try to shrink * the pool (not yet implemented). This function returns fullness * status of the given page. */ static enum fullness_group get_fullness_group(struct size_class *class, struct zspage *zspage) { int inuse, objs_per_zspage; enum fullness_group fg; inuse = get_zspage_inuse(zspage); objs_per_zspage = class->objs_per_zspage; if (inuse == 0) fg = ZS_EMPTY; else if (inuse == objs_per_zspage) fg = ZS_FULL; else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) fg = ZS_ALMOST_EMPTY; else fg = ZS_ALMOST_FULL; return fg; } /* * Each size class maintains various freelists and zspages are assigned * to one of these freelists based on the number of live objects they * have. This functions inserts the given zspage into the freelist * identified by <class, fullness_group>. */ static void insert_zspage(struct size_class *class, struct zspage *zspage, enum fullness_group fullness) { struct zspage *head; zs_stat_inc(class, fullness, 1); head = list_first_entry_or_null(&class->fullness_list[fullness], struct zspage, list); /* * We want to see more ZS_FULL pages and less almost empty/full. * Put pages with higher ->inuse first. */ if (head) { if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { list_add(&zspage->list, &head->list); return; } } list_add(&zspage->list, &class->fullness_list[fullness]); } /* * This function removes the given zspage from the freelist identified * by <class, fullness_group>. */ static void remove_zspage(struct size_class *class, struct zspage *zspage, enum fullness_group fullness) { VM_BUG_ON(list_empty(&class->fullness_list[fullness])); VM_BUG_ON(is_zspage_isolated(zspage)); list_del_init(&zspage->list); zs_stat_dec(class, fullness, 1); } /* * Each size class maintains zspages in different fullness groups depending * on the number of live objects they contain. When allocating or freeing * objects, the fullness status of the page can change, say, from ALMOST_FULL * to ALMOST_EMPTY when freeing an object. This function checks if such * a status change has occurred for the given page and accordingly moves the * page from the freelist of the old fullness group to that of the new * fullness group. */ static enum fullness_group fix_fullness_group(struct size_class *class, struct zspage *zspage) { int class_idx; enum fullness_group currfg, newfg; get_zspage_mapping(zspage, &class_idx, &currfg); newfg = get_fullness_group(class, zspage); if (newfg == currfg) goto out; if (!is_zspage_isolated(zspage)) { remove_zspage(class, zspage, currfg); insert_zspage(class, zspage, newfg); } set_zspage_mapping(zspage, class_idx, newfg); out: return newfg; } /* * We have to decide on how many pages to link together * to form a zspage for each size class. This is important * to reduce wastage due to unusable space left at end of * each zspage which is given as: * wastage = Zp % class_size * usage = Zp - wastage * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... * * For example, for size class of 3/8 * PAGE_SIZE, we should * link together 3 PAGE_SIZE sized pages to form a zspage * since then we can perfectly fit in 8 such objects. */ static int get_pages_per_zspage(int class_size) { int i, max_usedpc = 0; /* zspage order which gives maximum used size per KB */ int max_usedpc_order = 1; for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { int zspage_size; int waste, usedpc; zspage_size = i * PAGE_SIZE; waste = zspage_size % class_size; usedpc = (zspage_size - waste) * 100 / zspage_size; if (usedpc > max_usedpc) { max_usedpc = usedpc; max_usedpc_order = i; } } return max_usedpc_order; } static struct zspage *get_zspage(struct page *page) { struct zspage *zspage = (struct zspage *)page->private; BUG_ON(zspage->magic != ZSPAGE_MAGIC); return zspage; } static struct page *get_next_page(struct page *page) { if (unlikely(PageHugeObject(page))) return NULL; return page->freelist; } /** * obj_to_location - get (<page>, <obj_idx>) from encoded object value * @page: page object resides in zspage * @obj_idx: object index */ static void obj_to_location(unsigned long obj, struct page **page, unsigned int *obj_idx) { obj >>= OBJ_TAG_BITS; *page = pfn_to_page(obj >> OBJ_INDEX_BITS); *obj_idx = (obj & OBJ_INDEX_MASK); } /** * location_to_obj - get obj value encoded from (<page>, <obj_idx>) * @page: page object resides in zspage * @obj_idx: object index */ static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) { unsigned long obj; obj = page_to_pfn(page) << OBJ_INDEX_BITS; obj |= obj_idx & OBJ_INDEX_MASK; obj <<= OBJ_TAG_BITS; return obj; } static unsigned long handle_to_obj(unsigned long handle) { return *(unsigned long *)handle; } static unsigned long obj_to_head(struct page *page, void *obj) { if (unlikely(PageHugeObject(page))) { VM_BUG_ON_PAGE(!is_first_page(page), page); return page->index; } else return *(unsigned long *)obj; } static inline int testpin_tag(unsigned long handle) { return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); } static inline int trypin_tag(unsigned long handle) { return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); } static void pin_tag(unsigned long handle) { bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); } static void unpin_tag(unsigned long handle) { bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); } static void reset_page(struct page *page) { __ClearPageMovable(page); ClearPagePrivate(page); set_page_private(page, 0); page_mapcount_reset(page); ClearPageHugeObject(page); page->freelist = NULL; } /* * To prevent zspage destroy during migration, zspage freeing should * hold locks of all pages in the zspage. */ void lock_zspage(struct zspage *zspage) { struct page *page = get_first_page(zspage); do { lock_page(page); } while ((page = get_next_page(page)) != NULL); } int trylock_zspage(struct zspage *zspage) { struct page *cursor, *fail; for (cursor = get_first_page(zspage); cursor != NULL; cursor = get_next_page(cursor)) { if (!trylock_page(cursor)) { fail = cursor; goto unlock; } } return 1; unlock: for (cursor = get_first_page(zspage); cursor != fail; cursor = get_next_page(cursor)) unlock_page(cursor); return 0; } static void __free_zspage(struct zs_pool *pool, struct size_class *class, struct zspage *zspage) { struct page *page, *next; enum fullness_group fg; unsigned int class_idx; get_zspage_mapping(zspage, &class_idx, &fg); assert_spin_locked(&class->lock); VM_BUG_ON(get_zspage_inuse(zspage)); VM_BUG_ON(fg != ZS_EMPTY); next = page = get_first_page(zspage); do { VM_BUG_ON_PAGE(!PageLocked(page), page); next = get_next_page(page); reset_page(page); unlock_page(page); dec_zone_page_state(page, NR_ZSPAGES); put_page(page); page = next; } while (page != NULL); cache_free_zspage(pool, zspage); zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); } static void free_zspage(struct zs_pool *pool, struct size_class *class, struct zspage *zspage) { VM_BUG_ON(get_zspage_inuse(zspage)); VM_BUG_ON(list_empty(&zspage->list)); if (!trylock_zspage(zspage)) { kick_deferred_free(pool); return; } remove_zspage(class, zspage, ZS_EMPTY); __free_zspage(pool, class, zspage); } /* Initialize a newly allocated zspage */ static void init_zspage(struct size_class *class, struct zspage *zspage) { unsigned int freeobj = 1; unsigned long off = 0; struct page *page = get_first_page(zspage); while (page) { struct page *next_page; struct link_free *link; void *vaddr; set_first_obj_offset(page, off); vaddr = kmap_atomic(page); link = (struct link_free *)vaddr + off / sizeof(*link); while ((off += class->size) < PAGE_SIZE) { link->next = freeobj++ << OBJ_TAG_BITS; link += class->size / sizeof(*link); } /* * We now come to the last (full or partial) object on this * page, which must point to the first object on the next * page (if present) */ next_page = get_next_page(page); if (next_page) { link->next = freeobj++ << OBJ_TAG_BITS; } else { /* * Reset OBJ_TAG_BITS bit to last link to tell * whether it's allocated object or not. */ link->next = -1 << OBJ_TAG_BITS; } kunmap_atomic(vaddr); page = next_page; off %= PAGE_SIZE; } set_freeobj(zspage, 0); } static void create_page_chain(struct size_class *class, struct zspage *zspage, struct page *pages[]) { int i; struct page *page; struct page *prev_page = NULL; int nr_pages = class->pages_per_zspage; /* * Allocate individual pages and link them together as: * 1. all pages are linked together using page->freelist * 2. each sub-page point to zspage using page->private * * we set PG_private to identify the first page (i.e. no other sub-page * has this flag set). */ for (i = 0; i < nr_pages; i++) { page = pages[i]; set_page_private(page, (unsigned long)zspage); page->freelist = NULL; if (i == 0) { zspage->first_page = page; SetPagePrivate(page); if (unlikely(class->objs_per_zspage == 1 && class->pages_per_zspage == 1)) SetPageHugeObject(page); } else { prev_page->freelist = page; } prev_page = page; } } /* * Allocate a zspage for the given size class */ static struct zspage *alloc_zspage(struct zs_pool *pool, struct size_class *class, gfp_t gfp) { int i; struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; struct zspage *zspage = cache_alloc_zspage(pool, gfp); if (!zspage) return NULL; memset(zspage, 0, sizeof(struct zspage)); zspage->magic = ZSPAGE_MAGIC; migrate_lock_init(zspage); for (i = 0; i < class->pages_per_zspage; i++) { struct page *page; page = alloc_page(gfp); if (!page) { while (--i >= 0) { dec_zone_page_state(pages[i], NR_ZSPAGES); __free_page(pages[i]); } cache_free_zspage(pool, zspage); return NULL; } inc_zone_page_state(page, NR_ZSPAGES); pages[i] = page; } create_page_chain(class, zspage, pages); init_zspage(class, zspage); return zspage; } static struct zspage *find_get_zspage(struct size_class *class) { int i; struct zspage *zspage; for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { zspage = list_first_entry_or_null(&class->fullness_list[i], struct zspage, list); if (zspage) break; } return zspage; } #ifdef CONFIG_PGTABLE_MAPPING static inline int __zs_cpu_up(struct mapping_area *area) { /* * Make sure we don't leak memory if a cpu UP notification * and zs_init() race and both call zs_cpu_up() on the same cpu */ if (area->vm) return 0; area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); if (!area->vm) return -ENOMEM; return 0; } static inline void __zs_cpu_down(struct mapping_area *area) { if (area->vm) free_vm_area(area->vm); area->vm = NULL; } static inline void *__zs_map_object(struct mapping_area *area, struct page *pages[2], int off, int size) { BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); area->vm_addr = area->vm->addr; return area->vm_addr + off; } static inline void __zs_unmap_object(struct mapping_area *area, struct page *pages[2], int off, int size) { unsigned long addr = (unsigned long)area->vm_addr; unmap_kernel_range(addr, PAGE_SIZE * 2); } #else /* CONFIG_PGTABLE_MAPPING */ static inline int __zs_cpu_up(struct mapping_area *area) { /* * Make sure we don't leak memory if a cpu UP notification * and zs_init() race and both call zs_cpu_up() on the same cpu */ if (area->vm_buf) return 0; area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); if (!area->vm_buf) return -ENOMEM; return 0; } static inline void __zs_cpu_down(struct mapping_area *area) { kfree(area->vm_buf); area->vm_buf = NULL; } static void *__zs_map_object(struct mapping_area *area, struct page *pages[2], int off, int size) { int sizes[2]; void *addr; char *buf = area->vm_buf; /* disable page faults to match kmap_atomic() return conditions */ pagefault_disable(); /* no read fastpath */ if (area->vm_mm == ZS_MM_WO) goto out; sizes[0] = PAGE_SIZE - off; sizes[1] = size - sizes[0]; /* copy object to per-cpu buffer */ addr = kmap_atomic(pages[0]); memcpy(buf, addr + off, sizes[0]); kunmap_atomic(addr); addr = kmap_atomic(pages[1]); memcpy(buf + sizes[0], addr, sizes[1]); kunmap_atomic(addr); out: return area->vm_buf; } static void __zs_unmap_object(struct mapping_area *area, struct page *pages[2], int off, int size) { int sizes[2]; void *addr; char *buf; /* no write fastpath */ if (area->vm_mm == ZS_MM_RO) goto out; buf = area->vm_buf; buf = buf + ZS_HANDLE_SIZE; size -= ZS_HANDLE_SIZE; off += ZS_HANDLE_SIZE; sizes[0] = PAGE_SIZE - off; sizes[1] = size - sizes[0]; /* copy per-cpu buffer to object */ addr = kmap_atomic(pages[0]); memcpy(addr + off, buf, sizes[0]); kunmap_atomic(addr); addr = kmap_atomic(pages[1]); memcpy(addr, buf + sizes[0], sizes[1]); kunmap_atomic(addr); out: /* enable page faults to match kunmap_atomic() return conditions */ pagefault_enable(); } #endif /* CONFIG_PGTABLE_MAPPING */ static int zs_cpu_prepare(unsigned int cpu) { struct mapping_area *area; area = &per_cpu(zs_map_area, cpu); return __zs_cpu_up(area); } static int zs_cpu_dead(unsigned int cpu) { struct mapping_area *area; area = &per_cpu(zs_map_area, cpu); __zs_cpu_down(area); return 0; } static bool can_merge(struct size_class *prev, int pages_per_zspage, int objs_per_zspage) { if (prev->pages_per_zspage == pages_per_zspage && prev->objs_per_zspage == objs_per_zspage) return true; return false; } static bool zspage_full(struct size_class *class, struct zspage *zspage) { return get_zspage_inuse(zspage) == class->objs_per_zspage; } unsigned long zs_get_total_pages(struct zs_pool *pool) { return atomic_long_read(&pool->pages_allocated); } EXPORT_SYMBOL_GPL(zs_get_total_pages); /** * zs_map_object - get address of allocated object from handle. * @pool: pool from which the object was allocated * @handle: handle returned from zs_malloc * * Before using an object allocated from zs_malloc, it must be mapped using * this function. When done with the object, it must be unmapped using * zs_unmap_object. * * Only one object can be mapped per cpu at a time. There is no protection * against nested mappings. * * This function returns with preemption and page faults disabled. */ void *zs_map_object(struct zs_pool *pool, unsigned long handle, enum zs_mapmode mm) { struct zspage *zspage; struct page *page; unsigned long obj, off; unsigned int obj_idx; unsigned int class_idx; enum fullness_group fg; struct size_class *class; struct mapping_area *area; struct page *pages[2]; void *ret; /* * Because we use per-cpu mapping areas shared among the * pools/users, we can't allow mapping in interrupt context * because it can corrupt another users mappings. */ WARN_ON_ONCE(in_interrupt()); /* From now on, migration cannot move the object */ pin_tag(handle); obj = handle_to_obj(handle); obj_to_location(obj, &page, &obj_idx); zspage = get_zspage(page); /* migration cannot move any subpage in this zspage */ migrate_read_lock(zspage); get_zspage_mapping(zspage, &class_idx, &fg); class = pool->size_class[class_idx]; off = (class->size * obj_idx) & ~PAGE_MASK; area = &get_cpu_var(zs_map_area); area->vm_mm = mm; if (off + class->size <= PAGE_SIZE) { /* this object is contained entirely within a page */ area->vm_addr = kmap_atomic(page); ret = area->vm_addr + off; goto out; } /* this object spans two pages */ pages[0] = page; pages[1] = get_next_page(page); BUG_ON(!pages[1]); ret = __zs_map_object(area, pages, off, class->size); out: if (likely(!PageHugeObject(page))) ret += ZS_HANDLE_SIZE; return ret; } EXPORT_SYMBOL_GPL(zs_map_object); void zs_unmap_object(struct zs_pool *pool, unsigned long handle) { struct zspage *zspage; struct page *page; unsigned long obj, off; unsigned int obj_idx; unsigned int class_idx; enum fullness_group fg; struct size_class *class; struct mapping_area *area; obj = handle_to_obj(handle); obj_to_location(obj, &page, &obj_idx); zspage = get_zspage(page); get_zspage_mapping(zspage, &class_idx, &fg); class = pool->size_class[class_idx]; off = (class->size * obj_idx) & ~PAGE_MASK; area = this_cpu_ptr(&zs_map_area); if (off + class->size <= PAGE_SIZE) kunmap_atomic(area->vm_addr); else { struct page *pages[2]; pages[0] = page; pages[1] = get_next_page(page); BUG_ON(!pages[1]); __zs_unmap_object(area, pages, off, class->size); } put_cpu_var(zs_map_area); migrate_read_unlock(zspage); unpin_tag(handle); } EXPORT_SYMBOL_GPL(zs_unmap_object); static unsigned long obj_malloc(struct size_class *class, struct zspage *zspage, unsigned long handle) { int i, nr_page, offset; unsigned long obj; struct link_free *link; struct page *m_page; unsigned long m_offset; void *vaddr; handle |= OBJ_ALLOCATED_TAG; obj = get_freeobj(zspage); offset = obj * class->size; nr_page = offset >> PAGE_SHIFT; m_offset = offset & ~PAGE_MASK; m_page = get_first_page(zspage); for (i = 0; i < nr_page; i++) m_page = get_next_page(m_page); vaddr = kmap_atomic(m_page); link = (struct link_free *)vaddr + m_offset / sizeof(*link); set_freeobj(zspage, link->next >> OBJ_TAG_BITS); if (likely(!PageHugeObject(m_page))) /* record handle in the header of allocated chunk */ link->handle = handle; else /* record handle to page->index */ zspage->first_page->index = handle; kunmap_atomic(vaddr); mod_zspage_inuse(zspage, 1); zs_stat_inc(class, OBJ_USED, 1); obj = location_to_obj(m_page, obj); return obj; } /** * zs_malloc - Allocate block of given size from pool. * @pool: pool to allocate from * @size: size of block to allocate * @gfp: gfp flags when allocating object * * On success, handle to the allocated object is returned, * otherwise 0. * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. */ unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) { unsigned long handle, obj; struct size_class *class; enum fullness_group newfg; struct zspage *zspage; if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) return 0; handle = cache_alloc_handle(pool, gfp); if (!handle) return 0; /* extra space in chunk to keep the handle */ size += ZS_HANDLE_SIZE; class = pool->size_class[get_size_class_index(size)]; spin_lock(&class->lock); zspage = find_get_zspage(class); if (likely(zspage)) { obj = obj_malloc(class, zspage, handle); /* Now move the zspage to another fullness group, if required */ fix_fullness_group(class, zspage); record_obj(handle, obj); spin_unlock(&class->lock); return handle; } spin_unlock(&class->lock); zspage = alloc_zspage(pool, class, gfp); if (!zspage) { cache_free_handle(pool, handle); return 0; } spin_lock(&class->lock); obj = obj_malloc(class, zspage, handle); newfg = get_fullness_group(class, zspage); insert_zspage(class, zspage, newfg); set_zspage_mapping(zspage, class->index, newfg); record_obj(handle, obj); atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); /* We completely set up zspage so mark them as movable */ SetZsPageMovable(pool, zspage); spin_unlock(&class->lock); return handle; } EXPORT_SYMBOL_GPL(zs_malloc); static void obj_free(struct size_class *class, unsigned long obj) { struct link_free *link; struct zspage *zspage; struct page *f_page; unsigned long f_offset; unsigned int f_objidx; void *vaddr; obj &= ~OBJ_ALLOCATED_TAG; obj_to_location(obj, &f_page, &f_objidx); f_offset = (class->size * f_objidx) & ~PAGE_MASK; zspage = get_zspage(f_page); vaddr = kmap_atomic(f_page); /* Insert this object in containing zspage's freelist */ link = (struct link_free *)(vaddr + f_offset); link->next = get_freeobj(zspage) << OBJ_TAG_BITS; kunmap_atomic(vaddr); set_freeobj(zspage, f_objidx); mod_zspage_inuse(zspage, -1); zs_stat_dec(class, OBJ_USED, 1); } void zs_free(struct zs_pool *pool, unsigned long handle) { struct zspage *zspage; struct page *f_page; unsigned long obj; unsigned int f_objidx; int class_idx; struct size_class *class; enum fullness_group fullness; bool isolated; if (unlikely(!handle)) return; pin_tag(handle); obj = handle_to_obj(handle); obj_to_location(obj, &f_page, &f_objidx); zspage = get_zspage(f_page); migrate_read_lock(zspage); get_zspage_mapping(zspage, &class_idx, &fullness); class = pool->size_class[class_idx]; spin_lock(&class->lock); obj_free(class, obj); fullness = fix_fullness_group(class, zspage); if (fullness != ZS_EMPTY) { migrate_read_unlock(zspage); goto out; } isolated = is_zspage_isolated(zspage); migrate_read_unlock(zspage); /* If zspage is isolated, zs_page_putback will free the zspage */ if (likely(!isolated)) free_zspage(pool, class, zspage); out: spin_unlock(&class->lock); unpin_tag(handle); cache_free_handle(pool, handle); } EXPORT_SYMBOL_GPL(zs_free); static void zs_object_copy(struct size_class *class, unsigned long dst, unsigned long src) { struct page *s_page, *d_page; unsigned int s_objidx, d_objidx; unsigned long s_off, d_off; void *s_addr, *d_addr; int s_size, d_size, size; int written = 0; s_size = d_size = class->size; obj_to_location(src, &s_page, &s_objidx); obj_to_location(dst, &d_page, &d_objidx); s_off = (class->size * s_objidx) & ~PAGE_MASK; d_off = (class->size * d_objidx) & ~PAGE_MASK; if (s_off + class->size > PAGE_SIZE) s_size = PAGE_SIZE - s_off; if (d_off + class->size > PAGE_SIZE) d_size = PAGE_SIZE - d_off; s_addr = kmap_atomic(s_page); d_addr = kmap_atomic(d_page); while (1) { size = min(s_size, d_size); memcpy(d_addr + d_off, s_addr + s_off, size); written += size; if (written == class->size) break; s_off += size; s_size -= size; d_off += size; d_size -= size; if (s_off >= PAGE_SIZE) { kunmap_atomic(d_addr); kunmap_atomic(s_addr); s_page = get_next_page(s_page); s_addr = kmap_atomic(s_page); d_addr = kmap_atomic(d_page); s_size = class->size - written; s_off = 0; } if (d_off >= PAGE_SIZE) { kunmap_atomic(d_addr); d_page = get_next_page(d_page); d_addr = kmap_atomic(d_page); d_size = class->size - written; d_off = 0; } } kunmap_atomic(d_addr); kunmap_atomic(s_addr); } /* * Find alloced object in zspage from index object and * return handle. */ static unsigned long find_alloced_obj(struct size_class *class, struct page *page, int *obj_idx) { unsigned long head; int offset = 0; int index = *obj_idx; unsigned long handle = 0; void *addr = kmap_atomic(page); offset = get_first_obj_offset(page); offset += class->size * index; while (offset < PAGE_SIZE) { head = obj_to_head(page, addr + offset); if (head & OBJ_ALLOCATED_TAG) { handle = head & ~OBJ_ALLOCATED_TAG; if (trypin_tag(handle)) break; handle = 0; } offset += class->size; index++; } kunmap_atomic(addr); *obj_idx = index; return handle; } struct zs_compact_control { /* Source spage for migration which could be a subpage of zspage */ struct page *s_page; /* Destination page for migration which should be a first page * of zspage. */ struct page *d_page; /* Starting object index within @s_page which used for live object * in the subpage. */ int obj_idx; }; static int migrate_zspage(struct zs_pool *pool, struct size_class *class, struct zs_compact_control *cc) { unsigned long used_obj, free_obj; unsigned long handle; struct page *s_page = cc->s_page; struct page *d_page = cc->d_page; int obj_idx = cc->obj_idx; int ret = 0; while (1) { handle = find_alloced_obj(class, s_page, &obj_idx); if (!handle) { s_page = get_next_page(s_page); if (!s_page) break; obj_idx = 0; continue; } /* Stop if there is no more space */ if (zspage_full(class, get_zspage(d_page))) { unpin_tag(handle); ret = -ENOMEM; break; } used_obj = handle_to_obj(handle); free_obj = obj_malloc(class, get_zspage(d_page), handle); zs_object_copy(class, free_obj, used_obj); obj_idx++; /* * record_obj updates handle's value to free_obj and it will * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which * breaks synchronization using pin_tag(e,g, zs_free) so * let's keep the lock bit. */ free_obj |= BIT(HANDLE_PIN_BIT); record_obj(handle, free_obj); unpin_tag(handle); obj_free(class, used_obj); } /* Remember last position in this iteration */ cc->s_page = s_page; cc->obj_idx = obj_idx; return ret; } static struct zspage *isolate_zspage(struct size_class *class, bool source) { int i; struct zspage *zspage; enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; if (!source) { fg[0] = ZS_ALMOST_FULL; fg[1] = ZS_ALMOST_EMPTY; } for (i = 0; i < 2; i++) { zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], struct zspage, list); if (zspage) { VM_BUG_ON(is_zspage_isolated(zspage)); remove_zspage(class, zspage, fg[i]); return zspage; } } return zspage; } /* * putback_zspage - add @zspage into right class's fullness list * @class: destination class * @zspage: target page * * Return @zspage's fullness_group */ static enum fullness_group putback_zspage(struct size_class *class, struct zspage *zspage) { enum fullness_group fullness; VM_BUG_ON(is_zspage_isolated(zspage)); fullness = get_fullness_group(class, zspage); insert_zspage(class, zspage, fullness); set_zspage_mapping(zspage, class->index, fullness); return fullness; } #ifdef CONFIG_COMPACTION static struct dentry *zs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { static const struct dentry_operations ops = { .d_dname = simple_dname, }; return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); } static struct file_system_type zsmalloc_fs = { .name = "zsmalloc", .mount = zs_mount, .kill_sb = kill_anon_super, }; static int zsmalloc_mount(void) { int ret = 0; zsmalloc_mnt = kern_mount(&zsmalloc_fs); if (IS_ERR(zsmalloc_mnt)) ret = PTR_ERR(zsmalloc_mnt); return ret; } static void zsmalloc_unmount(void) { kern_unmount(zsmalloc_mnt); } static void migrate_lock_init(struct zspage *zspage) { rwlock_init(&zspage->lock); } static void migrate_read_lock(struct zspage *zspage) { read_lock(&zspage->lock); } static void migrate_read_unlock(struct zspage *zspage) { read_unlock(&zspage->lock); } static void migrate_write_lock(struct zspage *zspage) { write_lock(&zspage->lock); } static void migrate_write_unlock(struct zspage *zspage) { write_unlock(&zspage->lock); } /* Number of isolated subpage for *page migration* in this zspage */ static void inc_zspage_isolation(struct zspage *zspage) { zspage->isolated++; } static void dec_zspage_isolation(struct zspage *zspage) { zspage->isolated--; } static void replace_sub_page(struct size_class *class, struct zspage *zspage, struct page *newpage, struct page *oldpage) { struct page *page; struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; int idx = 0; page = get_first_page(zspage); do { if (page == oldpage) pages[idx] = newpage; else pages[idx] = page; idx++; } while ((page = get_next_page(page)) != NULL); create_page_chain(class, zspage, pages); set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); if (unlikely(PageHugeObject(oldpage))) newpage->index = oldpage->index; __SetPageMovable(newpage, page_mapping(oldpage)); } bool zs_page_isolate(struct page *page, isolate_mode_t mode) { struct zs_pool *pool; struct size_class *class; int class_idx; enum fullness_group fullness; struct zspage *zspage; struct address_space *mapping; /* * Page is locked so zspage couldn't be destroyed. For detail, look at * lock_zspage in free_zspage. */ VM_BUG_ON_PAGE(!PageMovable(page), page); VM_BUG_ON_PAGE(PageIsolated(page), page); zspage = get_zspage(page); /* * Without class lock, fullness could be stale while class_idx is okay * because class_idx is constant unless page is freed so we should get * fullness again under class lock. */ get_zspage_mapping(zspage, &class_idx, &fullness); mapping = page_mapping(page); pool = mapping->private_data; class = pool->size_class[class_idx]; spin_lock(&class->lock); if (get_zspage_inuse(zspage) == 0) { spin_unlock(&class->lock); return false; } /* zspage is isolated for object migration */ if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { spin_unlock(&class->lock); return false; } /* * If this is first time isolation for the zspage, isolate zspage from * size_class to prevent further object allocation from the zspage. */ if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { get_zspage_mapping(zspage, &class_idx, &fullness); remove_zspage(class, zspage, fullness); } inc_zspage_isolation(zspage); spin_unlock(&class->lock); return true; } int zs_page_migrate(struct address_space *mapping, struct page *newpage, struct page *page, enum migrate_mode mode) { struct zs_pool *pool; struct size_class *class; int class_idx; enum fullness_group fullness; struct zspage *zspage; struct page *dummy; void *s_addr, *d_addr, *addr; int offset, pos; unsigned long handle, head; unsigned long old_obj, new_obj; unsigned int obj_idx; int ret = -EAGAIN; VM_BUG_ON_PAGE(!PageMovable(page), page); VM_BUG_ON_PAGE(!PageIsolated(page), page); zspage = get_zspage(page); /* Concurrent compactor cannot migrate any subpage in zspage */ migrate_write_lock(zspage); get_zspage_mapping(zspage, &class_idx, &fullness); pool = mapping->private_data; class = pool->size_class[class_idx]; offset = get_first_obj_offset(page); spin_lock(&class->lock); if (!get_zspage_inuse(zspage)) { ret = -EBUSY; goto unlock_class; } pos = offset; s_addr = kmap_atomic(page); while (pos < PAGE_SIZE) { head = obj_to_head(page, s_addr + pos); if (head & OBJ_ALLOCATED_TAG) { handle = head & ~OBJ_ALLOCATED_TAG; if (!trypin_tag(handle)) goto unpin_objects; } pos += class->size; } /* * Here, any user cannot access all objects in the zspage so let's move. */ d_addr = kmap_atomic(newpage); memcpy(d_addr, s_addr, PAGE_SIZE); kunmap_atomic(d_addr); for (addr = s_addr + offset; addr < s_addr + pos; addr += class->size) { head = obj_to_head(page, addr); if (head & OBJ_ALLOCATED_TAG) { handle = head & ~OBJ_ALLOCATED_TAG; if (!testpin_tag(handle)) BUG(); old_obj = handle_to_obj(handle); obj_to_location(old_obj, &dummy, &obj_idx); new_obj = (unsigned long)location_to_obj(newpage, obj_idx); new_obj |= BIT(HANDLE_PIN_BIT); record_obj(handle, new_obj); } } replace_sub_page(class, zspage, newpage, page); get_page(newpage); dec_zspage_isolation(zspage); /* * Page migration is done so let's putback isolated zspage to * the list if @page is final isolated subpage in the zspage. */ if (!is_zspage_isolated(zspage)) putback_zspage(class, zspage); reset_page(page); put_page(page); page = newpage; ret = MIGRATEPAGE_SUCCESS; unpin_objects: for (addr = s_addr + offset; addr < s_addr + pos; addr += class->size) { head = obj_to_head(page, addr); if (head & OBJ_ALLOCATED_TAG) { handle = head & ~OBJ_ALLOCATED_TAG; if (!testpin_tag(handle)) BUG(); unpin_tag(handle); } } kunmap_atomic(s_addr); unlock_class: spin_unlock(&class->lock); migrate_write_unlock(zspage); return ret; } void zs_page_putback(struct page *page) { struct zs_pool *pool; struct size_class *class; int class_idx; enum fullness_group fg; struct address_space *mapping; struct zspage *zspage; VM_BUG_ON_PAGE(!PageMovable(page), page); VM_BUG_ON_PAGE(!PageIsolated(page), page); zspage = get_zspage(page); get_zspage_mapping(zspage, &class_idx, &fg); mapping = page_mapping(page); pool = mapping->private_data; class = pool->size_class[class_idx]; spin_lock(&class->lock); dec_zspage_isolation(zspage); if (!is_zspage_isolated(zspage)) { fg = putback_zspage(class, zspage); /* * Due to page_lock, we cannot free zspage immediately * so let's defer. */ if (fg == ZS_EMPTY) schedule_work(&pool->free_work); } spin_unlock(&class->lock); } const struct address_space_operations zsmalloc_aops = { .isolate_page = zs_page_isolate, .migratepage = zs_page_migrate, .putback_page = zs_page_putback, }; static int zs_register_migration(struct zs_pool *pool) { pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); if (IS_ERR(pool->inode)) { pool->inode = NULL; return 1; } pool->inode->i_mapping->private_data = pool; pool->inode->i_mapping->a_ops = &zsmalloc_aops; return 0; } static void zs_unregister_migration(struct zs_pool *pool) { flush_work(&pool->free_work); iput(pool->inode); } /* * Caller should hold page_lock of all pages in the zspage * In here, we cannot use zspage meta data. */ static void async_free_zspage(struct work_struct *work) { int i; struct size_class *class; unsigned int class_idx; enum fullness_group fullness; struct zspage *zspage, *tmp; LIST_HEAD(free_pages); struct zs_pool *pool = container_of(work, struct zs_pool, free_work); for (i = 0; i < ZS_SIZE_CLASSES; i++) { class = pool->size_class[i]; if (class->index != i) continue; spin_lock(&class->lock); list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); spin_unlock(&class->lock); } list_for_each_entry_safe(zspage, tmp, &free_pages, list) { list_del(&zspage->list); lock_zspage(zspage); get_zspage_mapping(zspage, &class_idx, &fullness); VM_BUG_ON(fullness != ZS_EMPTY); class = pool->size_class[class_idx]; spin_lock(&class->lock); __free_zspage(pool, pool->size_class[class_idx], zspage); spin_unlock(&class->lock); } }; static void kick_deferred_free(struct zs_pool *pool) { schedule_work(&pool->free_work); } static void init_deferred_free(struct zs_pool *pool) { INIT_WORK(&pool->free_work, async_free_zspage); } static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) { struct page *page = get_first_page(zspage); do { WARN_ON(!trylock_page(page)); __SetPageMovable(page, pool->inode->i_mapping); unlock_page(page); } while ((page = get_next_page(page)) != NULL); } #endif /* * * Based on the number of unused allocated objects calculate * and return the number of pages that we can free. */ static unsigned long zs_can_compact(struct size_class *class) { unsigned long obj_wasted; unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); unsigned long obj_used = zs_stat_get(class, OBJ_USED); if (obj_allocated <= obj_used) return 0; obj_wasted = obj_allocated - obj_used; obj_wasted /= class->objs_per_zspage; return obj_wasted * class->pages_per_zspage; } static void __zs_compact(struct zs_pool *pool, struct size_class *class) { struct zs_compact_control cc; struct zspage *src_zspage; struct zspage *dst_zspage = NULL; spin_lock(&class->lock); while ((src_zspage = isolate_zspage(class, true))) { if (!zs_can_compact(class)) break; cc.obj_idx = 0; cc.s_page = get_first_page(src_zspage); while ((dst_zspage = isolate_zspage(class, false))) { cc.d_page = get_first_page(dst_zspage); /* * If there is no more space in dst_page, resched * and see if anyone had allocated another zspage. */ if (!migrate_zspage(pool, class, &cc)) break; putback_zspage(class, dst_zspage); } /* Stop if we couldn't find slot */ if (dst_zspage == NULL) break; putback_zspage(class, dst_zspage); if (putback_zspage(class, src_zspage) == ZS_EMPTY) { free_zspage(pool, class, src_zspage); pool->stats.pages_compacted += class->pages_per_zspage; } spin_unlock(&class->lock); cond_resched(); spin_lock(&class->lock); } if (src_zspage) putback_zspage(class, src_zspage); spin_unlock(&class->lock); } unsigned long zs_compact(struct zs_pool *pool) { int i; struct size_class *class; for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { class = pool->size_class[i]; if (!class) continue; if (class->index != i) continue; __zs_compact(pool, class); } return pool->stats.pages_compacted; } EXPORT_SYMBOL_GPL(zs_compact); void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) { memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); } EXPORT_SYMBOL_GPL(zs_pool_stats); static unsigned long zs_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) { unsigned long pages_freed; struct zs_pool *pool = container_of(shrinker, struct zs_pool, shrinker); pages_freed = pool->stats.pages_compacted; /* * Compact classes and calculate compaction delta. * Can run concurrently with a manually triggered * (by user) compaction. */ pages_freed = zs_compact(pool) - pages_freed; return pages_freed ? pages_freed : SHRINK_STOP; } static unsigned long zs_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) { int i; struct size_class *class; unsigned long pages_to_free = 0; struct zs_pool *pool = container_of(shrinker, struct zs_pool, shrinker); for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { class = pool->size_class[i]; if (!class) continue; if (class->index != i) continue; pages_to_free += zs_can_compact(class); } return pages_to_free; } static void zs_unregister_shrinker(struct zs_pool *pool) { if (pool->shrinker_enabled) { unregister_shrinker(&pool->shrinker); pool->shrinker_enabled = false; } } static int zs_register_shrinker(struct zs_pool *pool) { pool->shrinker.scan_objects = zs_shrinker_scan; pool->shrinker.count_objects = zs_shrinker_count; pool->shrinker.batch = 0; pool->shrinker.seeks = DEFAULT_SEEKS; return register_shrinker(&pool->shrinker); } /** * zs_create_pool - Creates an allocation pool to work from. * @name: pool name to be created * * This function must be called before anything when using * the zsmalloc allocator. * * On success, a pointer to the newly created pool is returned, * otherwise NULL. */ struct zs_pool *zs_create_pool(const char *name) { int i; struct zs_pool *pool; struct size_class *prev_class = NULL; pool = kzalloc(sizeof(*pool), GFP_KERNEL); if (!pool) return NULL; init_deferred_free(pool); pool->name = kstrdup(name, GFP_KERNEL); if (!pool->name) goto err; if (create_cache(pool)) goto err; /* * Iterate reversely, because, size of size_class that we want to use * for merging should be larger or equal to current size. */ for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { int size; int pages_per_zspage; int objs_per_zspage; struct size_class *class; int fullness = 0; size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; if (size > ZS_MAX_ALLOC_SIZE) size = ZS_MAX_ALLOC_SIZE; pages_per_zspage = get_pages_per_zspage(size); objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; /* * size_class is used for normal zsmalloc operation such * as alloc/free for that size. Although it is natural that we * have one size_class for each size, there is a chance that we * can get more memory utilization if we use one size_class for * many different sizes whose size_class have same * characteristics. So, we makes size_class point to * previous size_class if possible. */ if (prev_class) { if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { pool->size_class[i] = prev_class; continue; } } class = kzalloc(sizeof(struct size_class), GFP_KERNEL); if (!class) goto err; class->size = size; class->index = i; class->pages_per_zspage = pages_per_zspage; class->objs_per_zspage = objs_per_zspage; spin_lock_init(&class->lock); pool->size_class[i] = class; for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; fullness++) INIT_LIST_HEAD(&class->fullness_list[fullness]); prev_class = class; } /* debug only, don't abort if it fails */ zs_pool_stat_create(pool, name); if (zs_register_migration(pool)) goto err; /* * Not critical, we still can use the pool * and user can trigger compaction manually. */ if (zs_register_shrinker(pool) == 0) pool->shrinker_enabled = true; return pool; err: zs_destroy_pool(pool); return NULL; } EXPORT_SYMBOL_GPL(zs_create_pool); void zs_destroy_pool(struct zs_pool *pool) { int i; zs_unregister_shrinker(pool); zs_unregister_migration(pool); zs_pool_stat_destroy(pool); for (i = 0; i < ZS_SIZE_CLASSES; i++) { int fg; struct size_class *class = pool->size_class[i]; if (!class) continue; if (class->index != i) continue; for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { if (!list_empty(&class->fullness_list[fg])) { pr_info("Freeing non-empty class with size %db, fullness group %d\n", class->size, fg); } } kfree(class); } destroy_cache(pool); kfree(pool->name); kfree(pool); } EXPORT_SYMBOL_GPL(zs_destroy_pool); static int __init zs_init(void) { int ret; ret = zsmalloc_mount(); if (ret) goto out; ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", zs_cpu_prepare, zs_cpu_dead); if (ret) goto hp_setup_fail; #ifdef CONFIG_ZPOOL zpool_register_driver(&zs_zpool_driver); #endif zs_stat_init(); return 0; hp_setup_fail: zsmalloc_unmount(); out: return ret; } static void __exit zs_exit(void) { #ifdef CONFIG_ZPOOL zpool_unregister_driver(&zs_zpool_driver); #endif zsmalloc_unmount(); cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); zs_stat_exit(); } module_init(zs_init); module_exit(zs_exit); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |