Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | /* * Scalar fixed time AES core transform * * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <crypto/aes.h> #include <linux/crypto.h> #include <linux/module.h> #include <asm/unaligned.h> /* * Emit the sbox as volatile const to prevent the compiler from doing * constant folding on sbox references involving fixed indexes. */ static volatile const u8 __cacheline_aligned __aesti_sbox[] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, }; static volatile const u8 __cacheline_aligned __aesti_inv_sbox[] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, }; static u32 mul_by_x(u32 w) { u32 x = w & 0x7f7f7f7f; u32 y = w & 0x80808080; /* multiply by polynomial 'x' (0b10) in GF(2^8) */ return (x << 1) ^ (y >> 7) * 0x1b; } static u32 mul_by_x2(u32 w) { u32 x = w & 0x3f3f3f3f; u32 y = w & 0x80808080; u32 z = w & 0x40404040; /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */ return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b; } static u32 mix_columns(u32 x) { /* * Perform the following matrix multiplication in GF(2^8) * * | 0x2 0x3 0x1 0x1 | | x[0] | * | 0x1 0x2 0x3 0x1 | | x[1] | * | 0x1 0x1 0x2 0x3 | x | x[2] | * | 0x3 0x1 0x1 0x3 | | x[3] | */ u32 y = mul_by_x(x) ^ ror32(x, 16); return y ^ ror32(x ^ y, 8); } static u32 inv_mix_columns(u32 x) { /* * Perform the following matrix multiplication in GF(2^8) * * | 0xe 0xb 0xd 0x9 | | x[0] | * | 0x9 0xe 0xb 0xd | | x[1] | * | 0xd 0x9 0xe 0xb | x | x[2] | * | 0xb 0xd 0x9 0xe | | x[3] | * * which can conveniently be reduced to * * | 0x2 0x3 0x1 0x1 | | 0x5 0x0 0x4 0x0 | | x[0] | * | 0x1 0x2 0x3 0x1 | | 0x0 0x5 0x0 0x4 | | x[1] | * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] | * | 0x3 0x1 0x1 0x2 | | 0x0 0x4 0x0 0x5 | | x[3] | */ u32 y = mul_by_x2(x); return mix_columns(x ^ y ^ ror32(y, 16)); } static __always_inline u32 subshift(u32 in[], int pos) { return (__aesti_sbox[in[pos] & 0xff]) ^ (__aesti_sbox[(in[(pos + 1) % 4] >> 8) & 0xff] << 8) ^ (__aesti_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ (__aesti_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24); } static __always_inline u32 inv_subshift(u32 in[], int pos) { return (__aesti_inv_sbox[in[pos] & 0xff]) ^ (__aesti_inv_sbox[(in[(pos + 3) % 4] >> 8) & 0xff] << 8) ^ (__aesti_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ (__aesti_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24); } static u32 subw(u32 in) { return (__aesti_sbox[in & 0xff]) ^ (__aesti_sbox[(in >> 8) & 0xff] << 8) ^ (__aesti_sbox[(in >> 16) & 0xff] << 16) ^ (__aesti_sbox[(in >> 24) & 0xff] << 24); } static int aesti_expand_key(struct crypto_aes_ctx *ctx, const u8 *in_key, unsigned int key_len) { u32 kwords = key_len / sizeof(u32); u32 rc, i, j; if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 && key_len != AES_KEYSIZE_256) return -EINVAL; ctx->key_length = key_len; for (i = 0; i < kwords; i++) ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32)); for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) { u32 *rki = ctx->key_enc + (i * kwords); u32 *rko = rki + kwords; rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0]; rko[1] = rko[0] ^ rki[1]; rko[2] = rko[1] ^ rki[2]; rko[3] = rko[2] ^ rki[3]; if (key_len == 24) { if (i >= 7) break; rko[4] = rko[3] ^ rki[4]; rko[5] = rko[4] ^ rki[5]; } else if (key_len == 32) { if (i >= 6) break; rko[4] = subw(rko[3]) ^ rki[4]; rko[5] = rko[4] ^ rki[5]; rko[6] = rko[5] ^ rki[6]; rko[7] = rko[6] ^ rki[7]; } } /* * Generate the decryption keys for the Equivalent Inverse Cipher. * This involves reversing the order of the round keys, and applying * the Inverse Mix Columns transformation to all but the first and * the last one. */ ctx->key_dec[0] = ctx->key_enc[key_len + 24]; ctx->key_dec[1] = ctx->key_enc[key_len + 25]; ctx->key_dec[2] = ctx->key_enc[key_len + 26]; ctx->key_dec[3] = ctx->key_enc[key_len + 27]; for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) { ctx->key_dec[i] = inv_mix_columns(ctx->key_enc[j]); ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]); ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]); ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]); } ctx->key_dec[i] = ctx->key_enc[0]; ctx->key_dec[i + 1] = ctx->key_enc[1]; ctx->key_dec[i + 2] = ctx->key_enc[2]; ctx->key_dec[i + 3] = ctx->key_enc[3]; return 0; } static int aesti_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); int err; err = aesti_expand_key(ctx, in_key, key_len); if (err) return err; /* * In order to force the compiler to emit data independent Sbox lookups * at the start of each block, xor the first round key with values at * fixed indexes in the Sbox. This will need to be repeated each time * the key is used, which will pull the entire Sbox into the D-cache * before any data dependent Sbox lookups are performed. */ ctx->key_enc[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128]; ctx->key_enc[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160]; ctx->key_enc[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192]; ctx->key_enc[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224]; ctx->key_dec[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128]; ctx->key_dec[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160]; ctx->key_dec[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192]; ctx->key_dec[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224]; return 0; } static void aesti_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) { const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); const u32 *rkp = ctx->key_enc + 4; int rounds = 6 + ctx->key_length / 4; u32 st0[4], st1[4]; int round; st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in); st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4); st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8); st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12); st0[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128]; st0[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160]; st0[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192]; st0[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224]; for (round = 0;; round += 2, rkp += 8) { st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0]; st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1]; st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2]; st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3]; if (round == rounds - 2) break; st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4]; st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5]; st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6]; st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7]; } put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out); put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4); put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8); put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12); } static void aesti_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) { const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); const u32 *rkp = ctx->key_dec + 4; int rounds = 6 + ctx->key_length / 4; u32 st0[4], st1[4]; int round; st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in); st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4); st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8); st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12); st0[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128]; st0[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160]; st0[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192]; st0[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224]; for (round = 0;; round += 2, rkp += 8) { st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0]; st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1]; st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2]; st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3]; if (round == rounds - 2) break; st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4]; st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5]; st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6]; st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7]; } put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out); put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4); put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8); put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12); } static struct crypto_alg aes_alg = { .cra_name = "aes", .cra_driver_name = "aes-fixed-time", .cra_priority = 100 + 1, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_module = THIS_MODULE, .cra_cipher.cia_min_keysize = AES_MIN_KEY_SIZE, .cra_cipher.cia_max_keysize = AES_MAX_KEY_SIZE, .cra_cipher.cia_setkey = aesti_set_key, .cra_cipher.cia_encrypt = aesti_encrypt, .cra_cipher.cia_decrypt = aesti_decrypt }; static int __init aes_init(void) { return crypto_register_alg(&aes_alg); } static void __exit aes_fini(void) { crypto_unregister_alg(&aes_alg); } module_init(aes_init); module_exit(aes_fini); MODULE_DESCRIPTION("Generic fixed time AES"); MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); MODULE_LICENSE("GPL v2"); |