Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | /* * Variant of atomic_t specialized for reference counts. * * The interface matches the atomic_t interface (to aid in porting) but only * provides the few functions one should use for reference counting. * * It differs in that the counter saturates at UINT_MAX and will not move once * there. This avoids wrapping the counter and causing 'spurious' * use-after-free issues. * * Memory ordering rules are slightly relaxed wrt regular atomic_t functions * and provide only what is strictly required for refcounts. * * The increments are fully relaxed; these will not provide ordering. The * rationale is that whatever is used to obtain the object we're increasing the * reference count on will provide the ordering. For locked data structures, * its the lock acquire, for RCU/lockless data structures its the dependent * load. * * Do note that inc_not_zero() provides a control dependency which will order * future stores against the inc, this ensures we'll never modify the object * if we did not in fact acquire a reference. * * The decrements will provide release order, such that all the prior loads and * stores will be issued before, it also provides a control dependency, which * will order us against the subsequent free(). * * The control dependency is against the load of the cmpxchg (ll/sc) that * succeeded. This means the stores aren't fully ordered, but this is fine * because the 1->0 transition indicates no concurrency. * * Note that the allocator is responsible for ordering things between free() * and alloc(). * */ #include <linux/refcount.h> #include <linux/bug.h> bool refcount_add_not_zero(unsigned int i, refcount_t *r) { unsigned int old, new, val = atomic_read(&r->refs); for (;;) { if (!val) return false; if (unlikely(val == UINT_MAX)) return true; new = val + i; if (new < val) new = UINT_MAX; old = atomic_cmpxchg_relaxed(&r->refs, val, new); if (old == val) break; val = old; } WARN_ONCE(new == UINT_MAX, "refcount_t: saturated; leaking memory.\n"); return true; } EXPORT_SYMBOL_GPL(refcount_add_not_zero); void refcount_add(unsigned int i, refcount_t *r) { WARN_ONCE(!refcount_add_not_zero(i, r), "refcount_t: addition on 0; use-after-free.\n"); } EXPORT_SYMBOL_GPL(refcount_add); /* * Similar to atomic_inc_not_zero(), will saturate at UINT_MAX and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. */ bool refcount_inc_not_zero(refcount_t *r) { unsigned int old, new, val = atomic_read(&r->refs); for (;;) { new = val + 1; if (!val) return false; if (unlikely(!new)) return true; old = atomic_cmpxchg_relaxed(&r->refs, val, new); if (old == val) break; val = old; } WARN_ONCE(new == UINT_MAX, "refcount_t: saturated; leaking memory.\n"); return true; } EXPORT_SYMBOL_GPL(refcount_inc_not_zero); /* * Similar to atomic_inc(), will saturate at UINT_MAX and WARN. * * Provides no memory ordering, it is assumed the caller already has a * reference on the object, will WARN when this is not so. */ void refcount_inc(refcount_t *r) { WARN_ONCE(!refcount_inc_not_zero(r), "refcount_t: increment on 0; use-after-free.\n"); } EXPORT_SYMBOL_GPL(refcount_inc); bool refcount_sub_and_test(unsigned int i, refcount_t *r) { unsigned int old, new, val = atomic_read(&r->refs); for (;;) { if (unlikely(val == UINT_MAX)) return false; new = val - i; if (new > val) { WARN_ONCE(new > val, "refcount_t: underflow; use-after-free.\n"); return false; } old = atomic_cmpxchg_release(&r->refs, val, new); if (old == val) break; val = old; } return !new; } EXPORT_SYMBOL_GPL(refcount_sub_and_test); /* * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to * decrement when saturated at UINT_MAX. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides a control dependency such that free() must come after. * See the comment on top. */ bool refcount_dec_and_test(refcount_t *r) { return refcount_sub_and_test(1, r); } EXPORT_SYMBOL_GPL(refcount_dec_and_test); /* * Similar to atomic_dec(), it will WARN on underflow and fail to decrement * when saturated at UINT_MAX. * * Provides release memory ordering, such that prior loads and stores are done * before. */ void refcount_dec(refcount_t *r) { WARN_ONCE(refcount_dec_and_test(r), "refcount_t: decrement hit 0; leaking memory.\n"); } EXPORT_SYMBOL_GPL(refcount_dec); /* * No atomic_t counterpart, it attempts a 1 -> 0 transition and returns the * success thereof. * * Like all decrement operations, it provides release memory order and provides * a control dependency. * * It can be used like a try-delete operator; this explicit case is provided * and not cmpxchg in generic, because that would allow implementing unsafe * operations. */ bool refcount_dec_if_one(refcount_t *r) { return atomic_cmpxchg_release(&r->refs, 1, 0) == 1; } EXPORT_SYMBOL_GPL(refcount_dec_if_one); /* * No atomic_t counterpart, it decrements unless the value is 1, in which case * it will return false. * * Was often done like: atomic_add_unless(&var, -1, 1) */ bool refcount_dec_not_one(refcount_t *r) { unsigned int old, new, val = atomic_read(&r->refs); for (;;) { if (unlikely(val == UINT_MAX)) return true; if (val == 1) return false; new = val - 1; if (new > val) { WARN_ONCE(new > val, "refcount_t: underflow; use-after-free.\n"); return true; } old = atomic_cmpxchg_release(&r->refs, val, new); if (old == val) break; val = old; } return true; } EXPORT_SYMBOL_GPL(refcount_dec_not_one); /* * Similar to atomic_dec_and_mutex_lock(), it will WARN on underflow and fail * to decrement when saturated at UINT_MAX. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides a control dependency such that free() must come after. * See the comment on top. */ bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock) { if (refcount_dec_not_one(r)) return false; mutex_lock(lock); if (!refcount_dec_and_test(r)) { mutex_unlock(lock); return false; } return true; } EXPORT_SYMBOL_GPL(refcount_dec_and_mutex_lock); /* * Similar to atomic_dec_and_lock(), it will WARN on underflow and fail to * decrement when saturated at UINT_MAX. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides a control dependency such that free() must come after. * See the comment on top. */ bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock) { if (refcount_dec_not_one(r)) return false; spin_lock(lock); if (!refcount_dec_and_test(r)) { spin_unlock(lock); return false; } return true; } EXPORT_SYMBOL_GPL(refcount_dec_and_lock); |