Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | /* * amdtp-dot.c - a part of driver for Digidesign Digi 002/003 family * * Copyright (c) 2014-2015 Takashi Sakamoto * Copyright (C) 2012 Robin Gareus <robin@gareus.org> * Copyright (C) 2012 Damien Zammit <damien@zamaudio.com> * * Licensed under the terms of the GNU General Public License, version 2. */ #include <sound/pcm.h> #include "digi00x.h" #define CIP_FMT_AM 0x10 /* 'Clock-based rate control mode' is just supported. */ #define AMDTP_FDF_AM824 0x00 /* * Nominally 3125 bytes/second, but the MIDI port's clock might be * 1% too slow, and the bus clock 100 ppm too fast. */ #define MIDI_BYTES_PER_SECOND 3093 /* * Several devices look only at the first eight data blocks. * In any case, this is more than enough for the MIDI data rate. */ #define MAX_MIDI_RX_BLOCKS 8 /* * The double-oh-three algorithm was discovered by Robin Gareus and Damien * Zammit in 2012, with reverse-engineering for Digi 003 Rack. */ struct dot_state { u8 carry; u8 idx; unsigned int off; }; struct amdtp_dot { unsigned int pcm_channels; struct dot_state state; unsigned int midi_ports; /* 2 = MAX(DOT_MIDI_IN_PORTS, DOT_MIDI_OUT_PORTS) */ struct snd_rawmidi_substream *midi[2]; int midi_fifo_used[2]; int midi_fifo_limit; void (*transfer_samples)(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __be32 *buffer, unsigned int frames); }; /* * double-oh-three look up table * * @param idx index byte (audio-sample data) 0x00..0xff * @param off channel offset shift * @return salt to XOR with given data */ #define BYTE_PER_SAMPLE (4) #define MAGIC_DOT_BYTE (2) #define MAGIC_BYTE_OFF(x) (((x) * BYTE_PER_SAMPLE) + MAGIC_DOT_BYTE) static u8 dot_scrt(const u8 idx, const unsigned int off) { /* * the length of the added pattern only depends on the lower nibble * of the last non-zero data */ static const u8 len[16] = {0, 1, 3, 5, 7, 9, 11, 13, 14, 12, 10, 8, 6, 4, 2, 0}; /* * the lower nibble of the salt. Interleaved sequence. * this is walked backwards according to len[] */ static const u8 nib[15] = {0x8, 0x7, 0x9, 0x6, 0xa, 0x5, 0xb, 0x4, 0xc, 0x3, 0xd, 0x2, 0xe, 0x1, 0xf}; /* circular list for the salt's hi nibble. */ static const u8 hir[15] = {0x0, 0x6, 0xf, 0x8, 0x7, 0x5, 0x3, 0x4, 0xc, 0xd, 0xe, 0x1, 0x2, 0xb, 0xa}; /* * start offset for upper nibble mapping. * note: 9 is /special/. In the case where the high nibble == 0x9, * hir[] is not used and - coincidentally - the salt's hi nibble is * 0x09 regardless of the offset. */ static const u8 hio[16] = {0, 11, 12, 6, 7, 5, 1, 4, 3, 0x00, 14, 13, 8, 9, 10, 2}; const u8 ln = idx & 0xf; const u8 hn = (idx >> 4) & 0xf; const u8 hr = (hn == 0x9) ? 0x9 : hir[(hio[hn] + off) % 15]; if (len[ln] < off) return 0x00; return ((nib[14 + off - len[ln]]) | (hr << 4)); } static void dot_encode_step(struct dot_state *state, __be32 *const buffer) { u8 * const data = (u8 *) buffer; if (data[MAGIC_DOT_BYTE] != 0x00) { state->off = 0; state->idx = data[MAGIC_DOT_BYTE] ^ state->carry; } data[MAGIC_DOT_BYTE] ^= state->carry; state->carry = dot_scrt(state->idx, ++(state->off)); } int amdtp_dot_set_parameters(struct amdtp_stream *s, unsigned int rate, unsigned int pcm_channels) { struct amdtp_dot *p = s->protocol; int err; if (amdtp_stream_running(s)) return -EBUSY; /* * A first data channel is for MIDI conformant data channel, the rest is * Multi Bit Linear Audio data channel. */ err = amdtp_stream_set_parameters(s, rate, pcm_channels + 1); if (err < 0) return err; s->fdf = AMDTP_FDF_AM824 | s->sfc; p->pcm_channels = pcm_channels; if (s->direction == AMDTP_IN_STREAM) p->midi_ports = DOT_MIDI_IN_PORTS; else p->midi_ports = DOT_MIDI_OUT_PORTS; /* * We do not know the actual MIDI FIFO size of most devices. Just * assume two bytes, i.e., one byte can be received over the bus while * the previous one is transmitted over MIDI. * (The value here is adjusted for midi_ratelimit_per_packet().) */ p->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1; return 0; } static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __be32 *buffer, unsigned int frames) { struct amdtp_dot *p = s->protocol; struct snd_pcm_runtime *runtime = pcm->runtime; unsigned int channels, remaining_frames, i, c; const u32 *src; channels = p->pcm_channels; src = (void *)runtime->dma_area + frames_to_bytes(runtime, s->pcm_buffer_pointer); remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer; buffer++; for (i = 0; i < frames; ++i) { for (c = 0; c < channels; ++c) { buffer[c] = cpu_to_be32((*src >> 8) | 0x40000000); dot_encode_step(&p->state, &buffer[c]); src++; } buffer += s->data_block_quadlets; if (--remaining_frames == 0) src = (void *)runtime->dma_area; } } static void write_pcm_s16(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __be32 *buffer, unsigned int frames) { struct amdtp_dot *p = s->protocol; struct snd_pcm_runtime *runtime = pcm->runtime; unsigned int channels, remaining_frames, i, c; const u16 *src; channels = p->pcm_channels; src = (void *)runtime->dma_area + frames_to_bytes(runtime, s->pcm_buffer_pointer); remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer; buffer++; for (i = 0; i < frames; ++i) { for (c = 0; c < channels; ++c) { buffer[c] = cpu_to_be32((*src << 8) | 0x40000000); dot_encode_step(&p->state, &buffer[c]); src++; } buffer += s->data_block_quadlets; if (--remaining_frames == 0) src = (void *)runtime->dma_area; } } static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, __be32 *buffer, unsigned int frames) { struct amdtp_dot *p = s->protocol; struct snd_pcm_runtime *runtime = pcm->runtime; unsigned int channels, remaining_frames, i, c; u32 *dst; channels = p->pcm_channels; dst = (void *)runtime->dma_area + frames_to_bytes(runtime, s->pcm_buffer_pointer); remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer; buffer++; for (i = 0; i < frames; ++i) { for (c = 0; c < channels; ++c) { *dst = be32_to_cpu(buffer[c]) << 8; dst++; } buffer += s->data_block_quadlets; if (--remaining_frames == 0) dst = (void *)runtime->dma_area; } } static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks) { struct amdtp_dot *p = s->protocol; unsigned int channels, i, c; channels = p->pcm_channels; buffer++; for (i = 0; i < data_blocks; ++i) { for (c = 0; c < channels; ++c) buffer[c] = cpu_to_be32(0x40000000); buffer += s->data_block_quadlets; } } static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port) { struct amdtp_dot *p = s->protocol; int used; used = p->midi_fifo_used[port]; if (used == 0) return true; used -= MIDI_BYTES_PER_SECOND * s->syt_interval; used = max(used, 0); p->midi_fifo_used[port] = used; return used < p->midi_fifo_limit; } static inline void midi_use_bytes(struct amdtp_stream *s, unsigned int port, unsigned int count) { struct amdtp_dot *p = s->protocol; p->midi_fifo_used[port] += amdtp_rate_table[s->sfc] * count; } static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks) { struct amdtp_dot *p = s->protocol; unsigned int f, port; int len; u8 *b; for (f = 0; f < data_blocks; f++) { port = (s->data_block_counter + f) % 8; b = (u8 *)&buffer[0]; len = 0; if (port < p->midi_ports && midi_ratelimit_per_packet(s, port) && p->midi[port] != NULL) len = snd_rawmidi_transmit(p->midi[port], b + 1, 2); if (len > 0) { b[3] = (0x10 << port) | len; midi_use_bytes(s, port, len); } else { b[1] = 0; b[2] = 0; b[3] = 0; } b[0] = 0x80; buffer += s->data_block_quadlets; } } static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks) { struct amdtp_dot *p = s->protocol; unsigned int f, port, len; u8 *b; for (f = 0; f < data_blocks; f++) { b = (u8 *)&buffer[0]; port = b[3] >> 4; len = b[3] & 0x0f; if (port < p->midi_ports && p->midi[port] && len > 0) snd_rawmidi_receive(p->midi[port], b + 1, len); buffer += s->data_block_quadlets; } } int amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream *s, struct snd_pcm_runtime *runtime) { int err; /* This protocol delivers 24 bit data in 32bit data channel. */ err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); if (err < 0) return err; return amdtp_stream_add_pcm_hw_constraints(s, runtime); } void amdtp_dot_set_pcm_format(struct amdtp_stream *s, snd_pcm_format_t format) { struct amdtp_dot *p = s->protocol; if (WARN_ON(amdtp_stream_pcm_running(s))) return; switch (format) { default: WARN_ON(1); /* fall through */ case SNDRV_PCM_FORMAT_S16: if (s->direction == AMDTP_OUT_STREAM) { p->transfer_samples = write_pcm_s16; break; } WARN_ON(1); /* fall through */ case SNDRV_PCM_FORMAT_S32: if (s->direction == AMDTP_OUT_STREAM) p->transfer_samples = write_pcm_s32; else p->transfer_samples = read_pcm_s32; break; } } void amdtp_dot_midi_trigger(struct amdtp_stream *s, unsigned int port, struct snd_rawmidi_substream *midi) { struct amdtp_dot *p = s->protocol; if (port < p->midi_ports) ACCESS_ONCE(p->midi[port]) = midi; } static unsigned int process_tx_data_blocks(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks, unsigned int *syt) { struct amdtp_dot *p = (struct amdtp_dot *)s->protocol; struct snd_pcm_substream *pcm; unsigned int pcm_frames; pcm = ACCESS_ONCE(s->pcm); if (pcm) { p->transfer_samples(s, pcm, buffer, data_blocks); pcm_frames = data_blocks; } else { pcm_frames = 0; } read_midi_messages(s, buffer, data_blocks); return pcm_frames; } static unsigned int process_rx_data_blocks(struct amdtp_stream *s, __be32 *buffer, unsigned int data_blocks, unsigned int *syt) { struct amdtp_dot *p = (struct amdtp_dot *)s->protocol; struct snd_pcm_substream *pcm; unsigned int pcm_frames; pcm = ACCESS_ONCE(s->pcm); if (pcm) { p->transfer_samples(s, pcm, buffer, data_blocks); pcm_frames = data_blocks; } else { write_pcm_silence(s, buffer, data_blocks); pcm_frames = 0; } write_midi_messages(s, buffer, data_blocks); return pcm_frames; } int amdtp_dot_init(struct amdtp_stream *s, struct fw_unit *unit, enum amdtp_stream_direction dir) { amdtp_stream_process_data_blocks_t process_data_blocks; enum cip_flags flags; /* Use different mode between incoming/outgoing. */ if (dir == AMDTP_IN_STREAM) { flags = CIP_NONBLOCKING; process_data_blocks = process_tx_data_blocks; } else { flags = CIP_BLOCKING; process_data_blocks = process_rx_data_blocks; } return amdtp_stream_init(s, unit, dir, flags, CIP_FMT_AM, process_data_blocks, sizeof(struct amdtp_dot)); } void amdtp_dot_reset(struct amdtp_stream *s) { struct amdtp_dot *p = s->protocol; p->state.carry = 0x00; p->state.idx = 0x00; p->state.off = 0; } |