Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 | /* bnx2x_init_ops.h: Broadcom Everest network driver. * Static functions needed during the initialization. * This file is "included" in bnx2x_main.c. * * Copyright (c) 2007-2013 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Maintained by: Ariel Elior <ariel.elior@qlogic.com> * Written by: Vladislav Zolotarov */ #ifndef BNX2X_INIT_OPS_H #define BNX2X_INIT_OPS_H #ifndef BP_ILT #define BP_ILT(bp) NULL #endif #ifndef BP_FUNC #define BP_FUNC(bp) 0 #endif #ifndef BP_PORT #define BP_PORT(bp) 0 #endif #ifndef BNX2X_ILT_FREE #define BNX2X_ILT_FREE(x, y, sz) #endif #ifndef BNX2X_ILT_ZALLOC #define BNX2X_ILT_ZALLOC(x, y, sz) #endif #ifndef ILOG2 #define ILOG2(x) x #endif static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len); static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val); static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, u32 addr, u32 len); static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data, u32 len) { u32 i; for (i = 0; i < len; i++) REG_WR(bp, addr + i*4, data[i]); } static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data, u32 len) { u32 i; for (i = 0; i < len; i++) bnx2x_reg_wr_ind(bp, addr + i*4, data[i]); } static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len, u8 wb) { if (bp->dmae_ready) bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ else if (wb && CHIP_IS_E1(bp)) bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ else bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len); } static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len, u8 wb) { u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4)); u32 buf_len32 = buf_len/4; u32 i; memset(GUNZIP_BUF(bp), (u8)fill, buf_len); for (i = 0; i < len; i += buf_len32) { u32 cur_len = min(buf_len32, len - i); bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb); } } static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len) { if (bp->dmae_ready) bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ else if (CHIP_IS_E1(bp)) bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ else bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len); } static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data, u32 len64) { u32 buf_len32 = FW_BUF_SIZE/4; u32 len = len64*2; u64 data64 = 0; u32 i; /* 64 bit value is in a blob: first low DWORD, then high DWORD */ data64 = HILO_U64((*(data + 1)), (*data)); len64 = min((u32)(FW_BUF_SIZE/8), len64); for (i = 0; i < len64; i++) { u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i; *pdata = data64; } for (i = 0; i < len; i += buf_len32) { u32 cur_len = min(buf_len32, len - i); bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len); } } /********************************************************* There are different blobs for each PRAM section. In addition, each blob write operation is divided into a few operations in order to decrease the amount of phys. contiguous buffer needed. Thus, when we select a blob the address may be with some offset from the beginning of PRAM section. The same holds for the INT_TABLE sections. **********************************************************/ #define IF_IS_INT_TABLE_ADDR(base, addr) \ if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) #define IF_IS_PRAM_ADDR(base, addr) \ if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data) { IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) data = INIT_TSEM_INT_TABLE_DATA(bp); else IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) data = INIT_CSEM_INT_TABLE_DATA(bp); else IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) data = INIT_USEM_INT_TABLE_DATA(bp); else IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) data = INIT_XSEM_INT_TABLE_DATA(bp); else IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) data = INIT_TSEM_PRAM_DATA(bp); else IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) data = INIT_CSEM_PRAM_DATA(bp); else IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) data = INIT_USEM_PRAM_DATA(bp); else IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) data = INIT_XSEM_PRAM_DATA(bp); return data; } static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data, u32 len) { if (bp->dmae_ready) VIRT_WR_DMAE_LEN(bp, data, addr, len, 0); /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ else if (CHIP_IS_E1(bp)) bnx2x_init_ind_wr(bp, addr, data, len); /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ else bnx2x_init_str_wr(bp, addr, data, len); } static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo, u32 val_hi) { u32 wb_write[2]; wb_write[0] = val_lo; wb_write[1] = val_hi; REG_WR_DMAE_LEN(bp, reg, wb_write, 2); } static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off) { const u8 *data = NULL; int rc; u32 i; data = bnx2x_sel_blob(bp, addr, data) + blob_off*4; rc = bnx2x_gunzip(bp, data, len); if (rc) return; /* gunzip_outlen is in dwords */ len = GUNZIP_OUTLEN(bp); for (i = 0; i < len; i++) ((u32 *)GUNZIP_BUF(bp))[i] = (__force u32) cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]); bnx2x_write_big_buf_wb(bp, addr, len); } static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage) { u16 op_start = INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)]; u16 op_end = INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)]; const union init_op *op; u32 op_idx, op_type, addr, len; const u32 *data, *data_base; /* If empty block */ if (op_start == op_end) return; data_base = INIT_DATA(bp); for (op_idx = op_start; op_idx < op_end; op_idx++) { op = (const union init_op *)&(INIT_OPS(bp)[op_idx]); /* Get generic data */ op_type = op->raw.op; addr = op->raw.offset; /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and * OP_WR64 (we assume that op_arr_write and op_write have the * same structure). */ len = op->arr_wr.data_len; data = data_base + op->arr_wr.data_off; switch (op_type) { case OP_RD: REG_RD(bp, addr); break; case OP_WR: REG_WR(bp, addr, op->write.val); break; case OP_SW: bnx2x_init_str_wr(bp, addr, data, len); break; case OP_WB: bnx2x_init_wr_wb(bp, addr, data, len); break; case OP_ZR: bnx2x_init_fill(bp, addr, 0, op->zero.len, 0); break; case OP_WB_ZR: bnx2x_init_fill(bp, addr, 0, op->zero.len, 1); break; case OP_ZP: bnx2x_init_wr_zp(bp, addr, len, op->arr_wr.data_off); break; case OP_WR_64: bnx2x_init_wr_64(bp, addr, data, len); break; case OP_IF_MODE_AND: /* if any of the flags doesn't match, skip the * conditional block. */ if ((INIT_MODE_FLAGS(bp) & op->if_mode.mode_bit_map) != op->if_mode.mode_bit_map) op_idx += op->if_mode.cmd_offset; break; case OP_IF_MODE_OR: /* if all the flags don't match, skip the conditional * block. */ if ((INIT_MODE_FLAGS(bp) & op->if_mode.mode_bit_map) == 0) op_idx += op->if_mode.cmd_offset; break; default: /* Should never get here! */ break; } } } /**************************************************************************** * PXP Arbiter ****************************************************************************/ /* * This code configures the PCI read/write arbiter * which implements a weighted round robin * between the virtual queues in the chip. * * The values were derived for each PCI max payload and max request size. * since max payload and max request size are only known at run time, * this is done as a separate init stage. */ #define NUM_WR_Q 13 #define NUM_RD_Q 29 #define MAX_RD_ORD 3 #define MAX_WR_ORD 2 /* configuration for one arbiter queue */ struct arb_line { int l; int add; int ubound; }; /* derived configuration for each read queue for each max request size */ static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} }, { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} }, { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} }, { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} } }; /* derived configuration for each write queue for each max request size */ static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} }, { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} }, { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} }, { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} }, { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} } }; /* register addresses for read queues */ static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, PXP2_REG_RQ_BW_RD_UBOUND0}, {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, PXP2_REG_PSWRQ_BW_UB1}, {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, PXP2_REG_PSWRQ_BW_UB2}, {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, PXP2_REG_PSWRQ_BW_UB3}, {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, PXP2_REG_RQ_BW_RD_UBOUND4}, {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, PXP2_REG_RQ_BW_RD_UBOUND5}, {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, PXP2_REG_PSWRQ_BW_UB6}, {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, PXP2_REG_PSWRQ_BW_UB7}, {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, PXP2_REG_PSWRQ_BW_UB8}, /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, PXP2_REG_PSWRQ_BW_UB9}, {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, PXP2_REG_PSWRQ_BW_UB10}, {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, PXP2_REG_PSWRQ_BW_UB11}, {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, PXP2_REG_RQ_BW_RD_UBOUND12}, {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, PXP2_REG_RQ_BW_RD_UBOUND13}, {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, PXP2_REG_RQ_BW_RD_UBOUND14}, {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, PXP2_REG_RQ_BW_RD_UBOUND15}, {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, PXP2_REG_RQ_BW_RD_UBOUND16}, {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, PXP2_REG_RQ_BW_RD_UBOUND17}, {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, PXP2_REG_RQ_BW_RD_UBOUND18}, /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, PXP2_REG_RQ_BW_RD_UBOUND19}, {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, PXP2_REG_RQ_BW_RD_UBOUND20}, {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, PXP2_REG_RQ_BW_RD_UBOUND22}, {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, PXP2_REG_RQ_BW_RD_UBOUND23}, {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, PXP2_REG_RQ_BW_RD_UBOUND24}, {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, PXP2_REG_RQ_BW_RD_UBOUND25}, {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, PXP2_REG_RQ_BW_RD_UBOUND26}, {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, PXP2_REG_RQ_BW_RD_UBOUND27}, {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, PXP2_REG_PSWRQ_BW_UB28} }; /* register addresses for write queues */ static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, PXP2_REG_PSWRQ_BW_UB1}, {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, PXP2_REG_PSWRQ_BW_UB2}, {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, PXP2_REG_PSWRQ_BW_UB3}, {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, PXP2_REG_PSWRQ_BW_UB6}, {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, PXP2_REG_PSWRQ_BW_UB7}, {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, PXP2_REG_PSWRQ_BW_UB8}, {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, PXP2_REG_PSWRQ_BW_UB9}, {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, PXP2_REG_PSWRQ_BW_UB10}, {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, PXP2_REG_PSWRQ_BW_UB11}, /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, PXP2_REG_PSWRQ_BW_UB28}, {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, PXP2_REG_RQ_BW_WR_UBOUND29}, {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, PXP2_REG_RQ_BW_WR_UBOUND30} }; static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order) { u32 val, i; if (r_order > MAX_RD_ORD) { DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", r_order, MAX_RD_ORD); r_order = MAX_RD_ORD; } if (w_order > MAX_WR_ORD) { DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n", w_order, MAX_WR_ORD); w_order = MAX_WR_ORD; } if (CHIP_REV_IS_FPGA(bp)) { DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); w_order = 0; } DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order); for (i = 0; i < NUM_RD_Q-1; i++) { REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); REG_WR(bp, read_arb_addr[i].add, read_arb_data[i][r_order].add); REG_WR(bp, read_arb_addr[i].ubound, read_arb_data[i][r_order].ubound); } for (i = 0; i < NUM_WR_Q-1; i++) { if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { REG_WR(bp, write_arb_addr[i].l, write_arb_data[i][w_order].l); REG_WR(bp, write_arb_addr[i].add, write_arb_data[i][w_order].add); REG_WR(bp, write_arb_addr[i].ubound, write_arb_data[i][w_order].ubound); } else { val = REG_RD(bp, write_arb_addr[i].l); REG_WR(bp, write_arb_addr[i].l, val | (write_arb_data[i][w_order].l << 10)); val = REG_RD(bp, write_arb_addr[i].add); REG_WR(bp, write_arb_addr[i].add, val | (write_arb_data[i][w_order].add << 10)); val = REG_RD(bp, write_arb_addr[i].ubound); REG_WR(bp, write_arb_addr[i].ubound, val | (write_arb_data[i][w_order].ubound << 7)); } } val = write_arb_data[NUM_WR_Q-1][w_order].add; val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); val = read_arb_data[NUM_RD_Q-1][r_order].add; val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD)) REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); if (CHIP_IS_E3(bp)) REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order)); else if (CHIP_IS_E2(bp)) REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order)); else REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); if (!CHIP_IS_E1(bp)) { /* MPS w_order optimal TH presently TH * 128 0 0 2 * 256 1 1 3 * >=512 2 2 3 */ /* DMAE is special */ if (!CHIP_IS_E1H(bp)) { /* E2 can use optimal TH */ val = w_order; REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val); } else { val = ((w_order == 0) ? 2 : 3); REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); } REG_WR(bp, PXP2_REG_WR_HC_MPS, val); REG_WR(bp, PXP2_REG_WR_USDM_MPS, val); REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val); REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val); REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val); REG_WR(bp, PXP2_REG_WR_QM_MPS, val); REG_WR(bp, PXP2_REG_WR_TM_MPS, val); REG_WR(bp, PXP2_REG_WR_SRC_MPS, val); REG_WR(bp, PXP2_REG_WR_DBG_MPS, val); REG_WR(bp, PXP2_REG_WR_CDU_MPS, val); } /* Validate number of tags suppoted by device */ #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980 val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST); val &= 0xFF; if (val <= 0x20) REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20); } /**************************************************************************** * ILT management ****************************************************************************/ /* * This codes hides the low level HW interaction for ILT management and * configuration. The API consists of a shadow ILT table which is set by the * driver and a set of routines to use it to configure the HW. * */ /* ILT HW init operations */ /* ILT memory management operations */ #define ILT_MEMOP_ALLOC 0 #define ILT_MEMOP_FREE 1 /* the phys address is shifted right 12 bits and has an added * 1=valid bit added to the 53rd bit * then since this is a wide register(TM) * we split it into two 32 bit writes */ #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF)) #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44))) #define ILT_RANGE(f, l) (((l) << 10) | f) static int bnx2x_ilt_line_mem_op(struct bnx2x *bp, struct ilt_line *line, u32 size, u8 memop) { if (memop == ILT_MEMOP_FREE) { BNX2X_ILT_FREE(line->page, line->page_mapping, line->size); return 0; } BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size); if (!line->page) return -1; line->size = size; return 0; } static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num, u8 memop) { int i, rc; struct bnx2x_ilt *ilt = BP_ILT(bp); struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; if (!ilt || !ilt->lines) return -1; if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM)) return 0; for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) { rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i], ilt_cli->page_size, memop); } return rc; } static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, u8 memop) { int rc = 0; if (CONFIGURE_NIC_MODE(bp)) rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop); if (!rc) rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop); return rc; } static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop) { int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop); if (!rc) rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop); if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp)) rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop); return rc; } static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx, dma_addr_t page_mapping) { u32 reg; if (CHIP_IS_E1(bp)) reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8; else reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8; bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping)); } static void bnx2x_ilt_line_init_op(struct bnx2x *bp, struct bnx2x_ilt *ilt, int idx, u8 initop) { dma_addr_t null_mapping; int abs_idx = ilt->start_line + idx; switch (initop) { case INITOP_INIT: /* set in the init-value array */ case INITOP_SET: bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping); break; case INITOP_CLEAR: null_mapping = 0; bnx2x_ilt_line_wr(bp, abs_idx, null_mapping); break; } } static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp, struct ilt_client_info *ilt_cli, u32 ilt_start, u8 initop) { u32 start_reg = 0; u32 end_reg = 0; /* The boundary is either SET or INIT, CLEAR => SET and for now SET ~~ INIT */ /* find the appropriate regs */ if (CHIP_IS_E1(bp)) { switch (ilt_cli->client_num) { case ILT_CLIENT_CDU: start_reg = PXP2_REG_PSWRQ_CDU0_L2P; break; case ILT_CLIENT_QM: start_reg = PXP2_REG_PSWRQ_QM0_L2P; break; case ILT_CLIENT_SRC: start_reg = PXP2_REG_PSWRQ_SRC0_L2P; break; case ILT_CLIENT_TM: start_reg = PXP2_REG_PSWRQ_TM0_L2P; break; } REG_WR(bp, start_reg + BP_FUNC(bp)*4, ILT_RANGE((ilt_start + ilt_cli->start), (ilt_start + ilt_cli->end))); } else { switch (ilt_cli->client_num) { case ILT_CLIENT_CDU: start_reg = PXP2_REG_RQ_CDU_FIRST_ILT; end_reg = PXP2_REG_RQ_CDU_LAST_ILT; break; case ILT_CLIENT_QM: start_reg = PXP2_REG_RQ_QM_FIRST_ILT; end_reg = PXP2_REG_RQ_QM_LAST_ILT; break; case ILT_CLIENT_SRC: start_reg = PXP2_REG_RQ_SRC_FIRST_ILT; end_reg = PXP2_REG_RQ_SRC_LAST_ILT; break; case ILT_CLIENT_TM: start_reg = PXP2_REG_RQ_TM_FIRST_ILT; end_reg = PXP2_REG_RQ_TM_LAST_ILT; break; } REG_WR(bp, start_reg, (ilt_start + ilt_cli->start)); REG_WR(bp, end_reg, (ilt_start + ilt_cli->end)); } } static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp, struct bnx2x_ilt *ilt, struct ilt_client_info *ilt_cli, u8 initop) { int i; if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) return; for (i = ilt_cli->start; i <= ilt_cli->end; i++) bnx2x_ilt_line_init_op(bp, ilt, i, initop); /* init/clear the ILT boundries */ bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop); } static void bnx2x_ilt_client_init_op(struct bnx2x *bp, struct ilt_client_info *ilt_cli, u8 initop) { struct bnx2x_ilt *ilt = BP_ILT(bp); bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop); } static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp, int cli_num, u8 initop) { struct bnx2x_ilt *ilt = BP_ILT(bp); struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; bnx2x_ilt_client_init_op(bp, ilt_cli, initop); } static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, u8 initop) { if (CONFIGURE_NIC_MODE(bp)) bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop); bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop); } static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop) { bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop); bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop); if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp)) bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop); } static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num, u32 psz_reg, u8 initop) { struct bnx2x_ilt *ilt = BP_ILT(bp); struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) return; switch (initop) { case INITOP_INIT: /* set in the init-value array */ case INITOP_SET: REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12)); break; case INITOP_CLEAR: break; } } /* * called during init common stage, ilt clients should be initialized * prioir to calling this function */ static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop) { bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU, PXP2_REG_RQ_CDU_P_SIZE, initop); bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM, PXP2_REG_RQ_QM_P_SIZE, initop); bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC, PXP2_REG_RQ_SRC_P_SIZE, initop); bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM, PXP2_REG_RQ_TM_P_SIZE, initop); } /**************************************************************************** * QM initializations ****************************************************************************/ #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */ #define QM_INIT_MIN_CID_COUNT 31 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT) /* called during init port stage */ static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count, u8 initop) { int port = BP_PORT(bp); if (QM_INIT(qm_cid_count)) { switch (initop) { case INITOP_INIT: /* set in the init-value array */ case INITOP_SET: REG_WR(bp, QM_REG_CONNNUM_0 + port*4, qm_cid_count/16 - 1); break; case INITOP_CLEAR: break; } } } static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count, u32 base_reg, u32 reg) { int i; u32 wb_data[2] = {0, 0}; for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) { REG_WR(bp, base_reg + i*4, qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC)); bnx2x_init_wr_wb(bp, reg + i*8, wb_data, 2); } } /* called during init common stage */ static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count, u8 initop) { if (!QM_INIT(qm_cid_count)) return; switch (initop) { case INITOP_INIT: /* set in the init-value array */ case INITOP_SET: bnx2x_qm_set_ptr_table(bp, qm_cid_count, QM_REG_BASEADDR, QM_REG_PTRTBL); if (CHIP_IS_E1H(bp)) bnx2x_qm_set_ptr_table(bp, qm_cid_count, QM_REG_BASEADDR_EXT_A, QM_REG_PTRTBL_EXT_A); break; case INITOP_CLEAR: break; } } /**************************************************************************** * SRC initializations ****************************************************************************/ /* called during init func stage */ static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2, dma_addr_t t2_mapping, int src_cid_count) { int i; int port = BP_PORT(bp); /* Initialize T2 */ for (i = 0; i < src_cid_count-1; i++) t2[i].next = (u64)(t2_mapping + (i+1)*sizeof(struct src_ent)); /* tell the searcher where the T2 table is */ REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count); bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16, U64_LO(t2_mapping), U64_HI(t2_mapping)); bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16, U64_LO((u64)t2_mapping + (src_cid_count-1) * sizeof(struct src_ent)), U64_HI((u64)t2_mapping + (src_cid_count-1) * sizeof(struct src_ent))); } #endif /* BNX2X_INIT_OPS_H */ |