Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | /* * * Optimized version of the standard memcpy() function * * Inputs: * in0: destination address * in1: source address * in2: number of bytes to copy * Output: * no return value * * Copyright (C) 2000-2001 Hewlett-Packard Co * Stephane Eranian <eranian@hpl.hp.com> * David Mosberger-Tang <davidm@hpl.hp.com> */ #include <asm/asmmacro.h> GLOBAL_ENTRY(memcpy) # define MEM_LAT 21 /* latency to memory */ # define dst r2 # define src r3 # define retval r8 # define saved_pfs r9 # define saved_lc r10 # define saved_pr r11 # define cnt r16 # define src2 r17 # define t0 r18 # define t1 r19 # define t2 r20 # define t3 r21 # define t4 r22 # define src_end r23 # define N (MEM_LAT + 4) # define Nrot ((N + 7) & ~7) /* * First, check if everything (src, dst, len) is a multiple of eight. If * so, we handle everything with no taken branches (other than the loop * itself) and a small icache footprint. Otherwise, we jump off to * the more general copy routine handling arbitrary * sizes/alignment etc. */ .prologue .save ar.pfs, saved_pfs alloc saved_pfs=ar.pfs,3,Nrot,0,Nrot .save ar.lc, saved_lc mov saved_lc=ar.lc or t0=in0,in1 ;; or t0=t0,in2 .save pr, saved_pr mov saved_pr=pr .body cmp.eq p6,p0=in2,r0 // zero length? mov retval=in0 // return dst (p6) br.ret.spnt.many rp // zero length, return immediately ;; mov dst=in0 // copy because of rotation shr.u cnt=in2,3 // number of 8-byte words to copy mov pr.rot=1<<16 ;; adds cnt=-1,cnt // br.ctop is repeat/until cmp.gtu p7,p0=16,in2 // copying less than 16 bytes? mov ar.ec=N ;; and t0=0x7,t0 mov ar.lc=cnt ;; cmp.ne p6,p0=t0,r0 mov src=in1 // copy because of rotation (p7) br.cond.spnt.few .memcpy_short (p6) br.cond.spnt.few .memcpy_long ;; nop.m 0 ;; nop.m 0 nop.i 0 ;; nop.m 0 ;; .rotr val[N] .rotp p[N] .align 32 1: { .mib (p[0]) ld8 val[0]=[src],8 nop.i 0 brp.loop.imp 1b, 2f } 2: { .mfb (p[N-1])st8 [dst]=val[N-1],8 nop.f 0 br.ctop.dptk.few 1b } ;; mov ar.lc=saved_lc mov pr=saved_pr,-1 mov ar.pfs=saved_pfs br.ret.sptk.many rp /* * Small (<16 bytes) unaligned copying is done via a simple byte-at-the-time * copy loop. This performs relatively poorly on Itanium, but it doesn't * get used very often (gcc inlines small copies) and due to atomicity * issues, we want to avoid read-modify-write of entire words. */ .align 32 .memcpy_short: adds cnt=-1,in2 // br.ctop is repeat/until mov ar.ec=MEM_LAT brp.loop.imp 1f, 2f ;; mov ar.lc=cnt ;; nop.m 0 ;; nop.m 0 nop.i 0 ;; nop.m 0 ;; nop.m 0 ;; /* * It is faster to put a stop bit in the loop here because it makes * the pipeline shorter (and latency is what matters on short copies). */ .align 32 1: { .mib (p[0]) ld1 val[0]=[src],1 nop.i 0 brp.loop.imp 1b, 2f } ;; 2: { .mfb (p[MEM_LAT-1])st1 [dst]=val[MEM_LAT-1],1 nop.f 0 br.ctop.dptk.few 1b } ;; mov ar.lc=saved_lc mov pr=saved_pr,-1 mov ar.pfs=saved_pfs br.ret.sptk.many rp /* * Large (>= 16 bytes) copying is done in a fancy way. Latency isn't * an overriding concern here, but throughput is. We first do * sub-word copying until the destination is aligned, then we check * if the source is also aligned. If so, we do a simple load/store-loop * until there are less than 8 bytes left over and then we do the tail, * by storing the last few bytes using sub-word copying. If the source * is not aligned, we branch off to the non-congruent loop. * * stage: op: * 0 ld * : * MEM_LAT+3 shrp * MEM_LAT+4 st * * On Itanium, the pipeline itself runs without stalls. However, br.ctop * seems to introduce an unavoidable bubble in the pipeline so the overall * latency is 2 cycles/iteration. This gives us a _copy_ throughput * of 4 byte/cycle. Still not bad. */ # undef N # undef Nrot # define N (MEM_LAT + 5) /* number of stages */ # define Nrot ((N+1 + 2 + 7) & ~7) /* number of rotating regs */ #define LOG_LOOP_SIZE 6 .memcpy_long: alloc t3=ar.pfs,3,Nrot,0,Nrot // resize register frame and t0=-8,src // t0 = src & ~7 and t2=7,src // t2 = src & 7 ;; ld8 t0=[t0] // t0 = 1st source word adds src2=7,src // src2 = (src + 7) sub t4=r0,dst // t4 = -dst ;; and src2=-8,src2 // src2 = (src + 7) & ~7 shl t2=t2,3 // t2 = 8*(src & 7) shl t4=t4,3 // t4 = 8*(dst & 7) ;; ld8 t1=[src2] // t1 = 1st source word if src is 8-byte aligned, 2nd otherwise sub t3=64,t2 // t3 = 64-8*(src & 7) shr.u t0=t0,t2 ;; add src_end=src,in2 shl t1=t1,t3 mov pr=t4,0x38 // (p5,p4,p3)=(dst & 7) ;; or t0=t0,t1 mov cnt=r0 adds src_end=-1,src_end ;; (p3) st1 [dst]=t0,1 (p3) shr.u t0=t0,8 (p3) adds cnt=1,cnt ;; (p4) st2 [dst]=t0,2 (p4) shr.u t0=t0,16 (p4) adds cnt=2,cnt ;; (p5) st4 [dst]=t0,4 (p5) adds cnt=4,cnt and src_end=-8,src_end // src_end = last word of source buffer ;; // At this point, dst is aligned to 8 bytes and there at least 16-7=9 bytes left to copy: 1:{ add src=cnt,src // make src point to remainder of source buffer sub cnt=in2,cnt // cnt = number of bytes left to copy mov t4=ip } ;; and src2=-8,src // align source pointer adds t4=.memcpy_loops-1b,t4 mov ar.ec=N and t0=7,src // t0 = src & 7 shr.u t2=cnt,3 // t2 = number of 8-byte words left to copy shl cnt=cnt,3 // move bits 0-2 to 3-5 ;; .rotr val[N+1], w[2] .rotp p[N] cmp.ne p6,p0=t0,r0 // is src aligned, too? shl t0=t0,LOG_LOOP_SIZE // t0 = 8*(src & 7) adds t2=-1,t2 // br.ctop is repeat/until ;; add t4=t0,t4 mov pr=cnt,0x38 // set (p5,p4,p3) to # of bytes last-word bytes to copy mov ar.lc=t2 ;; nop.m 0 ;; nop.m 0 nop.i 0 ;; nop.m 0 ;; (p6) ld8 val[1]=[src2],8 // prime the pump... mov b6=t4 br.sptk.few b6 ;; .memcpy_tail: // At this point, (p5,p4,p3) are set to the number of bytes left to copy (which is // less than 8) and t0 contains the last few bytes of the src buffer: (p5) st4 [dst]=t0,4 (p5) shr.u t0=t0,32 mov ar.lc=saved_lc ;; (p4) st2 [dst]=t0,2 (p4) shr.u t0=t0,16 mov ar.pfs=saved_pfs ;; (p3) st1 [dst]=t0 mov pr=saved_pr,-1 br.ret.sptk.many rp /////////////////////////////////////////////////////// .align 64 #define COPY(shift,index) \ 1: { .mib \ (p[0]) ld8 val[0]=[src2],8; \ (p[MEM_LAT+3]) shrp w[0]=val[MEM_LAT+3],val[MEM_LAT+4-index],shift; \ brp.loop.imp 1b, 2f \ }; \ 2: { .mfb \ (p[MEM_LAT+4]) st8 [dst]=w[1],8; \ nop.f 0; \ br.ctop.dptk.few 1b; \ }; \ ;; \ ld8 val[N-1]=[src_end]; /* load last word (may be same as val[N]) */ \ ;; \ shrp t0=val[N-1],val[N-index],shift; \ br .memcpy_tail .memcpy_loops: COPY(0, 1) /* no point special casing this---it doesn't go any faster without shrp */ COPY(8, 0) COPY(16, 0) COPY(24, 0) COPY(32, 0) COPY(40, 0) COPY(48, 0) COPY(56, 0) END(memcpy) |