Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | /* * Interrupt request handling routines. On the * Sparc the IRQs are basically 'cast in stone' * and you are supposed to probe the prom's device * node trees to find out who's got which IRQ. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) * Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com) * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk) * Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org) */ #include <linux/kernel_stat.h> #include <linux/seq_file.h> #include <linux/export.h> #include <asm/cacheflush.h> #include <asm/cpudata.h> #include <asm/pcic.h> #include <asm/leon.h> #include "kernel.h" #include "irq.h" /* platform specific irq setup */ struct sparc_config sparc_config; unsigned long arch_local_irq_save(void) { unsigned long retval; unsigned long tmp; __asm__ __volatile__( "rd %%psr, %0\n\t" "or %0, %2, %1\n\t" "wr %1, 0, %%psr\n\t" "nop; nop; nop\n" : "=&r" (retval), "=r" (tmp) : "i" (PSR_PIL) : "memory"); return retval; } EXPORT_SYMBOL(arch_local_irq_save); void arch_local_irq_enable(void) { unsigned long tmp; __asm__ __volatile__( "rd %%psr, %0\n\t" "andn %0, %1, %0\n\t" "wr %0, 0, %%psr\n\t" "nop; nop; nop\n" : "=&r" (tmp) : "i" (PSR_PIL) : "memory"); } EXPORT_SYMBOL(arch_local_irq_enable); void arch_local_irq_restore(unsigned long old_psr) { unsigned long tmp; __asm__ __volatile__( "rd %%psr, %0\n\t" "and %2, %1, %2\n\t" "andn %0, %1, %0\n\t" "wr %0, %2, %%psr\n\t" "nop; nop; nop\n" : "=&r" (tmp) : "i" (PSR_PIL), "r" (old_psr) : "memory"); } EXPORT_SYMBOL(arch_local_irq_restore); /* * Dave Redman (djhr@tadpole.co.uk) * * IRQ numbers.. These are no longer restricted to 15.. * * this is done to enable SBUS cards and onboard IO to be masked * correctly. using the interrupt level isn't good enough. * * For example: * A device interrupting at sbus level6 and the Floppy both come in * at IRQ11, but enabling and disabling them requires writing to * different bits in the SLAVIO/SEC. * * As a result of these changes sun4m machines could now support * directed CPU interrupts using the existing enable/disable irq code * with tweaks. * * Sun4d complicates things even further. IRQ numbers are arbitrary * 32-bit values in that case. Since this is similar to sparc64, * we adopt a virtual IRQ numbering scheme as is done there. * Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS * just becomes a limit of how many interrupt sources we can handle in * a single system. Even fully loaded SS2000 machines top off at * about 32 interrupt sources or so, therefore a NR_IRQS value of 64 * is more than enough. * * We keep a map of per-PIL enable interrupts. These get wired * up via the irq_chip->startup() method which gets invoked by * the generic IRQ layer during request_irq(). */ /* Table of allocated irqs. Unused entries has irq == 0 */ static struct irq_bucket irq_table[NR_IRQS]; /* Protect access to irq_table */ static DEFINE_SPINLOCK(irq_table_lock); /* Map between the irq identifier used in hw to the irq_bucket. */ struct irq_bucket *irq_map[SUN4D_MAX_IRQ]; /* Protect access to irq_map */ static DEFINE_SPINLOCK(irq_map_lock); /* Allocate a new irq from the irq_table */ unsigned int irq_alloc(unsigned int real_irq, unsigned int pil) { unsigned long flags; unsigned int i; spin_lock_irqsave(&irq_table_lock, flags); for (i = 1; i < NR_IRQS; i++) { if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil) goto found; } for (i = 1; i < NR_IRQS; i++) { if (!irq_table[i].irq) break; } if (i < NR_IRQS) { irq_table[i].real_irq = real_irq; irq_table[i].irq = i; irq_table[i].pil = pil; } else { printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); i = 0; } found: spin_unlock_irqrestore(&irq_table_lock, flags); return i; } /* Based on a single pil handler_irq may need to call several * interrupt handlers. Use irq_map as entry to irq_table, * and let each entry in irq_table point to the next entry. */ void irq_link(unsigned int irq) { struct irq_bucket *p; unsigned long flags; unsigned int pil; BUG_ON(irq >= NR_IRQS); spin_lock_irqsave(&irq_map_lock, flags); p = &irq_table[irq]; pil = p->pil; BUG_ON(pil > SUN4D_MAX_IRQ); p->next = irq_map[pil]; irq_map[pil] = p; spin_unlock_irqrestore(&irq_map_lock, flags); } void irq_unlink(unsigned int irq) { struct irq_bucket *p, **pnext; unsigned long flags; BUG_ON(irq >= NR_IRQS); spin_lock_irqsave(&irq_map_lock, flags); p = &irq_table[irq]; BUG_ON(p->pil > SUN4D_MAX_IRQ); pnext = &irq_map[p->pil]; while (*pnext != p) pnext = &(*pnext)->next; *pnext = p->next; spin_unlock_irqrestore(&irq_map_lock, flags); } /* /proc/interrupts printing */ int arch_show_interrupts(struct seq_file *p, int prec) { int j; #ifdef CONFIG_SMP seq_printf(p, "RES: "); for_each_online_cpu(j) seq_printf(p, "%10u ", cpu_data(j).irq_resched_count); seq_printf(p, " IPI rescheduling interrupts\n"); seq_printf(p, "CAL: "); for_each_online_cpu(j) seq_printf(p, "%10u ", cpu_data(j).irq_call_count); seq_printf(p, " IPI function call interrupts\n"); #endif seq_printf(p, "NMI: "); for_each_online_cpu(j) seq_printf(p, "%10u ", cpu_data(j).counter); seq_printf(p, " Non-maskable interrupts\n"); return 0; } void handler_irq(unsigned int pil, struct pt_regs *regs) { struct pt_regs *old_regs; struct irq_bucket *p; BUG_ON(pil > 15); old_regs = set_irq_regs(regs); irq_enter(); p = irq_map[pil]; while (p) { struct irq_bucket *next = p->next; generic_handle_irq(p->irq); p = next; } irq_exit(); set_irq_regs(old_regs); } #if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE) static unsigned int floppy_irq; int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler) { unsigned int cpu_irq; int err; err = request_irq(irq, irq_handler, 0, "floppy", NULL); if (err) return -1; /* Save for later use in floppy interrupt handler */ floppy_irq = irq; cpu_irq = (irq & (NR_IRQS - 1)); /* Dork with trap table if we get this far. */ #define INSTANTIATE(table) \ table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \ table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \ SPARC_BRANCH((unsigned long) floppy_hardint, \ (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\ table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \ table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP; INSTANTIATE(sparc_ttable) #if defined CONFIG_SMP if (sparc_cpu_model != sparc_leon) { struct tt_entry *trap_table; trap_table = &trapbase_cpu1; INSTANTIATE(trap_table) trap_table = &trapbase_cpu2; INSTANTIATE(trap_table) trap_table = &trapbase_cpu3; INSTANTIATE(trap_table) } #endif #undef INSTANTIATE /* * XXX Correct thing whould be to flush only I- and D-cache lines * which contain the handler in question. But as of time of the * writing we have no CPU-neutral interface to fine-grained flushes. */ flush_cache_all(); return 0; } EXPORT_SYMBOL(sparc_floppy_request_irq); /* * These variables are used to access state from the assembler * interrupt handler, floppy_hardint, so we cannot put these in * the floppy driver image because that would not work in the * modular case. */ volatile unsigned char *fdc_status; EXPORT_SYMBOL(fdc_status); char *pdma_vaddr; EXPORT_SYMBOL(pdma_vaddr); unsigned long pdma_size; EXPORT_SYMBOL(pdma_size); volatile int doing_pdma; EXPORT_SYMBOL(doing_pdma); char *pdma_base; EXPORT_SYMBOL(pdma_base); unsigned long pdma_areasize; EXPORT_SYMBOL(pdma_areasize); /* Use the generic irq support to call floppy_interrupt * which was setup using request_irq() in sparc_floppy_request_irq(). * We only have one floppy interrupt so we do not need to check * for additional handlers being wired up by irq_link() */ void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs) { struct pt_regs *old_regs; old_regs = set_irq_regs(regs); irq_enter(); generic_handle_irq(floppy_irq); irq_exit(); set_irq_regs(old_regs); } #endif /* djhr * This could probably be made indirect too and assigned in the CPU * bits of the code. That would be much nicer I think and would also * fit in with the idea of being able to tune your kernel for your machine * by removing unrequired machine and device support. * */ void __init init_IRQ(void) { switch (sparc_cpu_model) { case sun4m: pcic_probe(); if (pcic_present()) sun4m_pci_init_IRQ(); else sun4m_init_IRQ(); break; case sun4d: sun4d_init_IRQ(); break; case sparc_leon: leon_init_IRQ(); break; default: prom_printf("Cannot initialize IRQs on this Sun machine..."); break; } } |