Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 | /* * Read-Copy Update mechanism for mutual exclusion * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright IBM Corporation, 2008 * * Authors: Dipankar Sarma <dipankar@in.ibm.com> * Manfred Spraul <manfred@colorfullife.com> * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version * * Based on the original work by Paul McKenney <paulmck@us.ibm.com> * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. * * For detailed explanation of Read-Copy Update mechanism see - * Documentation/RCU */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/rcupdate.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/nmi.h> #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/export.h> #include <linux/completion.h> #include <linux/moduleparam.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/cpu.h> #include <linux/mutex.h> #include <linux/time.h> #include <linux/kernel_stat.h> #include <linux/wait.h> #include <linux/kthread.h> #include <linux/prefetch.h> #include <linux/delay.h> #include <linux/stop_machine.h> #include <linux/random.h> #include "rcutree.h" #include <trace/events/rcu.h> #include "rcu.h" /* Data structures. */ static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; #define RCU_STATE_INITIALIZER(sname, cr) { \ .level = { &sname##_state.node[0] }, \ .call = cr, \ .fqs_state = RCU_GP_IDLE, \ .gpnum = -300, \ .completed = -300, \ .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \ .orphan_nxttail = &sname##_state.orphan_nxtlist, \ .orphan_donetail = &sname##_state.orphan_donelist, \ .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \ .name = #sname, \ } struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched); DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh); DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); static struct rcu_state *rcu_state; LIST_HEAD(rcu_struct_flavors); /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; module_param(rcu_fanout_leaf, int, 0444); int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */ NUM_RCU_LVL_0, NUM_RCU_LVL_1, NUM_RCU_LVL_2, NUM_RCU_LVL_3, NUM_RCU_LVL_4, }; int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ /* * The rcu_scheduler_active variable transitions from zero to one just * before the first task is spawned. So when this variable is zero, RCU * can assume that there is but one task, allowing RCU to (for example) * optimized synchronize_sched() to a simple barrier(). When this variable * is one, RCU must actually do all the hard work required to detect real * grace periods. This variable is also used to suppress boot-time false * positives from lockdep-RCU error checking. */ int rcu_scheduler_active __read_mostly; EXPORT_SYMBOL_GPL(rcu_scheduler_active); /* * The rcu_scheduler_fully_active variable transitions from zero to one * during the early_initcall() processing, which is after the scheduler * is capable of creating new tasks. So RCU processing (for example, * creating tasks for RCU priority boosting) must be delayed until after * rcu_scheduler_fully_active transitions from zero to one. We also * currently delay invocation of any RCU callbacks until after this point. * * It might later prove better for people registering RCU callbacks during * early boot to take responsibility for these callbacks, but one step at * a time. */ static int rcu_scheduler_fully_active __read_mostly; #ifdef CONFIG_RCU_BOOST /* * Control variables for per-CPU and per-rcu_node kthreads. These * handle all flavors of RCU. */ static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); DEFINE_PER_CPU(char, rcu_cpu_has_work); #endif /* #ifdef CONFIG_RCU_BOOST */ static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); static void invoke_rcu_core(void); static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); /* * Track the rcutorture test sequence number and the update version * number within a given test. The rcutorture_testseq is incremented * on every rcutorture module load and unload, so has an odd value * when a test is running. The rcutorture_vernum is set to zero * when rcutorture starts and is incremented on each rcutorture update. * These variables enable correlating rcutorture output with the * RCU tracing information. */ unsigned long rcutorture_testseq; unsigned long rcutorture_vernum; /* * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s * permit this function to be invoked without holding the root rcu_node * structure's ->lock, but of course results can be subject to change. */ static int rcu_gp_in_progress(struct rcu_state *rsp) { return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); } /* * Note a quiescent state. Because we do not need to know * how many quiescent states passed, just if there was at least * one since the start of the grace period, this just sets a flag. * The caller must have disabled preemption. */ void rcu_sched_qs(int cpu) { struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); if (rdp->passed_quiesce == 0) trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs"); rdp->passed_quiesce = 1; } void rcu_bh_qs(int cpu) { struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); if (rdp->passed_quiesce == 0) trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs"); rdp->passed_quiesce = 1; } /* * Note a context switch. This is a quiescent state for RCU-sched, * and requires special handling for preemptible RCU. * The caller must have disabled preemption. */ void rcu_note_context_switch(int cpu) { trace_rcu_utilization("Start context switch"); rcu_sched_qs(cpu); rcu_preempt_note_context_switch(cpu); trace_rcu_utilization("End context switch"); } EXPORT_SYMBOL_GPL(rcu_note_context_switch); DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, .dynticks = ATOMIC_INIT(1), #if defined(CONFIG_RCU_USER_QS) && !defined(CONFIG_RCU_USER_QS_FORCE) .ignore_user_qs = true, #endif }; static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ static long qhimark = 10000; /* If this many pending, ignore blimit. */ static long qlowmark = 100; /* Once only this many pending, use blimit. */ module_param(blimit, long, 0444); module_param(qhimark, long, 0444); module_param(qlowmark, long, 0444); int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; module_param(rcu_cpu_stall_suppress, int, 0644); module_param(rcu_cpu_stall_timeout, int, 0644); static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS; static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS; module_param(jiffies_till_first_fqs, ulong, 0644); module_param(jiffies_till_next_fqs, ulong, 0644); static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *)); static void force_quiescent_state(struct rcu_state *rsp); static int rcu_pending(int cpu); /* * Return the number of RCU-sched batches processed thus far for debug & stats. */ long rcu_batches_completed_sched(void) { return rcu_sched_state.completed; } EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); /* * Return the number of RCU BH batches processed thus far for debug & stats. */ long rcu_batches_completed_bh(void) { return rcu_bh_state.completed; } EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); /* * Force a quiescent state for RCU BH. */ void rcu_bh_force_quiescent_state(void) { force_quiescent_state(&rcu_bh_state); } EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); /* * Record the number of times rcutorture tests have been initiated and * terminated. This information allows the debugfs tracing stats to be * correlated to the rcutorture messages, even when the rcutorture module * is being repeatedly loaded and unloaded. In other words, we cannot * store this state in rcutorture itself. */ void rcutorture_record_test_transition(void) { rcutorture_testseq++; rcutorture_vernum = 0; } EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); /* * Record the number of writer passes through the current rcutorture test. * This is also used to correlate debugfs tracing stats with the rcutorture * messages. */ void rcutorture_record_progress(unsigned long vernum) { rcutorture_vernum++; } EXPORT_SYMBOL_GPL(rcutorture_record_progress); /* * Force a quiescent state for RCU-sched. */ void rcu_sched_force_quiescent_state(void) { force_quiescent_state(&rcu_sched_state); } EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); /* * Does the CPU have callbacks ready to be invoked? */ static int cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) { return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL]; } /* * Does the current CPU require a yet-as-unscheduled grace period? */ static int cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) { return *rdp->nxttail[RCU_DONE_TAIL + ACCESS_ONCE(rsp->completed) != rdp->completed] && !rcu_gp_in_progress(rsp); } /* * Return the root node of the specified rcu_state structure. */ static struct rcu_node *rcu_get_root(struct rcu_state *rsp) { return &rsp->node[0]; } /* * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state * * If the new value of the ->dynticks_nesting counter now is zero, * we really have entered idle, and must do the appropriate accounting. * The caller must have disabled interrupts. */ static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval, bool user) { trace_rcu_dyntick("Start", oldval, 0); if (!user && !is_idle_task(current)) { struct task_struct *idle = idle_task(smp_processor_id()); trace_rcu_dyntick("Error on entry: not idle task", oldval, 0); ftrace_dump(DUMP_ORIG); WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", current->pid, current->comm, idle->pid, idle->comm); /* must be idle task! */ } rcu_prepare_for_idle(smp_processor_id()); /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ smp_mb__before_atomic_inc(); /* See above. */ atomic_inc(&rdtp->dynticks); smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */ WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); /* * It is illegal to enter an extended quiescent state while * in an RCU read-side critical section. */ rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), "Illegal idle entry in RCU read-side critical section."); rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), "Illegal idle entry in RCU-bh read-side critical section."); rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), "Illegal idle entry in RCU-sched read-side critical section."); } /* * Enter an RCU extended quiescent state, which can be either the * idle loop or adaptive-tickless usermode execution. */ static void rcu_eqs_enter(bool user) { long long oldval; struct rcu_dynticks *rdtp; rdtp = &__get_cpu_var(rcu_dynticks); oldval = rdtp->dynticks_nesting; WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) rdtp->dynticks_nesting = 0; else rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; rcu_eqs_enter_common(rdtp, oldval, user); } /** * rcu_idle_enter - inform RCU that current CPU is entering idle * * Enter idle mode, in other words, -leave- the mode in which RCU * read-side critical sections can occur. (Though RCU read-side * critical sections can occur in irq handlers in idle, a possibility * handled by irq_enter() and irq_exit().) * * We crowbar the ->dynticks_nesting field to zero to allow for * the possibility of usermode upcalls having messed up our count * of interrupt nesting level during the prior busy period. */ void rcu_idle_enter(void) { unsigned long flags; local_irq_save(flags); rcu_eqs_enter(false); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(rcu_idle_enter); #ifdef CONFIG_RCU_USER_QS /** * rcu_user_enter - inform RCU that we are resuming userspace. * * Enter RCU idle mode right before resuming userspace. No use of RCU * is permitted between this call and rcu_user_exit(). This way the * CPU doesn't need to maintain the tick for RCU maintenance purposes * when the CPU runs in userspace. */ void rcu_user_enter(void) { unsigned long flags; struct rcu_dynticks *rdtp; /* * Some contexts may involve an exception occuring in an irq, * leading to that nesting: * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit() * This would mess up the dyntick_nesting count though. And rcu_irq_*() * helpers are enough to protect RCU uses inside the exception. So * just return immediately if we detect we are in an IRQ. */ if (in_interrupt()) return; WARN_ON_ONCE(!current->mm); local_irq_save(flags); rdtp = &__get_cpu_var(rcu_dynticks); if (!rdtp->ignore_user_qs && !rdtp->in_user) { rdtp->in_user = true; rcu_eqs_enter(true); } local_irq_restore(flags); } /** * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace * after the current irq returns. * * This is similar to rcu_user_enter() but in the context of a non-nesting * irq. After this call, RCU enters into idle mode when the interrupt * returns. */ void rcu_user_enter_after_irq(void) { unsigned long flags; struct rcu_dynticks *rdtp; local_irq_save(flags); rdtp = &__get_cpu_var(rcu_dynticks); /* Ensure this irq is interrupting a non-idle RCU state. */ WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK)); rdtp->dynticks_nesting = 1; local_irq_restore(flags); } #endif /* CONFIG_RCU_USER_QS */ /** * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle * * Exit from an interrupt handler, which might possibly result in entering * idle mode, in other words, leaving the mode in which read-side critical * sections can occur. * * This code assumes that the idle loop never does anything that might * result in unbalanced calls to irq_enter() and irq_exit(). If your * architecture violates this assumption, RCU will give you what you * deserve, good and hard. But very infrequently and irreproducibly. * * Use things like work queues to work around this limitation. * * You have been warned. */ void rcu_irq_exit(void) { unsigned long flags; long long oldval; struct rcu_dynticks *rdtp; local_irq_save(flags); rdtp = &__get_cpu_var(rcu_dynticks); oldval = rdtp->dynticks_nesting; rdtp->dynticks_nesting--; WARN_ON_ONCE(rdtp->dynticks_nesting < 0); if (rdtp->dynticks_nesting) trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting); else rcu_eqs_enter_common(rdtp, oldval, true); local_irq_restore(flags); } /* * rcu_eqs_exit_common - current CPU moving away from extended quiescent state * * If the new value of the ->dynticks_nesting counter was previously zero, * we really have exited idle, and must do the appropriate accounting. * The caller must have disabled interrupts. */ static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval, int user) { smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */ atomic_inc(&rdtp->dynticks); /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ smp_mb__after_atomic_inc(); /* See above. */ WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); rcu_cleanup_after_idle(smp_processor_id()); trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting); if (!user && !is_idle_task(current)) { struct task_struct *idle = idle_task(smp_processor_id()); trace_rcu_dyntick("Error on exit: not idle task", oldval, rdtp->dynticks_nesting); ftrace_dump(DUMP_ORIG); WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", current->pid, current->comm, idle->pid, idle->comm); /* must be idle task! */ } } /* * Exit an RCU extended quiescent state, which can be either the * idle loop or adaptive-tickless usermode execution. */ static void rcu_eqs_exit(bool user) { struct rcu_dynticks *rdtp; long long oldval; rdtp = &__get_cpu_var(rcu_dynticks); oldval = rdtp->dynticks_nesting; WARN_ON_ONCE(oldval < 0); if (oldval & DYNTICK_TASK_NEST_MASK) rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; else rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; rcu_eqs_exit_common(rdtp, oldval, user); } /** * rcu_idle_exit - inform RCU that current CPU is leaving idle * * Exit idle mode, in other words, -enter- the mode in which RCU * read-side critical sections can occur. * * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to * allow for the possibility of usermode upcalls messing up our count * of interrupt nesting level during the busy period that is just * now starting. */ void rcu_idle_exit(void) { unsigned long flags; local_irq_save(flags); rcu_eqs_exit(false); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(rcu_idle_exit); #ifdef CONFIG_RCU_USER_QS /** * rcu_user_exit - inform RCU that we are exiting userspace. * * Exit RCU idle mode while entering the kernel because it can * run a RCU read side critical section anytime. */ void rcu_user_exit(void) { unsigned long flags; struct rcu_dynticks *rdtp; /* * Some contexts may involve an exception occuring in an irq, * leading to that nesting: * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit() * This would mess up the dyntick_nesting count though. And rcu_irq_*() * helpers are enough to protect RCU uses inside the exception. So * just return immediately if we detect we are in an IRQ. */ if (in_interrupt()) return; local_irq_save(flags); rdtp = &__get_cpu_var(rcu_dynticks); if (rdtp->in_user) { rdtp->in_user = false; rcu_eqs_exit(true); } local_irq_restore(flags); } /** * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace * idle mode after the current non-nesting irq returns. * * This is similar to rcu_user_exit() but in the context of an irq. * This is called when the irq has interrupted a userspace RCU idle mode * context. When the current non-nesting interrupt returns after this call, * the CPU won't restore the RCU idle mode. */ void rcu_user_exit_after_irq(void) { unsigned long flags; struct rcu_dynticks *rdtp; local_irq_save(flags); rdtp = &__get_cpu_var(rcu_dynticks); /* Ensure we are interrupting an RCU idle mode. */ WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK); rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE; local_irq_restore(flags); } #endif /* CONFIG_RCU_USER_QS */ /** * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle * * Enter an interrupt handler, which might possibly result in exiting * idle mode, in other words, entering the mode in which read-side critical * sections can occur. * * Note that the Linux kernel is fully capable of entering an interrupt * handler that it never exits, for example when doing upcalls to * user mode! This code assumes that the idle loop never does upcalls to * user mode. If your architecture does do upcalls from the idle loop (or * does anything else that results in unbalanced calls to the irq_enter() * and irq_exit() functions), RCU will give you what you deserve, good * and hard. But very infrequently and irreproducibly. * * Use things like work queues to work around this limitation. * * You have been warned. */ void rcu_irq_enter(void) { unsigned long flags; struct rcu_dynticks *rdtp; long long oldval; local_irq_save(flags); rdtp = &__get_cpu_var(rcu_dynticks); oldval = rdtp->dynticks_nesting; rdtp->dynticks_nesting++; WARN_ON_ONCE(rdtp->dynticks_nesting == 0); if (oldval) trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting); else rcu_eqs_exit_common(rdtp, oldval, true); local_irq_restore(flags); } /** * rcu_nmi_enter - inform RCU of entry to NMI context * * If the CPU was idle with dynamic ticks active, and there is no * irq handler running, this updates rdtp->dynticks_nmi to let the * RCU grace-period handling know that the CPU is active. */ void rcu_nmi_enter(void) { struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); if (rdtp->dynticks_nmi_nesting == 0 && (atomic_read(&rdtp->dynticks) & 0x1)) return; rdtp->dynticks_nmi_nesting++; smp_mb__before_atomic_inc(); /* Force delay from prior write. */ atomic_inc(&rdtp->dynticks); /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ smp_mb__after_atomic_inc(); /* See above. */ WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); } /** * rcu_nmi_exit - inform RCU of exit from NMI context * * If the CPU was idle with dynamic ticks active, and there is no * irq handler running, this updates rdtp->dynticks_nmi to let the * RCU grace-period handling know that the CPU is no longer active. */ void rcu_nmi_exit(void) { struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); if (rdtp->dynticks_nmi_nesting == 0 || --rdtp->dynticks_nmi_nesting != 0) return; /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ smp_mb__before_atomic_inc(); /* See above. */ atomic_inc(&rdtp->dynticks); smp_mb__after_atomic_inc(); /* Force delay to next write. */ WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); } /** * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle * * If the current CPU is in its idle loop and is neither in an interrupt * or NMI handler, return true. */ int rcu_is_cpu_idle(void) { int ret; preempt_disable(); ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0; preempt_enable(); return ret; } EXPORT_SYMBOL(rcu_is_cpu_idle); #ifdef CONFIG_RCU_USER_QS void rcu_user_hooks_switch(struct task_struct *prev, struct task_struct *next) { struct rcu_dynticks *rdtp; /* Interrupts are disabled in context switch */ rdtp = &__get_cpu_var(rcu_dynticks); if (!rdtp->ignore_user_qs) { clear_tsk_thread_flag(prev, TIF_NOHZ); set_tsk_thread_flag(next, TIF_NOHZ); } } #endif /* #ifdef CONFIG_RCU_USER_QS */ #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) /* * Is the current CPU online? Disable preemption to avoid false positives * that could otherwise happen due to the current CPU number being sampled, * this task being preempted, its old CPU being taken offline, resuming * on some other CPU, then determining that its old CPU is now offline. * It is OK to use RCU on an offline processor during initial boot, hence * the check for rcu_scheduler_fully_active. Note also that it is OK * for a CPU coming online to use RCU for one jiffy prior to marking itself * online in the cpu_online_mask. Similarly, it is OK for a CPU going * offline to continue to use RCU for one jiffy after marking itself * offline in the cpu_online_mask. This leniency is necessary given the * non-atomic nature of the online and offline processing, for example, * the fact that a CPU enters the scheduler after completing the CPU_DYING * notifiers. * * This is also why RCU internally marks CPUs online during the * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. * * Disable checking if in an NMI handler because we cannot safely report * errors from NMI handlers anyway. */ bool rcu_lockdep_current_cpu_online(void) { struct rcu_data *rdp; struct rcu_node *rnp; bool ret; if (in_nmi()) return 1; preempt_disable(); rdp = &__get_cpu_var(rcu_sched_data); rnp = rdp->mynode; ret = (rdp->grpmask & rnp->qsmaskinit) || !rcu_scheduler_fully_active; preempt_enable(); return ret; } EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ /** * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle * * If the current CPU is idle or running at a first-level (not nested) * interrupt from idle, return true. The caller must have at least * disabled preemption. */ int rcu_is_cpu_rrupt_from_idle(void) { return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1; } /* * Snapshot the specified CPU's dynticks counter so that we can later * credit them with an implicit quiescent state. Return 1 if this CPU * is in dynticks idle mode, which is an extended quiescent state. */ static int dyntick_save_progress_counter(struct rcu_data *rdp) { rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); return (rdp->dynticks_snap & 0x1) == 0; } /* * Return true if the specified CPU has passed through a quiescent * state by virtue of being in or having passed through an dynticks * idle state since the last call to dyntick_save_progress_counter() * for this same CPU, or by virtue of having been offline. */ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) { unsigned int curr; unsigned int snap; curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); snap = (unsigned int)rdp->dynticks_snap; /* * If the CPU passed through or entered a dynticks idle phase with * no active irq/NMI handlers, then we can safely pretend that the CPU * already acknowledged the request to pass through a quiescent * state. Either way, that CPU cannot possibly be in an RCU * read-side critical section that started before the beginning * of the current RCU grace period. */ if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti"); rdp->dynticks_fqs++; return 1; } /* * Check for the CPU being offline, but only if the grace period * is old enough. We don't need to worry about the CPU changing * state: If we see it offline even once, it has been through a * quiescent state. * * The reason for insisting that the grace period be at least * one jiffy old is that CPUs that are not quite online and that * have just gone offline can still execute RCU read-side critical * sections. */ if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) return 0; /* Grace period is not old enough. */ barrier(); if (cpu_is_offline(rdp->cpu)) { trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl"); rdp->offline_fqs++; return 1; } return 0; } static int jiffies_till_stall_check(void) { int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout); /* * Limit check must be consistent with the Kconfig limits * for CONFIG_RCU_CPU_STALL_TIMEOUT. */ if (till_stall_check < 3) { ACCESS_ONCE(rcu_cpu_stall_timeout) = 3; till_stall_check = 3; } else if (till_stall_check > 300) { ACCESS_ONCE(rcu_cpu_stall_timeout) = 300; till_stall_check = 300; } return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; } static void record_gp_stall_check_time(struct rcu_state *rsp) { rsp->gp_start = jiffies; rsp->jiffies_stall = jiffies + jiffies_till_stall_check(); } static void print_other_cpu_stall(struct rcu_state *rsp) { int cpu; long delta; unsigned long flags; int ndetected = 0; struct rcu_node *rnp = rcu_get_root(rsp); /* Only let one CPU complain about others per time interval. */ raw_spin_lock_irqsave(&rnp->lock, flags); delta = jiffies - rsp->jiffies_stall; if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3; raw_spin_unlock_irqrestore(&rnp->lock, flags); /* * OK, time to rat on our buddy... * See Documentation/RCU/stallwarn.txt for info on how to debug * RCU CPU stall warnings. */ printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:", rsp->name); print_cpu_stall_info_begin(); rcu_for_each_leaf_node(rsp, rnp) { raw_spin_lock_irqsave(&rnp->lock, flags); ndetected += rcu_print_task_stall(rnp); if (rnp->qsmask != 0) { for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) if (rnp->qsmask & (1UL << cpu)) { print_cpu_stall_info(rsp, rnp->grplo + cpu); ndetected++; } } raw_spin_unlock_irqrestore(&rnp->lock, flags); } /* * Now rat on any tasks that got kicked up to the root rcu_node * due to CPU offlining. */ rnp = rcu_get_root(rsp); raw_spin_lock_irqsave(&rnp->lock, flags); ndetected += rcu_print_task_stall(rnp); raw_spin_unlock_irqrestore(&rnp->lock, flags); print_cpu_stall_info_end(); printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n", smp_processor_id(), (long)(jiffies - rsp->gp_start)); if (ndetected == 0) printk(KERN_ERR "INFO: Stall ended before state dump start\n"); else if (!trigger_all_cpu_backtrace()) dump_stack(); /* Complain about tasks blocking the grace period. */ rcu_print_detail_task_stall(rsp); force_quiescent_state(rsp); /* Kick them all. */ } static void print_cpu_stall(struct rcu_state *rsp) { unsigned long flags; struct rcu_node *rnp = rcu_get_root(rsp); /* * OK, time to rat on ourselves... * See Documentation/RCU/stallwarn.txt for info on how to debug * RCU CPU stall warnings. */ printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name); print_cpu_stall_info_begin(); print_cpu_stall_info(rsp, smp_processor_id()); print_cpu_stall_info_end(); printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start); if (!trigger_all_cpu_backtrace()) dump_stack(); raw_spin_lock_irqsave(&rnp->lock, flags); if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall)) rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3; raw_spin_unlock_irqrestore(&rnp->lock, flags); set_need_resched(); /* kick ourselves to get things going. */ } static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) { unsigned long j; unsigned long js; struct rcu_node *rnp; if (rcu_cpu_stall_suppress) return; j = ACCESS_ONCE(jiffies); js = ACCESS_ONCE(rsp->jiffies_stall); rnp = rdp->mynode; if (rcu_gp_in_progress(rsp) && (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) { /* We haven't checked in, so go dump stack. */ print_cpu_stall(rsp); } else if (rcu_gp_in_progress(rsp) && ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { /* They had a few time units to dump stack, so complain. */ print_other_cpu_stall(rsp); } } static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) { rcu_cpu_stall_suppress = 1; return NOTIFY_DONE; } /** * rcu_cpu_stall_reset - prevent further stall warnings in current grace period * * Set the stall-warning timeout way off into the future, thus preventing * any RCU CPU stall-warning messages from appearing in the current set of * RCU grace periods. * * The caller must disable hard irqs. */ void rcu_cpu_stall_reset(void) { struct rcu_state *rsp; for_each_rcu_flavor(rsp) rsp->jiffies_stall = jiffies + ULONG_MAX / 2; } static struct notifier_block rcu_panic_block = { .notifier_call = rcu_panic, }; static void __init check_cpu_stall_init(void) { atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); } /* * Update CPU-local rcu_data state to record the newly noticed grace period. * This is used both when we started the grace period and when we notice * that someone else started the grace period. The caller must hold the * ->lock of the leaf rcu_node structure corresponding to the current CPU, * and must have irqs disabled. */ static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) { if (rdp->gpnum != rnp->gpnum) { /* * If the current grace period is waiting for this CPU, * set up to detect a quiescent state, otherwise don't * go looking for one. */ rdp->gpnum = rnp->gpnum; trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart"); rdp->passed_quiesce = 0; rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); zero_cpu_stall_ticks(rdp); } } static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) { unsigned long flags; struct rcu_node *rnp; local_irq_save(flags); rnp = rdp->mynode; if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */ !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ local_irq_restore(flags); return; } __note_new_gpnum(rsp, rnp, rdp); raw_spin_unlock_irqrestore(&rnp->lock, flags); } /* * Did someone else start a new RCU grace period start since we last * checked? Update local state appropriately if so. Must be called * on the CPU corresponding to rdp. */ static int check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp) { unsigned long flags; int ret = 0; local_irq_save(flags); if (rdp->gpnum != rsp->gpnum) { note_new_gpnum(rsp, rdp); ret = 1; } local_irq_restore(flags); return ret; } /* * Initialize the specified rcu_data structure's callback list to empty. */ static void init_callback_list(struct rcu_data *rdp) { int i; rdp->nxtlist = NULL; for (i = 0; i < RCU_NEXT_SIZE; i++) rdp->nxttail[i] = &rdp->nxtlist; } /* * Advance this CPU's callbacks, but only if the current grace period * has ended. This may be called only from the CPU to whom the rdp * belongs. In addition, the corresponding leaf rcu_node structure's * ->lock must be held by the caller, with irqs disabled. */ static void __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) { /* Did another grace period end? */ if (rdp->completed != rnp->completed) { /* Advance callbacks. No harm if list empty. */ rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL]; rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL]; rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; /* Remember that we saw this grace-period completion. */ rdp->completed = rnp->completed; trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend"); /* * If we were in an extended quiescent state, we may have * missed some grace periods that others CPUs handled on * our behalf. Catch up with this state to avoid noting * spurious new grace periods. If another grace period * has started, then rnp->gpnum will have advanced, so * we will detect this later on. Of course, any quiescent * states we found for the old GP are now invalid. */ if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) { rdp->gpnum = rdp->completed; rdp->passed_quiesce = 0; } /* * If RCU does not need a quiescent state from this CPU, * then make sure that this CPU doesn't go looking for one. */ if ((rnp->qsmask & rdp->grpmask) == 0) rdp->qs_pending = 0; } } /* * Advance this CPU's callbacks, but only if the current grace period * has ended. This may be called only from the CPU to whom the rdp * belongs. */ static void rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) { unsigned long flags; struct rcu_node *rnp; local_irq_save(flags); rnp = rdp->mynode; if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */ !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ local_irq_restore(flags); return; } __rcu_process_gp_end(rsp, rnp, rdp); raw_spin_unlock_irqrestore(&rnp->lock, flags); } /* * Do per-CPU grace-period initialization for running CPU. The caller * must hold the lock of the leaf rcu_node structure corresponding to * this CPU. */ static void rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) { /* Prior grace period ended, so advance callbacks for current CPU. */ __rcu_process_gp_end(rsp, rnp, rdp); /* Set state so that this CPU will detect the next quiescent state. */ __note_new_gpnum(rsp, rnp, rdp); } /* * Initialize a new grace period. */ static int rcu_gp_init(struct rcu_state *rsp) { struct rcu_data *rdp; struct rcu_node *rnp = rcu_get_root(rsp); raw_spin_lock_irq(&rnp->lock); rsp->gp_flags = 0; /* Clear all flags: New grace period. */ if (rcu_gp_in_progress(rsp)) { /* Grace period already in progress, don't start another. */ raw_spin_unlock_irq(&rnp->lock); return 0; } /* Advance to a new grace period and initialize state. */ rsp->gpnum++; trace_rcu_grace_period(rsp->name, rsp->gpnum, "start"); record_gp_stall_check_time(rsp); raw_spin_unlock_irq(&rnp->lock); /* Exclude any concurrent CPU-hotplug operations. */ mutex_lock(&rsp->onoff_mutex); /* * Set the quiescent-state-needed bits in all the rcu_node * structures for all currently online CPUs in breadth-first order, * starting from the root rcu_node structure, relying on the layout * of the tree within the rsp->node[] array. Note that other CPUs * will access only the leaves of the hierarchy, thus seeing that no * grace period is in progress, at least until the corresponding * leaf node has been initialized. In addition, we have excluded * CPU-hotplug operations. * * The grace period cannot complete until the initialization * process finishes, because this kthread handles both. */ rcu_for_each_node_breadth_first(rsp, rnp) { raw_spin_lock_irq(&rnp->lock); rdp = this_cpu_ptr(rsp->rda); rcu_preempt_check_blocked_tasks(rnp); rnp->qsmask = rnp->qsmaskinit; rnp->gpnum = rsp->gpnum; WARN_ON_ONCE(rnp->completed != rsp->completed); rnp->completed = rsp->completed; if (rnp == rdp->mynode) rcu_start_gp_per_cpu(rsp, rnp, rdp); rcu_preempt_boost_start_gp(rnp); trace_rcu_grace_period_init(rsp->name, rnp->gpnum, rnp->level, rnp->grplo, rnp->grphi, rnp->qsmask); raw_spin_unlock_irq(&rnp->lock); #ifdef CONFIG_PROVE_RCU_DELAY if ((random32() % (rcu_num_nodes * 8)) == 0) schedule_timeout_uninterruptible(2); #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */ cond_resched(); } mutex_unlock(&rsp->onoff_mutex); return 1; } /* * Do one round of quiescent-state forcing. */ int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) { int fqs_state = fqs_state_in; struct rcu_node *rnp = rcu_get_root(rsp); rsp->n_force_qs++; if (fqs_state == RCU_SAVE_DYNTICK) { /* Collect dyntick-idle snapshots. */ force_qs_rnp(rsp, dyntick_save_progress_counter); fqs_state = RCU_FORCE_QS; } else { /* Handle dyntick-idle and offline CPUs. */ force_qs_rnp(rsp, rcu_implicit_dynticks_qs); } /* Clear flag to prevent immediate re-entry. */ if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { raw_spin_lock_irq(&rnp->lock); rsp->gp_flags &= ~RCU_GP_FLAG_FQS; raw_spin_unlock_irq(&rnp->lock); } return fqs_state; } /* * Clean up after the old grace period. */ static void rcu_gp_cleanup(struct rcu_state *rsp) { unsigned long gp_duration; struct rcu_data *rdp; struct rcu_node *rnp = rcu_get_root(rsp); raw_spin_lock_irq(&rnp->lock); gp_duration = jiffies - rsp->gp_start; if (gp_duration > rsp->gp_max) rsp->gp_max = gp_duration; /* * We know the grace period is complete, but to everyone else * it appears to still be ongoing. But it is also the case * that to everyone else it looks like there is nothing that * they can do to advance the grace period. It is therefore * safe for us to drop the lock in order to mark the grace * period as completed in all of the rcu_node structures. */ raw_spin_unlock_irq(&rnp->lock); /* * Propagate new ->completed value to rcu_node structures so * that other CPUs don't have to wait until the start of the next * grace period to process their callbacks. This also avoids * some nasty RCU grace-period initialization races by forcing * the end of the current grace period to be completely recorded in * all of the rcu_node structures before the beginning of the next * grace period is recorded in any of the rcu_node structures. */ rcu_for_each_node_breadth_first(rsp, rnp) { raw_spin_lock_irq(&rnp->lock); rnp->completed = rsp->gpnum; raw_spin_unlock_irq(&rnp->lock); cond_resched(); } rnp = rcu_get_root(rsp); raw_spin_lock_irq(&rnp->lock); rsp->completed = rsp->gpnum; /* Declare grace period done. */ trace_rcu_grace_period(rsp->name, rsp->completed, "end"); rsp->fqs_state = RCU_GP_IDLE; rdp = this_cpu_ptr(rsp->rda); if (cpu_needs_another_gp(rsp, rdp)) rsp->gp_flags = 1; raw_spin_unlock_irq(&rnp->lock); } /* * Body of kthread that handles grace periods. */ static int __noreturn rcu_gp_kthread(void *arg) { int fqs_state; unsigned long j; int ret; struct rcu_state *rsp = arg; struct rcu_node *rnp = rcu_get_root(rsp); for (;;) { /* Handle grace-period start. */ for (;;) { wait_event_interruptible(rsp->gp_wq, rsp->gp_flags & RCU_GP_FLAG_INIT); if ((rsp->gp_flags & RCU_GP_FLAG_INIT) && rcu_gp_init(rsp)) break; cond_resched(); flush_signals(current); } /* Handle quiescent-state forcing. */ fqs_state = RCU_SAVE_DYNTICK; j = jiffies_till_first_fqs; if (j > HZ) { j = HZ; jiffies_till_first_fqs = HZ; } for (;;) { rsp->jiffies_force_qs = jiffies + j; ret = wait_event_interruptible_timeout(rsp->gp_wq, (rsp->gp_flags & RCU_GP_FLAG_FQS) || (!ACCESS_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)), j); /* If grace period done, leave loop. */ if (!ACCESS_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) break; /* If time for quiescent-state forcing, do it. */ if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) { fqs_state = rcu_gp_fqs(rsp, fqs_state); cond_resched(); } else { /* Deal with stray signal. */ cond_resched(); flush_signals(current); } j = jiffies_till_next_fqs; if (j > HZ) { j = HZ; jiffies_till_next_fqs = HZ; } else if (j < 1) { j = 1; jiffies_till_next_fqs = 1; } } /* Handle grace-period end. */ rcu_gp_cleanup(rsp); } } /* * Start a new RCU grace period if warranted, re-initializing the hierarchy * in preparation for detecting the next grace period. The caller must hold * the root node's ->lock, which is released before return. Hard irqs must * be disabled. * * Note that it is legal for a dying CPU (which is marked as offline) to * invoke this function. This can happen when the dying CPU reports its * quiescent state. */ static void rcu_start_gp(struct rcu_state *rsp, unsigned long flags) __releases(rcu_get_root(rsp)->lock) { struct rcu_data *rdp = this_cpu_ptr(rsp->rda); struct rcu_node *rnp = rcu_get_root(rsp); if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { /* * Either we have not yet spawned the grace-period * task or this CPU does not need another grace period. * Either way, don't start a new grace period. */ raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } rsp->gp_flags = RCU_GP_FLAG_INIT; raw_spin_unlock_irqrestore(&rnp->lock, flags); wake_up(&rsp->gp_wq); } /* * Report a full set of quiescent states to the specified rcu_state * data structure. This involves cleaning up after the prior grace * period and letting rcu_start_gp() start up the next grace period * if one is needed. Note that the caller must hold rnp->lock, as * required by rcu_start_gp(), which will release it. */ static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) __releases(rcu_get_root(rsp)->lock) { WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ } /* * Similar to rcu_report_qs_rdp(), for which it is a helper function. * Allows quiescent states for a group of CPUs to be reported at one go * to the specified rcu_node structure, though all the CPUs in the group * must be represented by the same rcu_node structure (which need not be * a leaf rcu_node structure, though it often will be). That structure's * lock must be held upon entry, and it is released before return. */ static void rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, unsigned long flags) __releases(rnp->lock) { struct rcu_node *rnp_c; /* Walk up the rcu_node hierarchy. */ for (;;) { if (!(rnp->qsmask & mask)) { /* Our bit has already been cleared, so done. */ raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } rnp->qsmask &= ~mask; trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, mask, rnp->qsmask, rnp->level, rnp->grplo, rnp->grphi, !!rnp->gp_tasks); if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { /* Other bits still set at this level, so done. */ raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } mask = rnp->grpmask; if (rnp->parent == NULL) { /* No more levels. Exit loop holding root lock. */ break; } raw_spin_unlock_irqrestore(&rnp->lock, flags); rnp_c = rnp; rnp = rnp->parent; raw_spin_lock_irqsave(&rnp->lock, flags); WARN_ON_ONCE(rnp_c->qsmask); } /* * Get here if we are the last CPU to pass through a quiescent * state for this grace period. Invoke rcu_report_qs_rsp() * to clean up and start the next grace period if one is needed. */ rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ } /* * Record a quiescent state for the specified CPU to that CPU's rcu_data * structure. This must be either called from the specified CPU, or * called when the specified CPU is known to be offline (and when it is * also known that no other CPU is concurrently trying to help the offline * CPU). The lastcomp argument is used to make sure we are still in the * grace period of interest. We don't want to end the current grace period * based on quiescent states detected in an earlier grace period! */ static void rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) { unsigned long flags; unsigned long mask; struct rcu_node *rnp; rnp = rdp->mynode; raw_spin_lock_irqsave(&rnp->lock, flags); if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum) { /* * The grace period in which this quiescent state was * recorded has ended, so don't report it upwards. * We will instead need a new quiescent state that lies * within the current grace period. */ rdp->passed_quiesce = 0; /* need qs for new gp. */ raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } mask = rdp->grpmask; if ((rnp->qsmask & mask) == 0) { raw_spin_unlock_irqrestore(&rnp->lock, flags); } else { rdp->qs_pending = 0; /* * This GP can't end until cpu checks in, so all of our * callbacks can be processed during the next GP. */ rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ } } /* * Check to see if there is a new grace period of which this CPU * is not yet aware, and if so, set up local rcu_data state for it. * Otherwise, see if this CPU has just passed through its first * quiescent state for this grace period, and record that fact if so. */ static void rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) { /* If there is now a new grace period, record and return. */ if (check_for_new_grace_period(rsp, rdp)) return; /* * Does this CPU still need to do its part for current grace period? * If no, return and let the other CPUs do their part as well. */ if (!rdp->qs_pending) return; /* * Was there a quiescent state since the beginning of the grace * period? If no, then exit and wait for the next call. */ if (!rdp->passed_quiesce) return; /* * Tell RCU we are done (but rcu_report_qs_rdp() will be the * judge of that). */ rcu_report_qs_rdp(rdp->cpu, rsp, rdp); } #ifdef CONFIG_HOTPLUG_CPU /* * Send the specified CPU's RCU callbacks to the orphanage. The * specified CPU must be offline, and the caller must hold the * ->onofflock. */ static void rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) { /* * Orphan the callbacks. First adjust the counts. This is safe * because ->onofflock excludes _rcu_barrier()'s adoption of * the callbacks, thus no memory barrier is required. */ if (rdp->nxtlist != NULL) { rsp->qlen_lazy += rdp->qlen_lazy; rsp->qlen += rdp->qlen; rdp->n_cbs_orphaned += rdp->qlen; rdp->qlen_lazy = 0; ACCESS_ONCE(rdp->qlen) = 0; } /* * Next, move those callbacks still needing a grace period to * the orphanage, where some other CPU will pick them up. * Some of the callbacks might have gone partway through a grace * period, but that is too bad. They get to start over because we * cannot assume that grace periods are synchronized across CPUs. * We don't bother updating the ->nxttail[] array yet, instead * we just reset the whole thing later on. */ if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; *rdp->nxttail[RCU_DONE_TAIL] = NULL; } /* * Then move the ready-to-invoke callbacks to the orphanage, * where some other CPU will pick them up. These will not be * required to pass though another grace period: They are done. */ if (rdp->nxtlist != NULL) { *rsp->orphan_donetail = rdp->nxtlist; rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; } /* Finally, initialize the rcu_data structure's list to empty. */ init_callback_list(rdp); } /* * Adopt the RCU callbacks from the specified rcu_state structure's * orphanage. The caller must hold the ->onofflock. */ static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) { int i; struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); /* Do the accounting first. */ rdp->qlen_lazy += rsp->qlen_lazy; rdp->qlen += rsp->qlen; rdp->n_cbs_adopted += rsp->qlen; if (rsp->qlen_lazy != rsp->qlen) rcu_idle_count_callbacks_posted(); rsp->qlen_lazy = 0; rsp->qlen = 0; /* * We do not need a memory barrier here because the only way we * can get here if there is an rcu_barrier() in flight is if * we are the task doing the rcu_barrier(). */ /* First adopt the ready-to-invoke callbacks. */ if (rsp->orphan_donelist != NULL) { *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) rdp->nxttail[i] = rsp->orphan_donetail; rsp->orphan_donelist = NULL; rsp->orphan_donetail = &rsp->orphan_donelist; } /* And then adopt the callbacks that still need a grace period. */ if (rsp->orphan_nxtlist != NULL) { *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; rsp->orphan_nxtlist = NULL; rsp->orphan_nxttail = &rsp->orphan_nxtlist; } } /* * Trace the fact that this CPU is going offline. */ static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) { RCU_TRACE(unsigned long mask); RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); RCU_TRACE(struct rcu_node *rnp = rdp->mynode); RCU_TRACE(mask = rdp->grpmask); trace_rcu_grace_period(rsp->name, rnp->gpnum + 1 - !!(rnp->qsmask & mask), "cpuofl"); } /* * The CPU has been completely removed, and some other CPU is reporting * this fact from process context. Do the remainder of the cleanup, * including orphaning the outgoing CPU's RCU callbacks, and also * adopting them. There can only be one CPU hotplug operation at a time, * so no other CPU can be attempting to update rcu_cpu_kthread_task. */ static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) { unsigned long flags; unsigned long mask; int need_report = 0; struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ /* Adjust any no-longer-needed kthreads. */ rcu_boost_kthread_setaffinity(rnp, -1); /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */ /* Exclude any attempts to start a new grace period. */ mutex_lock(&rsp->onoff_mutex); raw_spin_lock_irqsave(&rsp->onofflock, flags); /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); rcu_adopt_orphan_cbs(rsp); /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ mask = rdp->grpmask; /* rnp->grplo is constant. */ do { raw_spin_lock(&rnp->lock); /* irqs already disabled. */ rnp->qsmaskinit &= ~mask; if (rnp->qsmaskinit != 0) { if (rnp != rdp->mynode) raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ break; } if (rnp == rdp->mynode) need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); else raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ mask = rnp->grpmask; rnp = rnp->parent; } while (rnp != NULL); /* * We still hold the leaf rcu_node structure lock here, and * irqs are still disabled. The reason for this subterfuge is * because invoking rcu_report_unblock_qs_rnp() with ->onofflock * held leads to deadlock. */ raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ rnp = rdp->mynode; if (need_report & RCU_OFL_TASKS_NORM_GP) rcu_report_unblock_qs_rnp(rnp, flags); else raw_spin_unlock_irqrestore(&rnp->lock, flags); if (need_report & RCU_OFL_TASKS_EXP_GP) rcu_report_exp_rnp(rsp, rnp, true); WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", cpu, rdp->qlen, rdp->nxtlist); init_callback_list(rdp); /* Disallow further callbacks on this CPU. */ rdp->nxttail[RCU_NEXT_TAIL] = NULL; mutex_unlock(&rsp->onoff_mutex); } #else /* #ifdef CONFIG_HOTPLUG_CPU */ static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) { } static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) { } #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ /* * Invoke any RCU callbacks that have made it to the end of their grace * period. Thottle as specified by rdp->blimit. */ static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) { unsigned long flags; struct rcu_head *next, *list, **tail; long bl, count, count_lazy; int i; /* If no callbacks are ready, just return.*/ if (!cpu_has_callbacks_ready_to_invoke(rdp)) { trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), need_resched(), is_idle_task(current), rcu_is_callbacks_kthread()); return; } /* * Extract the list of ready callbacks, disabling to prevent * races with call_rcu() from interrupt handlers. */ local_irq_save(flags); WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); bl = rdp->blimit; trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); list = rdp->nxtlist; rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; *rdp->nxttail[RCU_DONE_TAIL] = NULL; tail = rdp->nxttail[RCU_DONE_TAIL]; for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) rdp->nxttail[i] = &rdp->nxtlist; local_irq_restore(flags); /* Invoke callbacks. */ count = count_lazy = 0; while (list) { next = list->next; prefetch(next); debug_rcu_head_unqueue(list); if (__rcu_reclaim(rsp->name, list)) count_lazy++; list = next; /* Stop only if limit reached and CPU has something to do. */ if (++count >= bl && (need_resched() || (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) break; } local_irq_save(flags); trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), is_idle_task(current), rcu_is_callbacks_kthread()); /* Update count, and requeue any remaining callbacks. */ if (list != NULL) { *tail = rdp->nxtlist; rdp->nxtlist = list; for (i = 0; i < RCU_NEXT_SIZE; i++) if (&rdp->nxtlist == rdp->nxttail[i]) rdp->nxttail[i] = tail; else break; } smp_mb(); /* List handling before counting for rcu_barrier(). */ rdp->qlen_lazy -= count_lazy; ACCESS_ONCE(rdp->qlen) -= count; rdp->n_cbs_invoked += count; /* Reinstate batch limit if we have worked down the excess. */ if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) rdp->blimit = blimit; /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { rdp->qlen_last_fqs_check = 0; rdp->n_force_qs_snap = rsp->n_force_qs; } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) rdp->qlen_last_fqs_check = rdp->qlen; WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); local_irq_restore(flags); /* Re-invoke RCU core processing if there are callbacks remaining. */ if (cpu_has_callbacks_ready_to_invoke(rdp)) invoke_rcu_core(); } /* * Check to see if this CPU is in a non-context-switch quiescent state * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). * Also schedule RCU core processing. * * This function must be called from hardirq context. It is normally * invoked from the scheduling-clock interrupt. If rcu_pending returns * false, there is no point in invoking rcu_check_callbacks(). */ void rcu_check_callbacks(int cpu, int user) { trace_rcu_utilization("Start scheduler-tick"); increment_cpu_stall_ticks(); if (user || rcu_is_cpu_rrupt_from_idle()) { /* * Get here if this CPU took its interrupt from user * mode or from the idle loop, and if this is not a * nested interrupt. In this case, the CPU is in * a quiescent state, so note it. * * No memory barrier is required here because both * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local * variables that other CPUs neither access nor modify, * at least not while the corresponding CPU is online. */ rcu_sched_qs(cpu); rcu_bh_qs(cpu); } else if (!in_softirq()) { /* * Get here if this CPU did not take its interrupt from * softirq, in other words, if it is not interrupting * a rcu_bh read-side critical section. This is an _bh * critical section, so note it. */ rcu_bh_qs(cpu); } rcu_preempt_check_callbacks(cpu); if (rcu_pending(cpu)) invoke_rcu_core(); trace_rcu_utilization("End scheduler-tick"); } /* * Scan the leaf rcu_node structures, processing dyntick state for any that * have not yet encountered a quiescent state, using the function specified. * Also initiate boosting for any threads blocked on the root rcu_node. * * The caller must have suppressed start of new grace periods. */ static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *)) { unsigned long bit; int cpu; unsigned long flags; unsigned long mask; struct rcu_node *rnp; rcu_for_each_leaf_node(rsp, rnp) { cond_resched(); mask = 0; raw_spin_lock_irqsave(&rnp->lock, flags); if (!rcu_gp_in_progress(rsp)) { raw_spin_unlock_irqrestore(&rnp->lock, flags); return; } if (rnp->qsmask == 0) { rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ continue; } cpu = rnp->grplo; bit = 1; for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { if ((rnp->qsmask & bit) != 0 && f(per_cpu_ptr(rsp->rda, cpu))) mask |= bit; } if (mask != 0) { /* rcu_report_qs_rnp() releases rnp->lock. */ rcu_report_qs_rnp(mask, rsp, rnp, flags); continue; } raw_spin_unlock_irqrestore(&rnp->lock, flags); } rnp = rcu_get_root(rsp); if (rnp->qsmask == 0) { raw_spin_lock_irqsave(&rnp->lock, flags); rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ } } /* * Force quiescent states on reluctant CPUs, and also detect which * CPUs are in dyntick-idle mode. */ static void force_quiescent_state(struct rcu_state *rsp) { unsigned long flags; bool ret; struct rcu_node *rnp; struct rcu_node *rnp_old = NULL; /* Funnel through hierarchy to reduce memory contention. */ rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode; for (; rnp != NULL; rnp = rnp->parent) { ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || !raw_spin_trylock(&rnp->fqslock); if (rnp_old != NULL) raw_spin_unlock(&rnp_old->fqslock); if (ret) { rsp->n_force_qs_lh++; return; } rnp_old = rnp; } /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ /* Reached the root of the rcu_node tree, acquire lock. */ raw_spin_lock_irqsave(&rnp_old->lock, flags); raw_spin_unlock(&rnp_old->fqslock); if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { rsp->n_force_qs_lh++; raw_spin_unlock_irqrestore(&rnp_old->lock, flags); return; /* Someone beat us to it. */ } rsp->gp_flags |= RCU_GP_FLAG_FQS; raw_spin_unlock_irqrestore(&rnp_old->lock, flags); wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ } /* * This does the RCU core processing work for the specified rcu_state * and rcu_data structures. This may be called only from the CPU to * whom the rdp belongs. */ static void __rcu_process_callbacks(struct rcu_state *rsp) { unsigned long flags; struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); WARN_ON_ONCE(rdp->beenonline == 0); /* * Advance callbacks in response to end of earlier grace * period that some other CPU ended. */ rcu_process_gp_end(rsp, rdp); /* Update RCU state based on any recent quiescent states. */ rcu_check_quiescent_state(rsp, rdp); /* Does this CPU require a not-yet-started grace period? */ if (cpu_needs_another_gp(rsp, rdp)) { raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); rcu_start_gp(rsp, flags); /* releases above lock */ } /* If there are callbacks ready, invoke them. */ if (cpu_has_callbacks_ready_to_invoke(rdp)) invoke_rcu_callbacks(rsp, rdp); } /* * Do RCU core processing for the current CPU. */ static void rcu_process_callbacks(struct softirq_action *unused) { struct rcu_state *rsp; if (cpu_is_offline(smp_processor_id())) return; trace_rcu_utilization("Start RCU core"); for_each_rcu_flavor(rsp) __rcu_process_callbacks(rsp); trace_rcu_utilization("End RCU core"); } /* * Schedule RCU callback invocation. If the specified type of RCU * does not support RCU priority boosting, just do a direct call, * otherwise wake up the per-CPU kernel kthread. Note that because we * are running on the current CPU with interrupts disabled, the * rcu_cpu_kthread_task cannot disappear out from under us. */ static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) { if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) return; if (likely(!rsp->boost)) { rcu_do_batch(rsp, rdp); return; } invoke_rcu_callbacks_kthread(); } static void invoke_rcu_core(void) { raise_softirq(RCU_SOFTIRQ); } /* * Handle any core-RCU processing required by a call_rcu() invocation. */ static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, struct rcu_head *head, unsigned long flags) { /* * If called from an extended quiescent state, invoke the RCU * core in order to force a re-evaluation of RCU's idleness. */ if (rcu_is_cpu_idle() && cpu_online(smp_processor_id())) invoke_rcu_core(); /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) return; /* * Force the grace period if too many callbacks or too long waiting. * Enforce hysteresis, and don't invoke force_quiescent_state() * if some other CPU has recently done so. Also, don't bother * invoking force_quiescent_state() if the newly enqueued callback * is the only one waiting for a grace period to complete. */ if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { /* Are we ignoring a completed grace period? */ rcu_process_gp_end(rsp, rdp); check_for_new_grace_period(rsp, rdp); /* Start a new grace period if one not already started. */ if (!rcu_gp_in_progress(rsp)) { unsigned long nestflag; struct rcu_node *rnp_root = rcu_get_root(rsp); raw_spin_lock_irqsave(&rnp_root->lock, nestflag); rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */ } else { /* Give the grace period a kick. */ rdp->blimit = LONG_MAX; if (rsp->n_force_qs == rdp->n_force_qs_snap && *rdp->nxttail[RCU_DONE_TAIL] != head) force_quiescent_state(rsp); rdp->n_force_qs_snap = rsp->n_force_qs; rdp->qlen_last_fqs_check = rdp->qlen; } } } static void __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), struct rcu_state *rsp, bool lazy) { unsigned long flags; struct rcu_data *rdp; WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */ debug_rcu_head_queue(head); head->func = func; head->next = NULL; /* * Opportunistically note grace-period endings and beginnings. * Note that we might see a beginning right after we see an * end, but never vice versa, since this CPU has to pass through * a quiescent state betweentimes. */ local_irq_save(flags); rdp = this_cpu_ptr(rsp->rda); /* Add the callback to our list. */ if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL)) { /* _call_rcu() is illegal on offline CPU; leak the callback. */ WARN_ON_ONCE(1); local_irq_restore(flags); return; } ACCESS_ONCE(rdp->qlen)++; if (lazy) rdp->qlen_lazy++; else rcu_idle_count_callbacks_posted(); smp_mb(); /* Count before adding callback for rcu_barrier(). */ *rdp->nxttail[RCU_NEXT_TAIL] = head; rdp->nxttail[RCU_NEXT_TAIL] = &head->next; if (__is_kfree_rcu_offset((unsigned long)func)) trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, rdp->qlen_lazy, rdp->qlen); else trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); /* Go handle any RCU core processing required. */ __call_rcu_core(rsp, rdp, head, flags); local_irq_restore(flags); } /* * Queue an RCU-sched callback for invocation after a grace period. */ void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) { __call_rcu(head, func, &rcu_sched_state, 0); } EXPORT_SYMBOL_GPL(call_rcu_sched); /* * Queue an RCU callback for invocation after a quicker grace period. */ void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) { __call_rcu(head, func, &rcu_bh_state, 0); } EXPORT_SYMBOL_GPL(call_rcu_bh); /* * Because a context switch is a grace period for RCU-sched and RCU-bh, * any blocking grace-period wait automatically implies a grace period * if there is only one CPU online at any point time during execution * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to * occasionally incorrectly indicate that there are multiple CPUs online * when there was in fact only one the whole time, as this just adds * some overhead: RCU still operates correctly. */ static inline int rcu_blocking_is_gp(void) { int ret; might_sleep(); /* Check for RCU read-side critical section. */ preempt_disable(); ret = num_online_cpus() <= 1; preempt_enable(); return ret; } /** * synchronize_sched - wait until an rcu-sched grace period has elapsed. * * Control will return to the caller some time after a full rcu-sched * grace period has elapsed, in other words after all currently executing * rcu-sched read-side critical sections have completed. These read-side * critical sections are delimited by rcu_read_lock_sched() and * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), * local_irq_disable(), and so on may be used in place of * rcu_read_lock_sched(). * * This means that all preempt_disable code sequences, including NMI and * hardware-interrupt handlers, in progress on entry will have completed * before this primitive returns. However, this does not guarantee that * softirq handlers will have completed, since in some kernels, these * handlers can run in process context, and can block. * * This primitive provides the guarantees made by the (now removed) * synchronize_kernel() API. In contrast, synchronize_rcu() only * guarantees that rcu_read_lock() sections will have completed. * In "classic RCU", these two guarantees happen to be one and * the same, but can differ in realtime RCU implementations. */ void synchronize_sched(void) { rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && !lock_is_held(&rcu_lock_map) && !lock_is_held(&rcu_sched_lock_map), "Illegal synchronize_sched() in RCU-sched read-side critical section"); if (rcu_blocking_is_gp()) return; wait_rcu_gp(call_rcu_sched); } EXPORT_SYMBOL_GPL(synchronize_sched); /** * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. * * Control will return to the caller some time after a full rcu_bh grace * period has elapsed, in other words after all currently executing rcu_bh * read-side critical sections have completed. RCU read-side critical * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), * and may be nested. */ void synchronize_rcu_bh(void) { rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && !lock_is_held(&rcu_lock_map) && !lock_is_held(&rcu_sched_lock_map), "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); if (rcu_blocking_is_gp()) return; wait_rcu_gp(call_rcu_bh); } EXPORT_SYMBOL_GPL(synchronize_rcu_bh); static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0); static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0); static int synchronize_sched_expedited_cpu_stop(void *data) { /* * There must be a full memory barrier on each affected CPU * between the time that try_stop_cpus() is called and the * time that it returns. * * In the current initial implementation of cpu_stop, the * above condition is already met when the control reaches * this point and the following smp_mb() is not strictly * necessary. Do smp_mb() anyway for documentation and * robustness against future implementation changes. */ smp_mb(); /* See above comment block. */ return 0; } /** * synchronize_sched_expedited - Brute-force RCU-sched grace period * * Wait for an RCU-sched grace period to elapse, but use a "big hammer" * approach to force the grace period to end quickly. This consumes * significant time on all CPUs and is unfriendly to real-time workloads, * so is thus not recommended for any sort of common-case code. In fact, * if you are using synchronize_sched_expedited() in a loop, please * restructure your code to batch your updates, and then use a single * synchronize_sched() instead. * * Note that it is illegal to call this function while holding any lock * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal * to call this function from a CPU-hotplug notifier. Failing to observe * these restriction will result in deadlock. * * This implementation can be thought of as an application of ticket * locking to RCU, with sync_sched_expedited_started and * sync_sched_expedited_done taking on the roles of the halves * of the ticket-lock word. Each task atomically increments * sync_sched_expedited_started upon entry, snapshotting the old value, * then attempts to stop all the CPUs. If this succeeds, then each * CPU will have executed a context switch, resulting in an RCU-sched * grace period. We are then done, so we use atomic_cmpxchg() to * update sync_sched_expedited_done to match our snapshot -- but * only if someone else has not already advanced past our snapshot. * * On the other hand, if try_stop_cpus() fails, we check the value * of sync_sched_expedited_done. If it has advanced past our * initial snapshot, then someone else must have forced a grace period * some time after we took our snapshot. In this case, our work is * done for us, and we can simply return. Otherwise, we try again, * but keep our initial snapshot for purposes of checking for someone * doing our work for us. * * If we fail too many times in a row, we fall back to synchronize_sched(). */ void synchronize_sched_expedited(void) { int firstsnap, s, snap, trycount = 0; /* Note that atomic_inc_return() implies full memory barrier. */ firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started); get_online_cpus(); WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); /* * Each pass through the following loop attempts to force a * context switch on each CPU. */ while (try_stop_cpus(cpu_online_mask, synchronize_sched_expedited_cpu_stop, NULL) == -EAGAIN) { put_online_cpus(); /* No joy, try again later. Or just synchronize_sched(). */ if (trycount++ < 10) { udelay(trycount * num_online_cpus()); } else { synchronize_sched(); return; } /* Check to see if someone else did our work for us. */ s = atomic_read(&sync_sched_expedited_done); if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) { smp_mb(); /* ensure test happens before caller kfree */ return; } /* * Refetching sync_sched_expedited_started allows later * callers to piggyback on our grace period. We subtract * 1 to get the same token that the last incrementer got. * We retry after they started, so our grace period works * for them, and they started after our first try, so their * grace period works for us. */ get_online_cpus(); snap = atomic_read(&sync_sched_expedited_started); smp_mb(); /* ensure read is before try_stop_cpus(). */ } /* * Everyone up to our most recent fetch is covered by our grace * period. Update the counter, but only if our work is still * relevant -- which it won't be if someone who started later * than we did beat us to the punch. */ do { s = atomic_read(&sync_sched_expedited_done); if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) { smp_mb(); /* ensure test happens before caller kfree */ break; } } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s); put_online_cpus(); } EXPORT_SYMBOL_GPL(synchronize_sched_expedited); /* * Check to see if there is any immediate RCU-related work to be done * by the current CPU, for the specified type of RCU, returning 1 if so. * The checks are in order of increasing expense: checks that can be * carried out against CPU-local state are performed first. However, * we must check for CPU stalls first, else we might not get a chance. */ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) { struct rcu_node *rnp = rdp->mynode; rdp->n_rcu_pending++; /* Check for CPU stalls, if enabled. */ check_cpu_stall(rsp, rdp); /* Is the RCU core waiting for a quiescent state from this CPU? */ if (rcu_scheduler_fully_active && rdp->qs_pending && !rdp->passed_quiesce) { rdp->n_rp_qs_pending++; } else if (rdp->qs_pending && rdp->passed_quiesce) { rdp->n_rp_report_qs++; return 1; } /* Does this CPU have callbacks ready to invoke? */ if (cpu_has_callbacks_ready_to_invoke(rdp)) { rdp->n_rp_cb_ready++; return 1; } /* Has RCU gone idle with this CPU needing another grace period? */ if (cpu_needs_another_gp(rsp, rdp)) { rdp->n_rp_cpu_needs_gp++; return 1; } /* Has another RCU grace period completed? */ if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ rdp->n_rp_gp_completed++; return 1; } /* Has a new RCU grace period started? */ if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ rdp->n_rp_gp_started++; return 1; } /* nothing to do */ rdp->n_rp_need_nothing++; return 0; } /* * Check to see if there is any immediate RCU-related work to be done * by the current CPU, returning 1 if so. This function is part of the * RCU implementation; it is -not- an exported member of the RCU API. */ static int rcu_pending(int cpu) { struct rcu_state *rsp; for_each_rcu_flavor(rsp) if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu))) return 1; return 0; } /* * Check to see if any future RCU-related work will need to be done * by the current CPU, even if none need be done immediately, returning * 1 if so. */ static int rcu_cpu_has_callbacks(int cpu) { struct rcu_state *rsp; /* RCU callbacks either ready or pending? */ for_each_rcu_flavor(rsp) if (per_cpu_ptr(rsp->rda, cpu)->nxtlist) return 1; return 0; } /* * Helper function for _rcu_barrier() tracing. If tracing is disabled, * the compiler is expected to optimize this away. */ static void _rcu_barrier_trace(struct rcu_state *rsp, char *s, int cpu, unsigned long done) { trace_rcu_barrier(rsp->name, s, cpu, atomic_read(&rsp->barrier_cpu_count), done); } /* * RCU callback function for _rcu_barrier(). If we are last, wake * up the task executing _rcu_barrier(). */ static void rcu_barrier_callback(struct rcu_head *rhp) { struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); struct rcu_state *rsp = rdp->rsp; if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); complete(&rsp->barrier_completion); } else { _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); } } /* * Called with preemption disabled, and from cross-cpu IRQ context. */ static void rcu_barrier_func(void *type) { struct rcu_state *rsp = type; struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); atomic_inc(&rsp->barrier_cpu_count); rsp->call(&rdp->barrier_head, rcu_barrier_callback); } /* * Orchestrate the specified type of RCU barrier, waiting for all * RCU callbacks of the specified type to complete. */ static void _rcu_barrier(struct rcu_state *rsp) { int cpu; struct rcu_data *rdp; unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); unsigned long snap_done; _rcu_barrier_trace(rsp, "Begin", -1, snap); /* Take mutex to serialize concurrent rcu_barrier() requests. */ mutex_lock(&rsp->barrier_mutex); /* * Ensure that all prior references, including to ->n_barrier_done, * are ordered before the _rcu_barrier() machinery. */ smp_mb(); /* See above block comment. */ /* * Recheck ->n_barrier_done to see if others did our work for us. * This means checking ->n_barrier_done for an even-to-odd-to-even * transition. The "if" expression below therefore rounds the old * value up to the next even number and adds two before comparing. */ snap_done = ACCESS_ONCE(rsp->n_barrier_done); _rcu_barrier_trace(rsp, "Check", -1, snap_done); if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) { _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); smp_mb(); /* caller's subsequent code after above check. */ mutex_unlock(&rsp->barrier_mutex); return; } /* * Increment ->n_barrier_done to avoid duplicate work. Use * ACCESS_ONCE() to prevent the compiler from speculating * the increment to precede the early-exit check. */ ACCESS_ONCE(rsp->n_barrier_done)++; WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ /* * Initialize the count to one rather than to zero in order to * avoid a too-soon return to zero in case of a short grace period * (or preemption of this task). Exclude CPU-hotplug operations * to ensure that no offline CPU has callbacks queued. */ init_completion(&rsp->barrier_completion); atomic_set(&rsp->barrier_cpu_count, 1); get_online_cpus(); /* * Force each CPU with callbacks to register a new callback. * When that callback is invoked, we will know that all of the * corresponding CPU's preceding callbacks have been invoked. */ for_each_online_cpu(cpu) { rdp = per_cpu_ptr(rsp->rda, cpu); if (ACCESS_ONCE(rdp->qlen)) { _rcu_barrier_trace(rsp, "OnlineQ", cpu, rsp->n_barrier_done); smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); } else { _rcu_barrier_trace(rsp, "OnlineNQ", cpu, rsp->n_barrier_done); } } put_online_cpus(); /* * Now that we have an rcu_barrier_callback() callback on each * CPU, and thus each counted, remove the initial count. */ if (atomic_dec_and_test(&rsp->barrier_cpu_count)) complete(&rsp->barrier_completion); /* Increment ->n_barrier_done to prevent duplicate work. */ smp_mb(); /* Keep increment after above mechanism. */ ACCESS_ONCE(rsp->n_barrier_done)++; WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); smp_mb(); /* Keep increment before caller's subsequent code. */ /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ wait_for_completion(&rsp->barrier_completion); /* Other rcu_barrier() invocations can now safely proceed. */ mutex_unlock(&rsp->barrier_mutex); } /** * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. */ void rcu_barrier_bh(void) { _rcu_barrier(&rcu_bh_state); } EXPORT_SYMBOL_GPL(rcu_barrier_bh); /** * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. */ void rcu_barrier_sched(void) { _rcu_barrier(&rcu_sched_state); } EXPORT_SYMBOL_GPL(rcu_barrier_sched); /* * Do boot-time initialization of a CPU's per-CPU RCU data. */ static void __init rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) { unsigned long flags; struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); struct rcu_node *rnp = rcu_get_root(rsp); /* Set up local state, ensuring consistent view of global state. */ raw_spin_lock_irqsave(&rnp->lock, flags); rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); init_callback_list(rdp); rdp->qlen_lazy = 0; ACCESS_ONCE(rdp->qlen) = 0; rdp->dynticks = &per_cpu(rcu_dynticks, cpu); WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); #ifdef CONFIG_RCU_USER_QS WARN_ON_ONCE(rdp->dynticks->in_user); #endif rdp->cpu = cpu; rdp->rsp = rsp; raw_spin_unlock_irqrestore(&rnp->lock, flags); } /* * Initialize a CPU's per-CPU RCU data. Note that only one online or * offline event can be happening at a given time. Note also that we * can accept some slop in the rsp->completed access due to the fact * that this CPU cannot possibly have any RCU callbacks in flight yet. */ static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible) { unsigned long flags; unsigned long mask; struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); struct rcu_node *rnp = rcu_get_root(rsp); /* Exclude new grace periods. */ mutex_lock(&rsp->onoff_mutex); /* Set up local state, ensuring consistent view of global state. */ raw_spin_lock_irqsave(&rnp->lock, flags); rdp->beenonline = 1; /* We have now been online. */ rdp->preemptible = preemptible; rdp->qlen_last_fqs_check = 0; rdp->n_force_qs_snap = rsp->n_force_qs; rdp->blimit = blimit; init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; atomic_set(&rdp->dynticks->dynticks, (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); rcu_prepare_for_idle_init(cpu); raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ /* Add CPU to rcu_node bitmasks. */ rnp = rdp->mynode; mask = rdp->grpmask; do { /* Exclude any attempts to start a new GP on small systems. */ raw_spin_lock(&rnp->lock); /* irqs already disabled. */ rnp->qsmaskinit |= mask; mask = rnp->grpmask; if (rnp == rdp->mynode) { /* * If there is a grace period in progress, we will * set up to wait for it next time we run the * RCU core code. */ rdp->gpnum = rnp->completed; rdp->completed = rnp->completed; rdp->passed_quiesce = 0; rdp->qs_pending = 0; trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl"); } raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ rnp = rnp->parent; } while (rnp != NULL && !(rnp->qsmaskinit & mask)); local_irq_restore(flags); mutex_unlock(&rsp->onoff_mutex); } static void __cpuinit rcu_prepare_cpu(int cpu) { struct rcu_state *rsp; for_each_rcu_flavor(rsp) rcu_init_percpu_data(cpu, rsp, strcmp(rsp->name, "rcu_preempt") == 0); } /* * Handle CPU online/offline notification events. */ static int __cpuinit rcu_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { long cpu = (long)hcpu; struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); struct rcu_node *rnp = rdp->mynode; struct rcu_state *rsp; trace_rcu_utilization("Start CPU hotplug"); switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: rcu_prepare_cpu(cpu); rcu_prepare_kthreads(cpu); break; case CPU_ONLINE: case CPU_DOWN_FAILED: rcu_boost_kthread_setaffinity(rnp, -1); break; case CPU_DOWN_PREPARE: rcu_boost_kthread_setaffinity(rnp, cpu); break; case CPU_DYING: case CPU_DYING_FROZEN: /* * The whole machine is "stopped" except this CPU, so we can * touch any data without introducing corruption. We send the * dying CPU's callbacks to an arbitrarily chosen online CPU. */ for_each_rcu_flavor(rsp) rcu_cleanup_dying_cpu(rsp); rcu_cleanup_after_idle(cpu); break; case CPU_DEAD: case CPU_DEAD_FROZEN: case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: for_each_rcu_flavor(rsp) rcu_cleanup_dead_cpu(cpu, rsp); break; default: break; } trace_rcu_utilization("End CPU hotplug"); return NOTIFY_OK; } /* * Spawn the kthread that handles this RCU flavor's grace periods. */ static int __init rcu_spawn_gp_kthread(void) { unsigned long flags; struct rcu_node *rnp; struct rcu_state *rsp; struct task_struct *t; for_each_rcu_flavor(rsp) { t = kthread_run(rcu_gp_kthread, rsp, rsp->name); BUG_ON(IS_ERR(t)); rnp = rcu_get_root(rsp); raw_spin_lock_irqsave(&rnp->lock, flags); rsp->gp_kthread = t; raw_spin_unlock_irqrestore(&rnp->lock, flags); } return 0; } early_initcall(rcu_spawn_gp_kthread); /* * This function is invoked towards the end of the scheduler's initialization * process. Before this is called, the idle task might contain * RCU read-side critical sections (during which time, this idle * task is booting the system). After this function is called, the * idle tasks are prohibited from containing RCU read-side critical * sections. This function also enables RCU lockdep checking. */ void rcu_scheduler_starting(void) { WARN_ON(num_online_cpus() != 1); WARN_ON(nr_context_switches() > 0); rcu_scheduler_active = 1; } /* * Compute the per-level fanout, either using the exact fanout specified * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. */ #ifdef CONFIG_RCU_FANOUT_EXACT static void __init rcu_init_levelspread(struct rcu_state *rsp) { int i; for (i = rcu_num_lvls - 1; i > 0; i--) rsp->levelspread[i] = CONFIG_RCU_FANOUT; rsp->levelspread[0] = rcu_fanout_leaf; } #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ static void __init rcu_init_levelspread(struct rcu_state *rsp) { int ccur; int cprv; int i; cprv = nr_cpu_ids; for (i = rcu_num_lvls - 1; i >= 0; i--) { ccur = rsp->levelcnt[i]; rsp->levelspread[i] = (cprv + ccur - 1) / ccur; cprv = ccur; } } #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ /* * Helper function for rcu_init() that initializes one rcu_state structure. */ static void __init rcu_init_one(struct rcu_state *rsp, struct rcu_data __percpu *rda) { static char *buf[] = { "rcu_node_0", "rcu_node_1", "rcu_node_2", "rcu_node_3" }; /* Match MAX_RCU_LVLS */ static char *fqs[] = { "rcu_node_fqs_0", "rcu_node_fqs_1", "rcu_node_fqs_2", "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */ int cpustride = 1; int i; int j; struct rcu_node *rnp; BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ /* Initialize the level-tracking arrays. */ for (i = 0; i < rcu_num_lvls; i++) rsp->levelcnt[i] = num_rcu_lvl[i]; for (i = 1; i < rcu_num_lvls; i++) rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; rcu_init_levelspread(rsp); /* Initialize the elements themselves, starting from the leaves. */ for (i = rcu_num_lvls - 1; i >= 0; i--) { cpustride *= rsp->levelspread[i]; rnp = rsp->level[i]; for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { raw_spin_lock_init(&rnp->lock); lockdep_set_class_and_name(&rnp->lock, &rcu_node_class[i], buf[i]); raw_spin_lock_init(&rnp->fqslock); lockdep_set_class_and_name(&rnp->fqslock, &rcu_fqs_class[i], fqs[i]); rnp->gpnum = rsp->gpnum; rnp->completed = rsp->completed; rnp->qsmask = 0; rnp->qsmaskinit = 0; rnp->grplo = j * cpustride; rnp->grphi = (j + 1) * cpustride - 1; if (rnp->grphi >= NR_CPUS) rnp->grphi = NR_CPUS - 1; if (i == 0) { rnp->grpnum = 0; rnp->grpmask = 0; rnp->parent = NULL; } else { rnp->grpnum = j % rsp->levelspread[i - 1]; rnp->grpmask = 1UL << rnp->grpnum; rnp->parent = rsp->level[i - 1] + j / rsp->levelspread[i - 1]; } rnp->level = i; INIT_LIST_HEAD(&rnp->blkd_tasks); } } rsp->rda = rda; init_waitqueue_head(&rsp->gp_wq); rnp = rsp->level[rcu_num_lvls - 1]; for_each_possible_cpu(i) { while (i > rnp->grphi) rnp++; per_cpu_ptr(rsp->rda, i)->mynode = rnp; rcu_boot_init_percpu_data(i, rsp); } list_add(&rsp->flavors, &rcu_struct_flavors); } /* * Compute the rcu_node tree geometry from kernel parameters. This cannot * replace the definitions in rcutree.h because those are needed to size * the ->node array in the rcu_state structure. */ static void __init rcu_init_geometry(void) { int i; int j; int n = nr_cpu_ids; int rcu_capacity[MAX_RCU_LVLS + 1]; /* If the compile-time values are accurate, just leave. */ if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && nr_cpu_ids == NR_CPUS) return; /* * Compute number of nodes that can be handled an rcu_node tree * with the given number of levels. Setting rcu_capacity[0] makes * some of the arithmetic easier. */ rcu_capacity[0] = 1; rcu_capacity[1] = rcu_fanout_leaf; for (i = 2; i <= MAX_RCU_LVLS; i++) rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; /* * The boot-time rcu_fanout_leaf parameter is only permitted * to increase the leaf-level fanout, not decrease it. Of course, * the leaf-level fanout cannot exceed the number of bits in * the rcu_node masks. Finally, the tree must be able to accommodate * the configured number of CPUs. Complain and fall back to the * compile-time values if these limits are exceeded. */ if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || rcu_fanout_leaf > sizeof(unsigned long) * 8 || n > rcu_capacity[MAX_RCU_LVLS]) { WARN_ON(1); return; } /* Calculate the number of rcu_nodes at each level of the tree. */ for (i = 1; i <= MAX_RCU_LVLS; i++) if (n <= rcu_capacity[i]) { for (j = 0; j <= i; j++) num_rcu_lvl[j] = DIV_ROUND_UP(n, rcu_capacity[i - j]); rcu_num_lvls = i; for (j = i + 1; j <= MAX_RCU_LVLS; j++) num_rcu_lvl[j] = 0; break; } /* Calculate the total number of rcu_node structures. */ rcu_num_nodes = 0; for (i = 0; i <= MAX_RCU_LVLS; i++) rcu_num_nodes += num_rcu_lvl[i]; rcu_num_nodes -= n; } void __init rcu_init(void) { int cpu; rcu_bootup_announce(); rcu_init_geometry(); rcu_init_one(&rcu_sched_state, &rcu_sched_data); rcu_init_one(&rcu_bh_state, &rcu_bh_data); __rcu_init_preempt(); open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); /* * We don't need protection against CPU-hotplug here because * this is called early in boot, before either interrupts * or the scheduler are operational. */ cpu_notifier(rcu_cpu_notify, 0); for_each_online_cpu(cpu) rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); check_cpu_stall_init(); } #include "rcutree_plugin.h" |