Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 | /* * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system * * Copyright: 2011 Raumfeld GmbH * Author: Johannes Stezenbach <js@sig21.net> * * based on code from: * Wolfson Microelectronics PLC. * Mark Brown <broonie@opensource.wolfsonmicro.com> * Freescale Semiconductor, Inc. * Timur Tabi <timur@freescale.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/i2c.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <sound/initval.h> #include <sound/tlv.h> #include <sound/sta32x.h> #include "sta32x.h" #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \ SNDRV_PCM_RATE_44100 | \ SNDRV_PCM_RATE_48000 | \ SNDRV_PCM_RATE_88200 | \ SNDRV_PCM_RATE_96000 | \ SNDRV_PCM_RATE_176400 | \ SNDRV_PCM_RATE_192000) #define STA32X_FORMATS \ (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \ SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \ SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \ SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \ SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \ SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE) /* Power-up register defaults */ static const u8 sta32x_regs[STA32X_REGISTER_COUNT] = { 0x63, 0x80, 0xc2, 0x40, 0xc2, 0x5c, 0x10, 0xff, 0x60, 0x60, 0x60, 0x80, 0x00, 0x00, 0x00, 0x40, 0x80, 0x77, 0x6a, 0x69, 0x6a, 0x69, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2d, 0xc0, 0xf3, 0x33, 0x00, 0x0c, }; /* regulator power supply names */ static const char *sta32x_supply_names[] = { "Vdda", /* analog supply, 3.3VV */ "Vdd3", /* digital supply, 3.3V */ "Vcc" /* power amp spply, 10V - 36V */ }; /* codec private data */ struct sta32x_priv { struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)]; struct snd_soc_codec *codec; struct sta32x_platform_data *pdata; unsigned int mclk; unsigned int format; u32 coef_shadow[STA32X_COEF_COUNT]; struct delayed_work watchdog_work; int shutdown; }; static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1); static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1); static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0); static const char *sta32x_drc_ac[] = { "Anti-Clipping", "Dynamic Range Compression" }; static const char *sta32x_auto_eq_mode[] = { "User", "Preset", "Loudness" }; static const char *sta32x_auto_gc_mode[] = { "User", "AC no clipping", "AC limited clipping (10%)", "DRC nighttime listening mode" }; static const char *sta32x_auto_xo_mode[] = { "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" }; static const char *sta32x_preset_eq_mode[] = { "Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft", "Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1", "Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2", "Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7", "Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12", "Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" }; static const char *sta32x_limiter_select[] = { "Limiter Disabled", "Limiter #1", "Limiter #2" }; static const char *sta32x_limiter_attack_rate[] = { "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024", "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752", "0.0645", "0.0564", "0.0501", "0.0451" }; static const char *sta32x_limiter_release_rate[] = { "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299", "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137", "0.0134", "0.0117", "0.0110", "0.0104" }; static const unsigned int sta32x_limiter_ac_attack_tlv[] = { TLV_DB_RANGE_HEAD(2), 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0), 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0), }; static const unsigned int sta32x_limiter_ac_release_tlv[] = { TLV_DB_RANGE_HEAD(5), 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0), 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0), 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0), 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0), }; static const unsigned int sta32x_limiter_drc_attack_tlv[] = { TLV_DB_RANGE_HEAD(3), 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0), 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0), 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0), }; static const unsigned int sta32x_limiter_drc_release_tlv[] = { TLV_DB_RANGE_HEAD(5), 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0), 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0), 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0), 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0), }; static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum, STA32X_CONFD, STA32X_CONFD_DRC_SHIFT, sta32x_drc_ac); static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum, STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT, sta32x_auto_eq_mode); static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum, STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT, sta32x_auto_gc_mode); static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum, STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT, sta32x_auto_xo_mode); static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum, STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT, sta32x_preset_eq_mode); static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum, STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT, sta32x_limiter_select); static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum, STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT, sta32x_limiter_select); static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum, STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT, sta32x_limiter_select); static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum, STA32X_L1AR, STA32X_LxA_SHIFT, sta32x_limiter_attack_rate); static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum, STA32X_L2AR, STA32X_LxA_SHIFT, sta32x_limiter_attack_rate); static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum, STA32X_L1AR, STA32X_LxR_SHIFT, sta32x_limiter_release_rate); static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum, STA32X_L2AR, STA32X_LxR_SHIFT, sta32x_limiter_release_rate); /* byte array controls for setting biquad, mixer, scaling coefficients; * for biquads all five coefficients need to be set in one go, * mixer and pre/postscale coefs can be set individually; * each coef is 24bit, the bytes are ordered in the same way * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0) */ static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int numcoef = kcontrol->private_value >> 16; uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = 3 * numcoef; return 0; } static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int numcoef = kcontrol->private_value >> 16; int index = kcontrol->private_value & 0xffff; unsigned int cfud; int i; /* preserve reserved bits in STA32X_CFUD */ cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0; /* chip documentation does not say if the bits are self clearing, * so do it explicitly */ snd_soc_write(codec, STA32X_CFUD, cfud); snd_soc_write(codec, STA32X_CFADDR2, index); if (numcoef == 1) snd_soc_write(codec, STA32X_CFUD, cfud | 0x04); else if (numcoef == 5) snd_soc_write(codec, STA32X_CFUD, cfud | 0x08); else return -EINVAL; for (i = 0; i < 3 * numcoef; i++) ucontrol->value.bytes.data[i] = snd_soc_read(codec, STA32X_B1CF1 + i); return 0; } static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec); int numcoef = kcontrol->private_value >> 16; int index = kcontrol->private_value & 0xffff; unsigned int cfud; int i; /* preserve reserved bits in STA32X_CFUD */ cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0; /* chip documentation does not say if the bits are self clearing, * so do it explicitly */ snd_soc_write(codec, STA32X_CFUD, cfud); snd_soc_write(codec, STA32X_CFADDR2, index); for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++) sta32x->coef_shadow[index + i] = (ucontrol->value.bytes.data[3 * i] << 16) | (ucontrol->value.bytes.data[3 * i + 1] << 8) | (ucontrol->value.bytes.data[3 * i + 2]); for (i = 0; i < 3 * numcoef; i++) snd_soc_write(codec, STA32X_B1CF1 + i, ucontrol->value.bytes.data[i]); if (numcoef == 1) snd_soc_write(codec, STA32X_CFUD, cfud | 0x01); else if (numcoef == 5) snd_soc_write(codec, STA32X_CFUD, cfud | 0x02); else return -EINVAL; return 0; } static int sta32x_sync_coef_shadow(struct snd_soc_codec *codec) { struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec); unsigned int cfud; int i; /* preserve reserved bits in STA32X_CFUD */ cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0; for (i = 0; i < STA32X_COEF_COUNT; i++) { snd_soc_write(codec, STA32X_CFADDR2, i); snd_soc_write(codec, STA32X_B1CF1, (sta32x->coef_shadow[i] >> 16) & 0xff); snd_soc_write(codec, STA32X_B1CF2, (sta32x->coef_shadow[i] >> 8) & 0xff); snd_soc_write(codec, STA32X_B1CF3, (sta32x->coef_shadow[i]) & 0xff); /* chip documentation does not say if the bits are * self-clearing, so do it explicitly */ snd_soc_write(codec, STA32X_CFUD, cfud); snd_soc_write(codec, STA32X_CFUD, cfud | 0x01); } return 0; } static int sta32x_cache_sync(struct snd_soc_codec *codec) { unsigned int mute; int rc; if (!codec->cache_sync) return 0; /* mute during register sync */ mute = snd_soc_read(codec, STA32X_MMUTE); snd_soc_write(codec, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE); sta32x_sync_coef_shadow(codec); rc = snd_soc_cache_sync(codec); snd_soc_write(codec, STA32X_MMUTE, mute); return rc; } /* work around ESD issue where sta32x resets and loses all configuration */ static void sta32x_watchdog(struct work_struct *work) { struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv, watchdog_work.work); struct snd_soc_codec *codec = sta32x->codec; unsigned int confa, confa_cached; /* check if sta32x has reset itself */ confa_cached = snd_soc_read(codec, STA32X_CONFA); codec->cache_bypass = 1; confa = snd_soc_read(codec, STA32X_CONFA); codec->cache_bypass = 0; if (confa != confa_cached) { codec->cache_sync = 1; sta32x_cache_sync(codec); } if (!sta32x->shutdown) schedule_delayed_work(&sta32x->watchdog_work, round_jiffies_relative(HZ)); } static void sta32x_watchdog_start(struct sta32x_priv *sta32x) { if (sta32x->pdata->needs_esd_watchdog) { sta32x->shutdown = 0; schedule_delayed_work(&sta32x->watchdog_work, round_jiffies_relative(HZ)); } } static void sta32x_watchdog_stop(struct sta32x_priv *sta32x) { if (sta32x->pdata->needs_esd_watchdog) { sta32x->shutdown = 1; cancel_delayed_work_sync(&sta32x->watchdog_work); } } #define SINGLE_COEF(xname, index) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = sta32x_coefficient_info, \ .get = sta32x_coefficient_get,\ .put = sta32x_coefficient_put, \ .private_value = index | (1 << 16) } #define BIQUAD_COEFS(xname, index) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = sta32x_coefficient_info, \ .get = sta32x_coefficient_get,\ .put = sta32x_coefficient_put, \ .private_value = index | (5 << 16) } static const struct snd_kcontrol_new sta32x_snd_controls[] = { SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv), SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1), SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1), SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1), SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1), SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv), SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv), SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv), SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0), SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum), SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0), SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0), SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0), SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0), SOC_ENUM("Automode EQ", sta32x_auto_eq_enum), SOC_ENUM("Automode GC", sta32x_auto_gc_enum), SOC_ENUM("Automode XO", sta32x_auto_xo_enum), SOC_ENUM("Preset EQ", sta32x_preset_eq_enum), SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0), SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0), SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0), SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0), SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0), SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0), SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0), SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum), SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum), SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum), SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv), SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv), SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum), SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum), SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum), SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum), /* depending on mode, the attack/release thresholds have * two different enum definitions; provide both */ SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT, 16, 0, sta32x_limiter_ac_attack_tlv), SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT, 16, 0, sta32x_limiter_ac_attack_tlv), SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT, 16, 0, sta32x_limiter_ac_release_tlv), SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT, 16, 0, sta32x_limiter_ac_release_tlv), SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT, 16, 0, sta32x_limiter_drc_attack_tlv), SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT, 16, 0, sta32x_limiter_drc_attack_tlv), SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT, 16, 0, sta32x_limiter_drc_release_tlv), SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT, 16, 0, sta32x_limiter_drc_release_tlv), BIQUAD_COEFS("Ch1 - Biquad 1", 0), BIQUAD_COEFS("Ch1 - Biquad 2", 5), BIQUAD_COEFS("Ch1 - Biquad 3", 10), BIQUAD_COEFS("Ch1 - Biquad 4", 15), BIQUAD_COEFS("Ch2 - Biquad 1", 20), BIQUAD_COEFS("Ch2 - Biquad 2", 25), BIQUAD_COEFS("Ch2 - Biquad 3", 30), BIQUAD_COEFS("Ch2 - Biquad 4", 35), BIQUAD_COEFS("High-pass", 40), BIQUAD_COEFS("Low-pass", 45), SINGLE_COEF("Ch1 - Prescale", 50), SINGLE_COEF("Ch2 - Prescale", 51), SINGLE_COEF("Ch1 - Postscale", 52), SINGLE_COEF("Ch2 - Postscale", 53), SINGLE_COEF("Ch3 - Postscale", 54), SINGLE_COEF("Thermal warning - Postscale", 55), SINGLE_COEF("Ch1 - Mix 1", 56), SINGLE_COEF("Ch1 - Mix 2", 57), SINGLE_COEF("Ch2 - Mix 1", 58), SINGLE_COEF("Ch2 - Mix 2", 59), SINGLE_COEF("Ch3 - Mix 1", 60), SINGLE_COEF("Ch3 - Mix 2", 61), }; static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = { SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_OUTPUT("LEFT"), SND_SOC_DAPM_OUTPUT("RIGHT"), SND_SOC_DAPM_OUTPUT("SUB"), }; static const struct snd_soc_dapm_route sta32x_dapm_routes[] = { { "LEFT", NULL, "DAC" }, { "RIGHT", NULL, "DAC" }, { "SUB", NULL, "DAC" }, }; /* MCLK interpolation ratio per fs */ static struct { int fs; int ir; } interpolation_ratios[] = { { 32000, 0 }, { 44100, 0 }, { 48000, 0 }, { 88200, 1 }, { 96000, 1 }, { 176400, 2 }, { 192000, 2 }, }; /* MCLK to fs clock ratios */ static struct { int ratio; int mcs; } mclk_ratios[3][7] = { { { 768, 0 }, { 512, 1 }, { 384, 2 }, { 256, 3 }, { 128, 4 }, { 576, 5 }, { 0, 0 } }, { { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } }, { { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } }, }; /** * sta32x_set_dai_sysclk - configure MCLK * @codec_dai: the codec DAI * @clk_id: the clock ID (ignored) * @freq: the MCLK input frequency * @dir: the clock direction (ignored) * * The value of MCLK is used to determine which sample rates are supported * by the STA32X, based on the mclk_ratios table. * * This function must be called by the machine driver's 'startup' function, * otherwise the list of supported sample rates will not be available in * time for ALSA. * * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause * theoretically possible sample rates to be enabled. Call it again with a * proper value set one the external clock is set (most probably you would do * that from a machine's driver 'hw_param' hook. */ static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_codec *codec = codec_dai->codec; struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec); int i, j, ir, fs; unsigned int rates = 0; unsigned int rate_min = -1; unsigned int rate_max = 0; pr_debug("mclk=%u\n", freq); sta32x->mclk = freq; if (sta32x->mclk) { for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) { ir = interpolation_ratios[i].ir; fs = interpolation_ratios[i].fs; for (j = 0; mclk_ratios[ir][j].ratio; j++) { if (mclk_ratios[ir][j].ratio * fs == freq) { rates |= snd_pcm_rate_to_rate_bit(fs); if (fs < rate_min) rate_min = fs; if (fs > rate_max) rate_max = fs; break; } } } /* FIXME: soc should support a rate list */ rates &= ~SNDRV_PCM_RATE_KNOT; if (!rates) { dev_err(codec->dev, "could not find a valid sample rate\n"); return -EINVAL; } } else { /* enable all possible rates */ rates = STA32X_RATES; rate_min = 32000; rate_max = 192000; } codec_dai->driver->playback.rates = rates; codec_dai->driver->playback.rate_min = rate_min; codec_dai->driver->playback.rate_max = rate_max; return 0; } /** * sta32x_set_dai_fmt - configure the codec for the selected audio format * @codec_dai: the codec DAI * @fmt: a SND_SOC_DAIFMT_x value indicating the data format * * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the * codec accordingly. */ static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_codec *codec = codec_dai->codec; struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec); u8 confb = snd_soc_read(codec, STA32X_CONFB); pr_debug("\n"); confb &= ~(STA32X_CONFB_C1IM | STA32X_CONFB_C2IM); switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: case SND_SOC_DAIFMT_RIGHT_J: case SND_SOC_DAIFMT_LEFT_J: sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: confb |= STA32X_CONFB_C2IM; break; case SND_SOC_DAIFMT_NB_IF: confb |= STA32X_CONFB_C1IM; break; default: return -EINVAL; } snd_soc_write(codec, STA32X_CONFB, confb); return 0; } /** * sta32x_hw_params - program the STA32X with the given hardware parameters. * @substream: the audio stream * @params: the hardware parameters to set * @dai: the SOC DAI (ignored) * * This function programs the hardware with the values provided. * Specifically, the sample rate and the data format. */ static int sta32x_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_codec *codec = rtd->codec; struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec); unsigned int rate; int i, mcs = -1, ir = -1; u8 confa, confb; rate = params_rate(params); pr_debug("rate: %u\n", rate); for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) if (interpolation_ratios[i].fs == rate) { ir = interpolation_ratios[i].ir; break; } if (ir < 0) return -EINVAL; for (i = 0; mclk_ratios[ir][i].ratio; i++) if (mclk_ratios[ir][i].ratio * rate == sta32x->mclk) { mcs = mclk_ratios[ir][i].mcs; break; } if (mcs < 0) return -EINVAL; confa = snd_soc_read(codec, STA32X_CONFA); confa &= ~(STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK); confa |= (ir << STA32X_CONFA_IR_SHIFT) | (mcs << STA32X_CONFA_MCS_SHIFT); confb = snd_soc_read(codec, STA32X_CONFB); confb &= ~(STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB); switch (params_format(params)) { case SNDRV_PCM_FORMAT_S24_LE: case SNDRV_PCM_FORMAT_S24_BE: case SNDRV_PCM_FORMAT_S24_3LE: case SNDRV_PCM_FORMAT_S24_3BE: pr_debug("24bit\n"); /* fall through */ case SNDRV_PCM_FORMAT_S32_LE: case SNDRV_PCM_FORMAT_S32_BE: pr_debug("24bit or 32bit\n"); switch (sta32x->format) { case SND_SOC_DAIFMT_I2S: confb |= 0x0; break; case SND_SOC_DAIFMT_LEFT_J: confb |= 0x1; break; case SND_SOC_DAIFMT_RIGHT_J: confb |= 0x2; break; } break; case SNDRV_PCM_FORMAT_S20_3LE: case SNDRV_PCM_FORMAT_S20_3BE: pr_debug("20bit\n"); switch (sta32x->format) { case SND_SOC_DAIFMT_I2S: confb |= 0x4; break; case SND_SOC_DAIFMT_LEFT_J: confb |= 0x5; break; case SND_SOC_DAIFMT_RIGHT_J: confb |= 0x6; break; } break; case SNDRV_PCM_FORMAT_S18_3LE: case SNDRV_PCM_FORMAT_S18_3BE: pr_debug("18bit\n"); switch (sta32x->format) { case SND_SOC_DAIFMT_I2S: confb |= 0x8; break; case SND_SOC_DAIFMT_LEFT_J: confb |= 0x9; break; case SND_SOC_DAIFMT_RIGHT_J: confb |= 0xa; break; } break; case SNDRV_PCM_FORMAT_S16_LE: case SNDRV_PCM_FORMAT_S16_BE: pr_debug("16bit\n"); switch (sta32x->format) { case SND_SOC_DAIFMT_I2S: confb |= 0x0; break; case SND_SOC_DAIFMT_LEFT_J: confb |= 0xd; break; case SND_SOC_DAIFMT_RIGHT_J: confb |= 0xe; break; } break; default: return -EINVAL; } snd_soc_write(codec, STA32X_CONFA, confa); snd_soc_write(codec, STA32X_CONFB, confb); return 0; } /** * sta32x_set_bias_level - DAPM callback * @codec: the codec device * @level: DAPM power level * * This is called by ALSA to put the codec into low power mode * or to wake it up. If the codec is powered off completely * all registers must be restored after power on. */ static int sta32x_set_bias_level(struct snd_soc_codec *codec, enum snd_soc_bias_level level) { int ret; struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec); pr_debug("level = %d\n", level); switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: /* Full power on */ snd_soc_update_bits(codec, STA32X_CONFF, STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, STA32X_CONFF_PWDN | STA32X_CONFF_EAPD); break; case SND_SOC_BIAS_STANDBY: if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) { ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies); if (ret != 0) { dev_err(codec->dev, "Failed to enable supplies: %d\n", ret); return ret; } sta32x_cache_sync(codec); sta32x_watchdog_start(sta32x); } /* Power up to mute */ /* FIXME */ snd_soc_update_bits(codec, STA32X_CONFF, STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, STA32X_CONFF_PWDN | STA32X_CONFF_EAPD); break; case SND_SOC_BIAS_OFF: /* The chip runs through the power down sequence for us. */ snd_soc_update_bits(codec, STA32X_CONFF, STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, STA32X_CONFF_PWDN); msleep(300); sta32x_watchdog_stop(sta32x); regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies); break; } codec->dapm.bias_level = level; return 0; } static const struct snd_soc_dai_ops sta32x_dai_ops = { .hw_params = sta32x_hw_params, .set_sysclk = sta32x_set_dai_sysclk, .set_fmt = sta32x_set_dai_fmt, }; static struct snd_soc_dai_driver sta32x_dai = { .name = "STA32X", .playback = { .stream_name = "Playback", .channels_min = 2, .channels_max = 2, .rates = STA32X_RATES, .formats = STA32X_FORMATS, }, .ops = &sta32x_dai_ops, }; #ifdef CONFIG_PM static int sta32x_suspend(struct snd_soc_codec *codec) { sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF); return 0; } static int sta32x_resume(struct snd_soc_codec *codec) { sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY); return 0; } #else #define sta32x_suspend NULL #define sta32x_resume NULL #endif static int sta32x_probe(struct snd_soc_codec *codec) { struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec); int i, ret = 0, thermal = 0; sta32x->codec = codec; sta32x->pdata = dev_get_platdata(codec->dev); /* regulators */ for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++) sta32x->supplies[i].supply = sta32x_supply_names[i]; ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sta32x->supplies), sta32x->supplies); if (ret != 0) { dev_err(codec->dev, "Failed to request supplies: %d\n", ret); goto err; } ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies); if (ret != 0) { dev_err(codec->dev, "Failed to enable supplies: %d\n", ret); goto err_get; } /* Tell ASoC what kind of I/O to use to read the registers. ASoC will * then do the I2C transactions itself. */ ret = snd_soc_codec_set_cache_io(codec, 8, 8, SND_SOC_I2C); if (ret < 0) { dev_err(codec->dev, "failed to set cache I/O (ret=%i)\n", ret); return ret; } /* Chip documentation explicitly requires that the reset values * of reserved register bits are left untouched. * Write the register default value to cache for reserved registers, * so the write to the these registers are suppressed by the cache * restore code when it skips writes of default registers. */ snd_soc_cache_write(codec, STA32X_CONFC, 0xc2); snd_soc_cache_write(codec, STA32X_CONFE, 0xc2); snd_soc_cache_write(codec, STA32X_CONFF, 0x5c); snd_soc_cache_write(codec, STA32X_MMUTE, 0x10); snd_soc_cache_write(codec, STA32X_AUTO1, 0x60); snd_soc_cache_write(codec, STA32X_AUTO3, 0x00); snd_soc_cache_write(codec, STA32X_C3CFG, 0x40); /* set thermal warning adjustment and recovery */ if (!(sta32x->pdata->thermal_conf & STA32X_THERMAL_ADJUSTMENT_ENABLE)) thermal |= STA32X_CONFA_TWAB; if (!(sta32x->pdata->thermal_conf & STA32X_THERMAL_RECOVERY_ENABLE)) thermal |= STA32X_CONFA_TWRB; snd_soc_update_bits(codec, STA32X_CONFA, STA32X_CONFA_TWAB | STA32X_CONFA_TWRB, thermal); /* select output configuration */ snd_soc_update_bits(codec, STA32X_CONFF, STA32X_CONFF_OCFG_MASK, sta32x->pdata->output_conf << STA32X_CONFF_OCFG_SHIFT); /* channel to output mapping */ snd_soc_update_bits(codec, STA32X_C1CFG, STA32X_CxCFG_OM_MASK, sta32x->pdata->ch1_output_mapping << STA32X_CxCFG_OM_SHIFT); snd_soc_update_bits(codec, STA32X_C2CFG, STA32X_CxCFG_OM_MASK, sta32x->pdata->ch2_output_mapping << STA32X_CxCFG_OM_SHIFT); snd_soc_update_bits(codec, STA32X_C3CFG, STA32X_CxCFG_OM_MASK, sta32x->pdata->ch3_output_mapping << STA32X_CxCFG_OM_SHIFT); /* initialize coefficient shadow RAM with reset values */ for (i = 4; i <= 49; i += 5) sta32x->coef_shadow[i] = 0x400000; for (i = 50; i <= 54; i++) sta32x->coef_shadow[i] = 0x7fffff; sta32x->coef_shadow[55] = 0x5a9df7; sta32x->coef_shadow[56] = 0x7fffff; sta32x->coef_shadow[59] = 0x7fffff; sta32x->coef_shadow[60] = 0x400000; sta32x->coef_shadow[61] = 0x400000; if (sta32x->pdata->needs_esd_watchdog) INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog); sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY); /* Bias level configuration will have done an extra enable */ regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies); return 0; err_get: regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies); err: return ret; } static int sta32x_remove(struct snd_soc_codec *codec) { struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec); sta32x_watchdog_stop(sta32x); sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF); regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies); regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies); return 0; } static int sta32x_reg_is_volatile(struct snd_soc_codec *codec, unsigned int reg) { switch (reg) { case STA32X_CONFA ... STA32X_L2ATRT: case STA32X_MPCC1 ... STA32X_FDRC2: return 0; } return 1; } static const struct snd_soc_codec_driver sta32x_codec = { .probe = sta32x_probe, .remove = sta32x_remove, .suspend = sta32x_suspend, .resume = sta32x_resume, .reg_cache_size = STA32X_REGISTER_COUNT, .reg_word_size = sizeof(u8), .reg_cache_default = sta32x_regs, .volatile_register = sta32x_reg_is_volatile, .set_bias_level = sta32x_set_bias_level, .controls = sta32x_snd_controls, .num_controls = ARRAY_SIZE(sta32x_snd_controls), .dapm_widgets = sta32x_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(sta32x_dapm_widgets), .dapm_routes = sta32x_dapm_routes, .num_dapm_routes = ARRAY_SIZE(sta32x_dapm_routes), }; static __devinit int sta32x_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct sta32x_priv *sta32x; int ret; sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv), GFP_KERNEL); if (!sta32x) return -ENOMEM; i2c_set_clientdata(i2c, sta32x); ret = snd_soc_register_codec(&i2c->dev, &sta32x_codec, &sta32x_dai, 1); if (ret != 0) dev_err(&i2c->dev, "Failed to register codec (%d)\n", ret); return ret; } static __devexit int sta32x_i2c_remove(struct i2c_client *client) { snd_soc_unregister_codec(&client->dev); return 0; } static const struct i2c_device_id sta32x_i2c_id[] = { { "sta326", 0 }, { "sta328", 0 }, { "sta329", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id); static struct i2c_driver sta32x_i2c_driver = { .driver = { .name = "sta32x", .owner = THIS_MODULE, }, .probe = sta32x_i2c_probe, .remove = __devexit_p(sta32x_i2c_remove), .id_table = sta32x_i2c_id, }; static int __init sta32x_init(void) { return i2c_add_driver(&sta32x_i2c_driver); } module_init(sta32x_init); static void __exit sta32x_exit(void) { i2c_del_driver(&sta32x_i2c_driver); } module_exit(sta32x_exit); MODULE_DESCRIPTION("ASoC STA32X driver"); MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>"); MODULE_LICENSE("GPL"); |