Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | /* * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> * * Based on former do_div() implementation from asm-parisc/div64.h: * Copyright (C) 1999 Hewlett-Packard Co * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> * * * Generic C version of 64bit/32bit division and modulo, with * 64bit result and 32bit remainder. * * The fast case for (n>>32 == 0) is handled inline by do_div(). * * Code generated for this function might be very inefficient * for some CPUs. __div64_32() can be overridden by linking arch-specific * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S. */ #include <linux/export.h> #include <linux/kernel.h> #include <linux/math64.h> /* Not needed on 64bit architectures */ #if BITS_PER_LONG == 32 uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) { uint64_t rem = *n; uint64_t b = base; uint64_t res, d = 1; uint32_t high = rem >> 32; /* Reduce the thing a bit first */ res = 0; if (high >= base) { high /= base; res = (uint64_t) high << 32; rem -= (uint64_t) (high*base) << 32; } while ((int64_t)b > 0 && b < rem) { b = b+b; d = d+d; } do { if (rem >= b) { rem -= b; res += d; } b >>= 1; d >>= 1; } while (d); *n = res; return rem; } EXPORT_SYMBOL(__div64_32); #ifndef div_s64_rem s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) { u64 quotient; if (dividend < 0) { quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); *remainder = -*remainder; if (divisor > 0) quotient = -quotient; } else { quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); if (divisor < 0) quotient = -quotient; } return quotient; } EXPORT_SYMBOL(div_s64_rem); #endif /** * div64_u64 - unsigned 64bit divide with 64bit divisor * @dividend: 64bit dividend * @divisor: 64bit divisor * * This implementation is a modified version of the algorithm proposed * by the book 'Hacker's Delight'. The original source and full proof * can be found here and is available for use without restriction. * * 'http://www.hackersdelight.org/HDcode/newCode/divDouble.c' */ #ifndef div64_u64 u64 div64_u64(u64 dividend, u64 divisor) { u32 high = divisor >> 32; u64 quot; if (high == 0) { quot = div_u64(dividend, divisor); } else { int n = 1 + fls(high); quot = div_u64(dividend >> n, divisor >> n); if (quot != 0) quot--; if ((dividend - quot * divisor) >= divisor) quot++; } return quot; } EXPORT_SYMBOL(div64_u64); #endif /** * div64_s64 - signed 64bit divide with 64bit divisor * @dividend: 64bit dividend * @divisor: 64bit divisor */ #ifndef div64_s64 s64 div64_s64(s64 dividend, s64 divisor) { s64 quot, t; quot = div64_u64(abs64(dividend), abs64(divisor)); t = (dividend ^ divisor) >> 63; return (quot ^ t) - t; } EXPORT_SYMBOL(div64_s64); #endif #endif /* BITS_PER_LONG == 32 */ /* * Iterative div/mod for use when dividend is not expected to be much * bigger than divisor. */ u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) { return __iter_div_u64_rem(dividend, divisor, remainder); } EXPORT_SYMBOL(iter_div_u64_rem); |