Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 | /* * Copyright (C) 2008 Red Hat. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include <linux/pagemap.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/math64.h> #include <linux/ratelimit.h> #include "ctree.h" #include "free-space-cache.h" #include "transaction.h" #include "disk-io.h" #include "extent_io.h" #include "inode-map.h" #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8) #define MAX_CACHE_BYTES_PER_GIG (32 * 1024) static int link_free_space(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info); static struct inode *__lookup_free_space_inode(struct btrfs_root *root, struct btrfs_path *path, u64 offset) { struct btrfs_key key; struct btrfs_key location; struct btrfs_disk_key disk_key; struct btrfs_free_space_header *header; struct extent_buffer *leaf; struct inode *inode = NULL; int ret; key.objectid = BTRFS_FREE_SPACE_OBJECTID; key.offset = offset; key.type = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) return ERR_PTR(ret); if (ret > 0) { btrfs_release_path(path); return ERR_PTR(-ENOENT); } leaf = path->nodes[0]; header = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_free_space_header); btrfs_free_space_key(leaf, header, &disk_key); btrfs_disk_key_to_cpu(&location, &disk_key); btrfs_release_path(path); inode = btrfs_iget(root->fs_info->sb, &location, root, NULL); if (!inode) return ERR_PTR(-ENOENT); if (IS_ERR(inode)) return inode; if (is_bad_inode(inode)) { iput(inode); return ERR_PTR(-ENOENT); } inode->i_mapping->flags &= ~__GFP_FS; return inode; } struct inode *lookup_free_space_inode(struct btrfs_root *root, struct btrfs_block_group_cache *block_group, struct btrfs_path *path) { struct inode *inode = NULL; u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; spin_lock(&block_group->lock); if (block_group->inode) inode = igrab(block_group->inode); spin_unlock(&block_group->lock); if (inode) return inode; inode = __lookup_free_space_inode(root, path, block_group->key.objectid); if (IS_ERR(inode)) return inode; spin_lock(&block_group->lock); if (!((BTRFS_I(inode)->flags & flags) == flags)) { printk(KERN_INFO "Old style space inode found, converting.\n"); BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; block_group->disk_cache_state = BTRFS_DC_CLEAR; } if (!block_group->iref) { block_group->inode = igrab(inode); block_group->iref = 1; } spin_unlock(&block_group->lock); return inode; } int __create_free_space_inode(struct btrfs_root *root, struct btrfs_trans_handle *trans, struct btrfs_path *path, u64 ino, u64 offset) { struct btrfs_key key; struct btrfs_disk_key disk_key; struct btrfs_free_space_header *header; struct btrfs_inode_item *inode_item; struct extent_buffer *leaf; u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; int ret; ret = btrfs_insert_empty_inode(trans, root, path, ino); if (ret) return ret; /* We inline crc's for the free disk space cache */ if (ino != BTRFS_FREE_INO_OBJECTID) flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; leaf = path->nodes[0]; inode_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); btrfs_item_key(leaf, &disk_key, path->slots[0]); memset_extent_buffer(leaf, 0, (unsigned long)inode_item, sizeof(*inode_item)); btrfs_set_inode_generation(leaf, inode_item, trans->transid); btrfs_set_inode_size(leaf, inode_item, 0); btrfs_set_inode_nbytes(leaf, inode_item, 0); btrfs_set_inode_uid(leaf, inode_item, 0); btrfs_set_inode_gid(leaf, inode_item, 0); btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); btrfs_set_inode_flags(leaf, inode_item, flags); btrfs_set_inode_nlink(leaf, inode_item, 1); btrfs_set_inode_transid(leaf, inode_item, trans->transid); btrfs_set_inode_block_group(leaf, inode_item, offset); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); key.objectid = BTRFS_FREE_SPACE_OBJECTID; key.offset = offset; key.type = 0; ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(struct btrfs_free_space_header)); if (ret < 0) { btrfs_release_path(path); return ret; } leaf = path->nodes[0]; header = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_free_space_header); memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header)); btrfs_set_free_space_key(leaf, header, &disk_key); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); return 0; } int create_free_space_inode(struct btrfs_root *root, struct btrfs_trans_handle *trans, struct btrfs_block_group_cache *block_group, struct btrfs_path *path) { int ret; u64 ino; ret = btrfs_find_free_objectid(root, &ino); if (ret < 0) return ret; return __create_free_space_inode(root, trans, path, ino, block_group->key.objectid); } int btrfs_truncate_free_space_cache(struct btrfs_root *root, struct btrfs_trans_handle *trans, struct btrfs_path *path, struct inode *inode) { struct btrfs_block_rsv *rsv; u64 needed_bytes; loff_t oldsize; int ret = 0; rsv = trans->block_rsv; trans->block_rsv = &root->fs_info->global_block_rsv; /* 1 for slack space, 1 for updating the inode */ needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) + btrfs_calc_trans_metadata_size(root, 1); spin_lock(&trans->block_rsv->lock); if (trans->block_rsv->reserved < needed_bytes) { spin_unlock(&trans->block_rsv->lock); trans->block_rsv = rsv; return -ENOSPC; } spin_unlock(&trans->block_rsv->lock); oldsize = i_size_read(inode); btrfs_i_size_write(inode, 0); truncate_pagecache(inode, oldsize, 0); /* * We don't need an orphan item because truncating the free space cache * will never be split across transactions. */ ret = btrfs_truncate_inode_items(trans, root, inode, 0, BTRFS_EXTENT_DATA_KEY); if (ret) { trans->block_rsv = rsv; btrfs_abort_transaction(trans, root, ret); return ret; } ret = btrfs_update_inode(trans, root, inode); if (ret) btrfs_abort_transaction(trans, root, ret); trans->block_rsv = rsv; return ret; } static int readahead_cache(struct inode *inode) { struct file_ra_state *ra; unsigned long last_index; ra = kzalloc(sizeof(*ra), GFP_NOFS); if (!ra) return -ENOMEM; file_ra_state_init(ra, inode->i_mapping); last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); kfree(ra); return 0; } struct io_ctl { void *cur, *orig; struct page *page; struct page **pages; struct btrfs_root *root; unsigned long size; int index; int num_pages; unsigned check_crcs:1; }; static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode, struct btrfs_root *root) { memset(io_ctl, 0, sizeof(struct io_ctl)); io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages, GFP_NOFS); if (!io_ctl->pages) return -ENOMEM; io_ctl->root = root; if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID) io_ctl->check_crcs = 1; return 0; } static void io_ctl_free(struct io_ctl *io_ctl) { kfree(io_ctl->pages); } static void io_ctl_unmap_page(struct io_ctl *io_ctl) { if (io_ctl->cur) { kunmap(io_ctl->page); io_ctl->cur = NULL; io_ctl->orig = NULL; } } static void io_ctl_map_page(struct io_ctl *io_ctl, int clear) { WARN_ON(io_ctl->cur); BUG_ON(io_ctl->index >= io_ctl->num_pages); io_ctl->page = io_ctl->pages[io_ctl->index++]; io_ctl->cur = kmap(io_ctl->page); io_ctl->orig = io_ctl->cur; io_ctl->size = PAGE_CACHE_SIZE; if (clear) memset(io_ctl->cur, 0, PAGE_CACHE_SIZE); } static void io_ctl_drop_pages(struct io_ctl *io_ctl) { int i; io_ctl_unmap_page(io_ctl); for (i = 0; i < io_ctl->num_pages; i++) { if (io_ctl->pages[i]) { ClearPageChecked(io_ctl->pages[i]); unlock_page(io_ctl->pages[i]); page_cache_release(io_ctl->pages[i]); } } } static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode, int uptodate) { struct page *page; gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); int i; for (i = 0; i < io_ctl->num_pages; i++) { page = find_or_create_page(inode->i_mapping, i, mask); if (!page) { io_ctl_drop_pages(io_ctl); return -ENOMEM; } io_ctl->pages[i] = page; if (uptodate && !PageUptodate(page)) { btrfs_readpage(NULL, page); lock_page(page); if (!PageUptodate(page)) { printk(KERN_ERR "btrfs: error reading free " "space cache\n"); io_ctl_drop_pages(io_ctl); return -EIO; } } } for (i = 0; i < io_ctl->num_pages; i++) { clear_page_dirty_for_io(io_ctl->pages[i]); set_page_extent_mapped(io_ctl->pages[i]); } return 0; } static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation) { u64 *val; io_ctl_map_page(io_ctl, 1); /* * Skip the csum areas. If we don't check crcs then we just have a * 64bit chunk at the front of the first page. */ if (io_ctl->check_crcs) { io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); } else { io_ctl->cur += sizeof(u64); io_ctl->size -= sizeof(u64) * 2; } val = io_ctl->cur; *val = cpu_to_le64(generation); io_ctl->cur += sizeof(u64); } static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation) { u64 *gen; /* * Skip the crc area. If we don't check crcs then we just have a 64bit * chunk at the front of the first page. */ if (io_ctl->check_crcs) { io_ctl->cur += sizeof(u32) * io_ctl->num_pages; io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); } else { io_ctl->cur += sizeof(u64); io_ctl->size -= sizeof(u64) * 2; } gen = io_ctl->cur; if (le64_to_cpu(*gen) != generation) { printk_ratelimited(KERN_ERR "btrfs: space cache generation " "(%Lu) does not match inode (%Lu)\n", *gen, generation); io_ctl_unmap_page(io_ctl); return -EIO; } io_ctl->cur += sizeof(u64); return 0; } static void io_ctl_set_crc(struct io_ctl *io_ctl, int index) { u32 *tmp; u32 crc = ~(u32)0; unsigned offset = 0; if (!io_ctl->check_crcs) { io_ctl_unmap_page(io_ctl); return; } if (index == 0) offset = sizeof(u32) * io_ctl->num_pages; crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc, PAGE_CACHE_SIZE - offset); btrfs_csum_final(crc, (char *)&crc); io_ctl_unmap_page(io_ctl); tmp = kmap(io_ctl->pages[0]); tmp += index; *tmp = crc; kunmap(io_ctl->pages[0]); } static int io_ctl_check_crc(struct io_ctl *io_ctl, int index) { u32 *tmp, val; u32 crc = ~(u32)0; unsigned offset = 0; if (!io_ctl->check_crcs) { io_ctl_map_page(io_ctl, 0); return 0; } if (index == 0) offset = sizeof(u32) * io_ctl->num_pages; tmp = kmap(io_ctl->pages[0]); tmp += index; val = *tmp; kunmap(io_ctl->pages[0]); io_ctl_map_page(io_ctl, 0); crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc, PAGE_CACHE_SIZE - offset); btrfs_csum_final(crc, (char *)&crc); if (val != crc) { printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free " "space cache\n"); io_ctl_unmap_page(io_ctl); return -EIO; } return 0; } static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes, void *bitmap) { struct btrfs_free_space_entry *entry; if (!io_ctl->cur) return -ENOSPC; entry = io_ctl->cur; entry->offset = cpu_to_le64(offset); entry->bytes = cpu_to_le64(bytes); entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : BTRFS_FREE_SPACE_EXTENT; io_ctl->cur += sizeof(struct btrfs_free_space_entry); io_ctl->size -= sizeof(struct btrfs_free_space_entry); if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) return 0; io_ctl_set_crc(io_ctl, io_ctl->index - 1); /* No more pages to map */ if (io_ctl->index >= io_ctl->num_pages) return 0; /* map the next page */ io_ctl_map_page(io_ctl, 1); return 0; } static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap) { if (!io_ctl->cur) return -ENOSPC; /* * If we aren't at the start of the current page, unmap this one and * map the next one if there is any left. */ if (io_ctl->cur != io_ctl->orig) { io_ctl_set_crc(io_ctl, io_ctl->index - 1); if (io_ctl->index >= io_ctl->num_pages) return -ENOSPC; io_ctl_map_page(io_ctl, 0); } memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE); io_ctl_set_crc(io_ctl, io_ctl->index - 1); if (io_ctl->index < io_ctl->num_pages) io_ctl_map_page(io_ctl, 0); return 0; } static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl) { /* * If we're not on the boundary we know we've modified the page and we * need to crc the page. */ if (io_ctl->cur != io_ctl->orig) io_ctl_set_crc(io_ctl, io_ctl->index - 1); else io_ctl_unmap_page(io_ctl); while (io_ctl->index < io_ctl->num_pages) { io_ctl_map_page(io_ctl, 1); io_ctl_set_crc(io_ctl, io_ctl->index - 1); } } static int io_ctl_read_entry(struct io_ctl *io_ctl, struct btrfs_free_space *entry, u8 *type) { struct btrfs_free_space_entry *e; int ret; if (!io_ctl->cur) { ret = io_ctl_check_crc(io_ctl, io_ctl->index); if (ret) return ret; } e = io_ctl->cur; entry->offset = le64_to_cpu(e->offset); entry->bytes = le64_to_cpu(e->bytes); *type = e->type; io_ctl->cur += sizeof(struct btrfs_free_space_entry); io_ctl->size -= sizeof(struct btrfs_free_space_entry); if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) return 0; io_ctl_unmap_page(io_ctl); return 0; } static int io_ctl_read_bitmap(struct io_ctl *io_ctl, struct btrfs_free_space *entry) { int ret; ret = io_ctl_check_crc(io_ctl, io_ctl->index); if (ret) return ret; memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE); io_ctl_unmap_page(io_ctl); return 0; } int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, struct btrfs_free_space_ctl *ctl, struct btrfs_path *path, u64 offset) { struct btrfs_free_space_header *header; struct extent_buffer *leaf; struct io_ctl io_ctl; struct btrfs_key key; struct btrfs_free_space *e, *n; struct list_head bitmaps; u64 num_entries; u64 num_bitmaps; u64 generation; u8 type; int ret = 0; INIT_LIST_HEAD(&bitmaps); /* Nothing in the space cache, goodbye */ if (!i_size_read(inode)) return 0; key.objectid = BTRFS_FREE_SPACE_OBJECTID; key.offset = offset; key.type = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) return 0; else if (ret > 0) { btrfs_release_path(path); return 0; } ret = -1; leaf = path->nodes[0]; header = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_free_space_header); num_entries = btrfs_free_space_entries(leaf, header); num_bitmaps = btrfs_free_space_bitmaps(leaf, header); generation = btrfs_free_space_generation(leaf, header); btrfs_release_path(path); if (BTRFS_I(inode)->generation != generation) { printk(KERN_ERR "btrfs: free space inode generation (%llu) did" " not match free space cache generation (%llu)\n", (unsigned long long)BTRFS_I(inode)->generation, (unsigned long long)generation); return 0; } if (!num_entries) return 0; ret = io_ctl_init(&io_ctl, inode, root); if (ret) return ret; ret = readahead_cache(inode); if (ret) goto out; ret = io_ctl_prepare_pages(&io_ctl, inode, 1); if (ret) goto out; ret = io_ctl_check_crc(&io_ctl, 0); if (ret) goto free_cache; ret = io_ctl_check_generation(&io_ctl, generation); if (ret) goto free_cache; while (num_entries) { e = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); if (!e) goto free_cache; ret = io_ctl_read_entry(&io_ctl, e, &type); if (ret) { kmem_cache_free(btrfs_free_space_cachep, e); goto free_cache; } if (!e->bytes) { kmem_cache_free(btrfs_free_space_cachep, e); goto free_cache; } if (type == BTRFS_FREE_SPACE_EXTENT) { spin_lock(&ctl->tree_lock); ret = link_free_space(ctl, e); spin_unlock(&ctl->tree_lock); if (ret) { printk(KERN_ERR "Duplicate entries in " "free space cache, dumping\n"); kmem_cache_free(btrfs_free_space_cachep, e); goto free_cache; } } else { BUG_ON(!num_bitmaps); num_bitmaps--; e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); if (!e->bitmap) { kmem_cache_free( btrfs_free_space_cachep, e); goto free_cache; } spin_lock(&ctl->tree_lock); ret = link_free_space(ctl, e); ctl->total_bitmaps++; ctl->op->recalc_thresholds(ctl); spin_unlock(&ctl->tree_lock); if (ret) { printk(KERN_ERR "Duplicate entries in " "free space cache, dumping\n"); kmem_cache_free(btrfs_free_space_cachep, e); goto free_cache; } list_add_tail(&e->list, &bitmaps); } num_entries--; } io_ctl_unmap_page(&io_ctl); /* * We add the bitmaps at the end of the entries in order that * the bitmap entries are added to the cache. */ list_for_each_entry_safe(e, n, &bitmaps, list) { list_del_init(&e->list); ret = io_ctl_read_bitmap(&io_ctl, e); if (ret) goto free_cache; } io_ctl_drop_pages(&io_ctl); ret = 1; out: io_ctl_free(&io_ctl); return ret; free_cache: io_ctl_drop_pages(&io_ctl); __btrfs_remove_free_space_cache(ctl); goto out; } int load_free_space_cache(struct btrfs_fs_info *fs_info, struct btrfs_block_group_cache *block_group) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_root *root = fs_info->tree_root; struct inode *inode; struct btrfs_path *path; int ret = 0; bool matched; u64 used = btrfs_block_group_used(&block_group->item); /* * If this block group has been marked to be cleared for one reason or * another then we can't trust the on disk cache, so just return. */ spin_lock(&block_group->lock); if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { spin_unlock(&block_group->lock); return 0; } spin_unlock(&block_group->lock); path = btrfs_alloc_path(); if (!path) return 0; path->search_commit_root = 1; path->skip_locking = 1; inode = lookup_free_space_inode(root, block_group, path); if (IS_ERR(inode)) { btrfs_free_path(path); return 0; } /* We may have converted the inode and made the cache invalid. */ spin_lock(&block_group->lock); if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { spin_unlock(&block_group->lock); btrfs_free_path(path); goto out; } spin_unlock(&block_group->lock); ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, path, block_group->key.objectid); btrfs_free_path(path); if (ret <= 0) goto out; spin_lock(&ctl->tree_lock); matched = (ctl->free_space == (block_group->key.offset - used - block_group->bytes_super)); spin_unlock(&ctl->tree_lock); if (!matched) { __btrfs_remove_free_space_cache(ctl); printk(KERN_ERR "block group %llu has an wrong amount of free " "space\n", block_group->key.objectid); ret = -1; } out: if (ret < 0) { /* This cache is bogus, make sure it gets cleared */ spin_lock(&block_group->lock); block_group->disk_cache_state = BTRFS_DC_CLEAR; spin_unlock(&block_group->lock); ret = 0; printk(KERN_ERR "btrfs: failed to load free space cache " "for block group %llu\n", block_group->key.objectid); } iput(inode); return ret; } /** * __btrfs_write_out_cache - write out cached info to an inode * @root - the root the inode belongs to * @ctl - the free space cache we are going to write out * @block_group - the block_group for this cache if it belongs to a block_group * @trans - the trans handle * @path - the path to use * @offset - the offset for the key we'll insert * * This function writes out a free space cache struct to disk for quick recovery * on mount. This will return 0 if it was successfull in writing the cache out, * and -1 if it was not. */ int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, struct btrfs_free_space_ctl *ctl, struct btrfs_block_group_cache *block_group, struct btrfs_trans_handle *trans, struct btrfs_path *path, u64 offset) { struct btrfs_free_space_header *header; struct extent_buffer *leaf; struct rb_node *node; struct list_head *pos, *n; struct extent_state *cached_state = NULL; struct btrfs_free_cluster *cluster = NULL; struct extent_io_tree *unpin = NULL; struct io_ctl io_ctl; struct list_head bitmap_list; struct btrfs_key key; u64 start, extent_start, extent_end, len; int entries = 0; int bitmaps = 0; int ret; int err = -1; INIT_LIST_HEAD(&bitmap_list); if (!i_size_read(inode)) return -1; ret = io_ctl_init(&io_ctl, inode, root); if (ret) return -1; /* Get the cluster for this block_group if it exists */ if (block_group && !list_empty(&block_group->cluster_list)) cluster = list_entry(block_group->cluster_list.next, struct btrfs_free_cluster, block_group_list); /* Lock all pages first so we can lock the extent safely. */ io_ctl_prepare_pages(&io_ctl, inode, 0); lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 0, &cached_state); node = rb_first(&ctl->free_space_offset); if (!node && cluster) { node = rb_first(&cluster->root); cluster = NULL; } /* Make sure we can fit our crcs into the first page */ if (io_ctl.check_crcs && (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) { WARN_ON(1); goto out_nospc; } io_ctl_set_generation(&io_ctl, trans->transid); /* Write out the extent entries */ while (node) { struct btrfs_free_space *e; e = rb_entry(node, struct btrfs_free_space, offset_index); entries++; ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes, e->bitmap); if (ret) goto out_nospc; if (e->bitmap) { list_add_tail(&e->list, &bitmap_list); bitmaps++; } node = rb_next(node); if (!node && cluster) { node = rb_first(&cluster->root); cluster = NULL; } } /* * We want to add any pinned extents to our free space cache * so we don't leak the space */ /* * We shouldn't have switched the pinned extents yet so this is the * right one */ unpin = root->fs_info->pinned_extents; if (block_group) start = block_group->key.objectid; while (block_group && (start < block_group->key.objectid + block_group->key.offset)) { ret = find_first_extent_bit(unpin, start, &extent_start, &extent_end, EXTENT_DIRTY); if (ret) { ret = 0; break; } /* This pinned extent is out of our range */ if (extent_start >= block_group->key.objectid + block_group->key.offset) break; extent_start = max(extent_start, start); extent_end = min(block_group->key.objectid + block_group->key.offset, extent_end + 1); len = extent_end - extent_start; entries++; ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL); if (ret) goto out_nospc; start = extent_end; } /* Write out the bitmaps */ list_for_each_safe(pos, n, &bitmap_list) { struct btrfs_free_space *entry = list_entry(pos, struct btrfs_free_space, list); ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap); if (ret) goto out_nospc; list_del_init(&entry->list); } /* Zero out the rest of the pages just to make sure */ io_ctl_zero_remaining_pages(&io_ctl); ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages, 0, i_size_read(inode), &cached_state); io_ctl_drop_pages(&io_ctl); unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, &cached_state, GFP_NOFS); if (ret) goto out; ret = filemap_write_and_wait(inode->i_mapping); if (ret) goto out; key.objectid = BTRFS_FREE_SPACE_OBJECTID; key.offset = offset; key.type = 0; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) { clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, GFP_NOFS); goto out; } leaf = path->nodes[0]; if (ret > 0) { struct btrfs_key found_key; BUG_ON(!path->slots[0]); path->slots[0]--; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || found_key.offset != offset) { clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, GFP_NOFS); btrfs_release_path(path); goto out; } } BTRFS_I(inode)->generation = trans->transid; header = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_free_space_header); btrfs_set_free_space_entries(leaf, header, entries); btrfs_set_free_space_bitmaps(leaf, header, bitmaps); btrfs_set_free_space_generation(leaf, header, trans->transid); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); err = 0; out: io_ctl_free(&io_ctl); if (err) { invalidate_inode_pages2(inode->i_mapping); BTRFS_I(inode)->generation = 0; } btrfs_update_inode(trans, root, inode); return err; out_nospc: list_for_each_safe(pos, n, &bitmap_list) { struct btrfs_free_space *entry = list_entry(pos, struct btrfs_free_space, list); list_del_init(&entry->list); } io_ctl_drop_pages(&io_ctl); unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, &cached_state, GFP_NOFS); goto out; } int btrfs_write_out_cache(struct btrfs_root *root, struct btrfs_trans_handle *trans, struct btrfs_block_group_cache *block_group, struct btrfs_path *path) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct inode *inode; int ret = 0; root = root->fs_info->tree_root; spin_lock(&block_group->lock); if (block_group->disk_cache_state < BTRFS_DC_SETUP) { spin_unlock(&block_group->lock); return 0; } spin_unlock(&block_group->lock); inode = lookup_free_space_inode(root, block_group, path); if (IS_ERR(inode)) return 0; ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans, path, block_group->key.objectid); if (ret) { spin_lock(&block_group->lock); block_group->disk_cache_state = BTRFS_DC_ERROR; spin_unlock(&block_group->lock); ret = 0; #ifdef DEBUG printk(KERN_ERR "btrfs: failed to write free space cache " "for block group %llu\n", block_group->key.objectid); #endif } iput(inode); return ret; } static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, u64 offset) { BUG_ON(offset < bitmap_start); offset -= bitmap_start; return (unsigned long)(div_u64(offset, unit)); } static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) { return (unsigned long)(div_u64(bytes, unit)); } static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset) { u64 bitmap_start; u64 bytes_per_bitmap; bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; bitmap_start = offset - ctl->start; bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); bitmap_start *= bytes_per_bitmap; bitmap_start += ctl->start; return bitmap_start; } static int tree_insert_offset(struct rb_root *root, u64 offset, struct rb_node *node, int bitmap) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_free_space *info; while (*p) { parent = *p; info = rb_entry(parent, struct btrfs_free_space, offset_index); if (offset < info->offset) { p = &(*p)->rb_left; } else if (offset > info->offset) { p = &(*p)->rb_right; } else { /* * we could have a bitmap entry and an extent entry * share the same offset. If this is the case, we want * the extent entry to always be found first if we do a * linear search through the tree, since we want to have * the quickest allocation time, and allocating from an * extent is faster than allocating from a bitmap. So * if we're inserting a bitmap and we find an entry at * this offset, we want to go right, or after this entry * logically. If we are inserting an extent and we've * found a bitmap, we want to go left, or before * logically. */ if (bitmap) { if (info->bitmap) { WARN_ON_ONCE(1); return -EEXIST; } p = &(*p)->rb_right; } else { if (!info->bitmap) { WARN_ON_ONCE(1); return -EEXIST; } p = &(*p)->rb_left; } } } rb_link_node(node, parent, p); rb_insert_color(node, root); return 0; } /* * searches the tree for the given offset. * * fuzzy - If this is set, then we are trying to make an allocation, and we just * want a section that has at least bytes size and comes at or after the given * offset. */ static struct btrfs_free_space * tree_search_offset(struct btrfs_free_space_ctl *ctl, u64 offset, int bitmap_only, int fuzzy) { struct rb_node *n = ctl->free_space_offset.rb_node; struct btrfs_free_space *entry, *prev = NULL; /* find entry that is closest to the 'offset' */ while (1) { if (!n) { entry = NULL; break; } entry = rb_entry(n, struct btrfs_free_space, offset_index); prev = entry; if (offset < entry->offset) n = n->rb_left; else if (offset > entry->offset) n = n->rb_right; else break; } if (bitmap_only) { if (!entry) return NULL; if (entry->bitmap) return entry; /* * bitmap entry and extent entry may share same offset, * in that case, bitmap entry comes after extent entry. */ n = rb_next(n); if (!n) return NULL; entry = rb_entry(n, struct btrfs_free_space, offset_index); if (entry->offset != offset) return NULL; WARN_ON(!entry->bitmap); return entry; } else if (entry) { if (entry->bitmap) { /* * if previous extent entry covers the offset, * we should return it instead of the bitmap entry */ n = &entry->offset_index; while (1) { n = rb_prev(n); if (!n) break; prev = rb_entry(n, struct btrfs_free_space, offset_index); if (!prev->bitmap) { if (prev->offset + prev->bytes > offset) entry = prev; break; } } } return entry; } if (!prev) return NULL; /* find last entry before the 'offset' */ entry = prev; if (entry->offset > offset) { n = rb_prev(&entry->offset_index); if (n) { entry = rb_entry(n, struct btrfs_free_space, offset_index); BUG_ON(entry->offset > offset); } else { if (fuzzy) return entry; else return NULL; } } if (entry->bitmap) { n = &entry->offset_index; while (1) { n = rb_prev(n); if (!n) break; prev = rb_entry(n, struct btrfs_free_space, offset_index); if (!prev->bitmap) { if (prev->offset + prev->bytes > offset) return prev; break; } } if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) return entry; } else if (entry->offset + entry->bytes > offset) return entry; if (!fuzzy) return NULL; while (1) { if (entry->bitmap) { if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) break; } else { if (entry->offset + entry->bytes > offset) break; } n = rb_next(&entry->offset_index); if (!n) return NULL; entry = rb_entry(n, struct btrfs_free_space, offset_index); } return entry; } static inline void __unlink_free_space(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info) { rb_erase(&info->offset_index, &ctl->free_space_offset); ctl->free_extents--; } static void unlink_free_space(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info) { __unlink_free_space(ctl, info); ctl->free_space -= info->bytes; } static int link_free_space(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info) { int ret = 0; BUG_ON(!info->bitmap && !info->bytes); ret = tree_insert_offset(&ctl->free_space_offset, info->offset, &info->offset_index, (info->bitmap != NULL)); if (ret) return ret; ctl->free_space += info->bytes; ctl->free_extents++; return ret; } static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) { struct btrfs_block_group_cache *block_group = ctl->private; u64 max_bytes; u64 bitmap_bytes; u64 extent_bytes; u64 size = block_group->key.offset; u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize; int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); BUG_ON(ctl->total_bitmaps > max_bitmaps); /* * The goal is to keep the total amount of memory used per 1gb of space * at or below 32k, so we need to adjust how much memory we allow to be * used by extent based free space tracking */ if (size < 1024 * 1024 * 1024) max_bytes = MAX_CACHE_BYTES_PER_GIG; else max_bytes = MAX_CACHE_BYTES_PER_GIG * div64_u64(size, 1024 * 1024 * 1024); /* * we want to account for 1 more bitmap than what we have so we can make * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as * we add more bitmaps. */ bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE; if (bitmap_bytes >= max_bytes) { ctl->extents_thresh = 0; return; } /* * we want the extent entry threshold to always be at most 1/2 the maxw * bytes we can have, or whatever is less than that. */ extent_bytes = max_bytes - bitmap_bytes; extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2)); ctl->extents_thresh = div64_u64(extent_bytes, (sizeof(struct btrfs_free_space))); } static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info, u64 offset, u64 bytes) { unsigned long start, count; start = offset_to_bit(info->offset, ctl->unit, offset); count = bytes_to_bits(bytes, ctl->unit); BUG_ON(start + count > BITS_PER_BITMAP); bitmap_clear(info->bitmap, start, count); info->bytes -= bytes; } static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info, u64 offset, u64 bytes) { __bitmap_clear_bits(ctl, info, offset, bytes); ctl->free_space -= bytes; } static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info, u64 offset, u64 bytes) { unsigned long start, count; start = offset_to_bit(info->offset, ctl->unit, offset); count = bytes_to_bits(bytes, ctl->unit); BUG_ON(start + count > BITS_PER_BITMAP); bitmap_set(info->bitmap, start, count); info->bytes += bytes; ctl->free_space += bytes; } static int search_bitmap(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *bitmap_info, u64 *offset, u64 *bytes) { unsigned long found_bits = 0; unsigned long bits, i; unsigned long next_zero; i = offset_to_bit(bitmap_info->offset, ctl->unit, max_t(u64, *offset, bitmap_info->offset)); bits = bytes_to_bits(*bytes, ctl->unit); for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i); i < BITS_PER_BITMAP; i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) { next_zero = find_next_zero_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i); if ((next_zero - i) >= bits) { found_bits = next_zero - i; break; } i = next_zero; } if (found_bits) { *offset = (u64)(i * ctl->unit) + bitmap_info->offset; *bytes = (u64)(found_bits) * ctl->unit; return 0; } return -1; } static struct btrfs_free_space * find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes) { struct btrfs_free_space *entry; struct rb_node *node; int ret; if (!ctl->free_space_offset.rb_node) return NULL; entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); if (!entry) return NULL; for (node = &entry->offset_index; node; node = rb_next(node)) { entry = rb_entry(node, struct btrfs_free_space, offset_index); if (entry->bytes < *bytes) continue; if (entry->bitmap) { ret = search_bitmap(ctl, entry, offset, bytes); if (!ret) return entry; continue; } *offset = entry->offset; *bytes = entry->bytes; return entry; } return NULL; } static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info, u64 offset) { info->offset = offset_to_bitmap(ctl, offset); info->bytes = 0; INIT_LIST_HEAD(&info->list); link_free_space(ctl, info); ctl->total_bitmaps++; ctl->op->recalc_thresholds(ctl); } static void free_bitmap(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *bitmap_info) { unlink_free_space(ctl, bitmap_info); kfree(bitmap_info->bitmap); kmem_cache_free(btrfs_free_space_cachep, bitmap_info); ctl->total_bitmaps--; ctl->op->recalc_thresholds(ctl); } static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *bitmap_info, u64 *offset, u64 *bytes) { u64 end; u64 search_start, search_bytes; int ret; again: end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; /* * XXX - this can go away after a few releases. * * since the only user of btrfs_remove_free_space is the tree logging * stuff, and the only way to test that is under crash conditions, we * want to have this debug stuff here just in case somethings not * working. Search the bitmap for the space we are trying to use to * make sure its actually there. If its not there then we need to stop * because something has gone wrong. */ search_start = *offset; search_bytes = *bytes; search_bytes = min(search_bytes, end - search_start + 1); ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes); BUG_ON(ret < 0 || search_start != *offset); if (*offset > bitmap_info->offset && *offset + *bytes > end) { bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1); *bytes -= end - *offset + 1; *offset = end + 1; } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) { bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes); *bytes = 0; } if (*bytes) { struct rb_node *next = rb_next(&bitmap_info->offset_index); if (!bitmap_info->bytes) free_bitmap(ctl, bitmap_info); /* * no entry after this bitmap, but we still have bytes to * remove, so something has gone wrong. */ if (!next) return -EINVAL; bitmap_info = rb_entry(next, struct btrfs_free_space, offset_index); /* * if the next entry isn't a bitmap we need to return to let the * extent stuff do its work. */ if (!bitmap_info->bitmap) return -EAGAIN; /* * Ok the next item is a bitmap, but it may not actually hold * the information for the rest of this free space stuff, so * look for it, and if we don't find it return so we can try * everything over again. */ search_start = *offset; search_bytes = *bytes; ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes); if (ret < 0 || search_start != *offset) return -EAGAIN; goto again; } else if (!bitmap_info->bytes) free_bitmap(ctl, bitmap_info); return 0; } static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info, u64 offset, u64 bytes) { u64 bytes_to_set = 0; u64 end; end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); bytes_to_set = min(end - offset, bytes); bitmap_set_bits(ctl, info, offset, bytes_to_set); return bytes_to_set; } static bool use_bitmap(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info) { struct btrfs_block_group_cache *block_group = ctl->private; /* * If we are below the extents threshold then we can add this as an * extent, and don't have to deal with the bitmap */ if (ctl->free_extents < ctl->extents_thresh) { /* * If this block group has some small extents we don't want to * use up all of our free slots in the cache with them, we want * to reserve them to larger extents, however if we have plent * of cache left then go ahead an dadd them, no sense in adding * the overhead of a bitmap if we don't have to. */ if (info->bytes <= block_group->sectorsize * 4) { if (ctl->free_extents * 2 <= ctl->extents_thresh) return false; } else { return false; } } /* * some block groups are so tiny they can't be enveloped by a bitmap, so * don't even bother to create a bitmap for this */ if (BITS_PER_BITMAP * block_group->sectorsize > block_group->key.offset) return false; return true; } static struct btrfs_free_space_op free_space_op = { .recalc_thresholds = recalculate_thresholds, .use_bitmap = use_bitmap, }; static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info) { struct btrfs_free_space *bitmap_info; struct btrfs_block_group_cache *block_group = NULL; int added = 0; u64 bytes, offset, bytes_added; int ret; bytes = info->bytes; offset = info->offset; if (!ctl->op->use_bitmap(ctl, info)) return 0; if (ctl->op == &free_space_op) block_group = ctl->private; again: /* * Since we link bitmaps right into the cluster we need to see if we * have a cluster here, and if so and it has our bitmap we need to add * the free space to that bitmap. */ if (block_group && !list_empty(&block_group->cluster_list)) { struct btrfs_free_cluster *cluster; struct rb_node *node; struct btrfs_free_space *entry; cluster = list_entry(block_group->cluster_list.next, struct btrfs_free_cluster, block_group_list); spin_lock(&cluster->lock); node = rb_first(&cluster->root); if (!node) { spin_unlock(&cluster->lock); goto no_cluster_bitmap; } entry = rb_entry(node, struct btrfs_free_space, offset_index); if (!entry->bitmap) { spin_unlock(&cluster->lock); goto no_cluster_bitmap; } if (entry->offset == offset_to_bitmap(ctl, offset)) { bytes_added = add_bytes_to_bitmap(ctl, entry, offset, bytes); bytes -= bytes_added; offset += bytes_added; } spin_unlock(&cluster->lock); if (!bytes) { ret = 1; goto out; } } no_cluster_bitmap: bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 1, 0); if (!bitmap_info) { BUG_ON(added); goto new_bitmap; } bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); bytes -= bytes_added; offset += bytes_added; added = 0; if (!bytes) { ret = 1; goto out; } else goto again; new_bitmap: if (info && info->bitmap) { add_new_bitmap(ctl, info, offset); added = 1; info = NULL; goto again; } else { spin_unlock(&ctl->tree_lock); /* no pre-allocated info, allocate a new one */ if (!info) { info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); if (!info) { spin_lock(&ctl->tree_lock); ret = -ENOMEM; goto out; } } /* allocate the bitmap */ info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); spin_lock(&ctl->tree_lock); if (!info->bitmap) { ret = -ENOMEM; goto out; } goto again; } out: if (info) { if (info->bitmap) kfree(info->bitmap); kmem_cache_free(btrfs_free_space_cachep, info); } return ret; } static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info, bool update_stat) { struct btrfs_free_space *left_info; struct btrfs_free_space *right_info; bool merged = false; u64 offset = info->offset; u64 bytes = info->bytes; /* * first we want to see if there is free space adjacent to the range we * are adding, if there is remove that struct and add a new one to * cover the entire range */ right_info = tree_search_offset(ctl, offset + bytes, 0, 0); if (right_info && rb_prev(&right_info->offset_index)) left_info = rb_entry(rb_prev(&right_info->offset_index), struct btrfs_free_space, offset_index); else left_info = tree_search_offset(ctl, offset - 1, 0, 0); if (right_info && !right_info->bitmap) { if (update_stat) unlink_free_space(ctl, right_info); else __unlink_free_space(ctl, right_info); info->bytes += right_info->bytes; kmem_cache_free(btrfs_free_space_cachep, right_info); merged = true; } if (left_info && !left_info->bitmap && left_info->offset + left_info->bytes == offset) { if (update_stat) unlink_free_space(ctl, left_info); else __unlink_free_space(ctl, left_info); info->offset = left_info->offset; info->bytes += left_info->bytes; kmem_cache_free(btrfs_free_space_cachep, left_info); merged = true; } return merged; } int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, u64 offset, u64 bytes) { struct btrfs_free_space *info; int ret = 0; info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); if (!info) return -ENOMEM; info->offset = offset; info->bytes = bytes; spin_lock(&ctl->tree_lock); if (try_merge_free_space(ctl, info, true)) goto link; /* * There was no extent directly to the left or right of this new * extent then we know we're going to have to allocate a new extent, so * before we do that see if we need to drop this into a bitmap */ ret = insert_into_bitmap(ctl, info); if (ret < 0) { goto out; } else if (ret) { ret = 0; goto out; } link: ret = link_free_space(ctl, info); if (ret) kmem_cache_free(btrfs_free_space_cachep, info); out: spin_unlock(&ctl->tree_lock); if (ret) { printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret); BUG_ON(ret == -EEXIST); } return ret; } int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_space *info; struct btrfs_free_space *next_info = NULL; int ret = 0; spin_lock(&ctl->tree_lock); again: info = tree_search_offset(ctl, offset, 0, 0); if (!info) { /* * oops didn't find an extent that matched the space we wanted * to remove, look for a bitmap instead */ info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 1, 0); if (!info) { /* the tree logging code might be calling us before we * have fully loaded the free space rbtree for this * block group. So it is possible the entry won't * be in the rbtree yet at all. The caching code * will make sure not to put it in the rbtree if * the logging code has pinned it. */ goto out_lock; } } if (info->bytes < bytes && rb_next(&info->offset_index)) { u64 end; next_info = rb_entry(rb_next(&info->offset_index), struct btrfs_free_space, offset_index); if (next_info->bitmap) end = next_info->offset + BITS_PER_BITMAP * ctl->unit - 1; else end = next_info->offset + next_info->bytes; if (next_info->bytes < bytes || next_info->offset > offset || offset > end) { printk(KERN_CRIT "Found free space at %llu, size %llu," " trying to use %llu\n", (unsigned long long)info->offset, (unsigned long long)info->bytes, (unsigned long long)bytes); WARN_ON(1); ret = -EINVAL; goto out_lock; } info = next_info; } if (info->bytes == bytes) { unlink_free_space(ctl, info); if (info->bitmap) { kfree(info->bitmap); ctl->total_bitmaps--; } kmem_cache_free(btrfs_free_space_cachep, info); ret = 0; goto out_lock; } if (!info->bitmap && info->offset == offset) { unlink_free_space(ctl, info); info->offset += bytes; info->bytes -= bytes; ret = link_free_space(ctl, info); WARN_ON(ret); goto out_lock; } if (!info->bitmap && info->offset <= offset && info->offset + info->bytes >= offset + bytes) { u64 old_start = info->offset; /* * we're freeing space in the middle of the info, * this can happen during tree log replay * * first unlink the old info and then * insert it again after the hole we're creating */ unlink_free_space(ctl, info); if (offset + bytes < info->offset + info->bytes) { u64 old_end = info->offset + info->bytes; info->offset = offset + bytes; info->bytes = old_end - info->offset; ret = link_free_space(ctl, info); WARN_ON(ret); if (ret) goto out_lock; } else { /* the hole we're creating ends at the end * of the info struct, just free the info */ kmem_cache_free(btrfs_free_space_cachep, info); } spin_unlock(&ctl->tree_lock); /* step two, insert a new info struct to cover * anything before the hole */ ret = btrfs_add_free_space(block_group, old_start, offset - old_start); WARN_ON(ret); /* -ENOMEM */ goto out; } ret = remove_from_bitmap(ctl, info, &offset, &bytes); if (ret == -EAGAIN) goto again; BUG_ON(ret); /* logic error */ out_lock: spin_unlock(&ctl->tree_lock); out: return ret; } void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, u64 bytes) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_space *info; struct rb_node *n; int count = 0; for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { info = rb_entry(n, struct btrfs_free_space, offset_index); if (info->bytes >= bytes) count++; printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n", (unsigned long long)info->offset, (unsigned long long)info->bytes, (info->bitmap) ? "yes" : "no"); } printk(KERN_INFO "block group has cluster?: %s\n", list_empty(&block_group->cluster_list) ? "no" : "yes"); printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" "\n", count); } void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; spin_lock_init(&ctl->tree_lock); ctl->unit = block_group->sectorsize; ctl->start = block_group->key.objectid; ctl->private = block_group; ctl->op = &free_space_op; /* * we only want to have 32k of ram per block group for keeping * track of free space, and if we pass 1/2 of that we want to * start converting things over to using bitmaps */ ctl->extents_thresh = ((1024 * 32) / 2) / sizeof(struct btrfs_free_space); } /* * for a given cluster, put all of its extents back into the free * space cache. If the block group passed doesn't match the block group * pointed to by the cluster, someone else raced in and freed the * cluster already. In that case, we just return without changing anything */ static int __btrfs_return_cluster_to_free_space( struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_space *entry; struct rb_node *node; spin_lock(&cluster->lock); if (cluster->block_group != block_group) goto out; cluster->block_group = NULL; cluster->window_start = 0; list_del_init(&cluster->block_group_list); node = rb_first(&cluster->root); while (node) { bool bitmap; entry = rb_entry(node, struct btrfs_free_space, offset_index); node = rb_next(&entry->offset_index); rb_erase(&entry->offset_index, &cluster->root); bitmap = (entry->bitmap != NULL); if (!bitmap) try_merge_free_space(ctl, entry, false); tree_insert_offset(&ctl->free_space_offset, entry->offset, &entry->offset_index, bitmap); } cluster->root = RB_ROOT; out: spin_unlock(&cluster->lock); btrfs_put_block_group(block_group); return 0; } void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl) { struct btrfs_free_space *info; struct rb_node *node; while ((node = rb_last(&ctl->free_space_offset)) != NULL) { info = rb_entry(node, struct btrfs_free_space, offset_index); if (!info->bitmap) { unlink_free_space(ctl, info); kmem_cache_free(btrfs_free_space_cachep, info); } else { free_bitmap(ctl, info); } if (need_resched()) { spin_unlock(&ctl->tree_lock); cond_resched(); spin_lock(&ctl->tree_lock); } } } void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) { spin_lock(&ctl->tree_lock); __btrfs_remove_free_space_cache_locked(ctl); spin_unlock(&ctl->tree_lock); } void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_cluster *cluster; struct list_head *head; spin_lock(&ctl->tree_lock); while ((head = block_group->cluster_list.next) != &block_group->cluster_list) { cluster = list_entry(head, struct btrfs_free_cluster, block_group_list); WARN_ON(cluster->block_group != block_group); __btrfs_return_cluster_to_free_space(block_group, cluster); if (need_resched()) { spin_unlock(&ctl->tree_lock); cond_resched(); spin_lock(&ctl->tree_lock); } } __btrfs_remove_free_space_cache_locked(ctl); spin_unlock(&ctl->tree_lock); } u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes, u64 empty_size) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_space *entry = NULL; u64 bytes_search = bytes + empty_size; u64 ret = 0; spin_lock(&ctl->tree_lock); entry = find_free_space(ctl, &offset, &bytes_search); if (!entry) goto out; ret = offset; if (entry->bitmap) { bitmap_clear_bits(ctl, entry, offset, bytes); if (!entry->bytes) free_bitmap(ctl, entry); } else { unlink_free_space(ctl, entry); entry->offset += bytes; entry->bytes -= bytes; if (!entry->bytes) kmem_cache_free(btrfs_free_space_cachep, entry); else link_free_space(ctl, entry); } out: spin_unlock(&ctl->tree_lock); return ret; } /* * given a cluster, put all of its extents back into the free space * cache. If a block group is passed, this function will only free * a cluster that belongs to the passed block group. * * Otherwise, it'll get a reference on the block group pointed to by the * cluster and remove the cluster from it. */ int btrfs_return_cluster_to_free_space( struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster) { struct btrfs_free_space_ctl *ctl; int ret; /* first, get a safe pointer to the block group */ spin_lock(&cluster->lock); if (!block_group) { block_group = cluster->block_group; if (!block_group) { spin_unlock(&cluster->lock); return 0; } } else if (cluster->block_group != block_group) { /* someone else has already freed it don't redo their work */ spin_unlock(&cluster->lock); return 0; } atomic_inc(&block_group->count); spin_unlock(&cluster->lock); ctl = block_group->free_space_ctl; /* now return any extents the cluster had on it */ spin_lock(&ctl->tree_lock); ret = __btrfs_return_cluster_to_free_space(block_group, cluster); spin_unlock(&ctl->tree_lock); /* finally drop our ref */ btrfs_put_block_group(block_group); return ret; } static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster, struct btrfs_free_space *entry, u64 bytes, u64 min_start) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; int err; u64 search_start = cluster->window_start; u64 search_bytes = bytes; u64 ret = 0; search_start = min_start; search_bytes = bytes; err = search_bitmap(ctl, entry, &search_start, &search_bytes); if (err) return 0; ret = search_start; __bitmap_clear_bits(ctl, entry, ret, bytes); return ret; } /* * given a cluster, try to allocate 'bytes' from it, returns 0 * if it couldn't find anything suitably large, or a logical disk offset * if things worked out */ u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster, u64 bytes, u64 min_start) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_space *entry = NULL; struct rb_node *node; u64 ret = 0; spin_lock(&cluster->lock); if (bytes > cluster->max_size) goto out; if (cluster->block_group != block_group) goto out; node = rb_first(&cluster->root); if (!node) goto out; entry = rb_entry(node, struct btrfs_free_space, offset_index); while(1) { if (entry->bytes < bytes || (!entry->bitmap && entry->offset < min_start)) { node = rb_next(&entry->offset_index); if (!node) break; entry = rb_entry(node, struct btrfs_free_space, offset_index); continue; } if (entry->bitmap) { ret = btrfs_alloc_from_bitmap(block_group, cluster, entry, bytes, cluster->window_start); if (ret == 0) { node = rb_next(&entry->offset_index); if (!node) break; entry = rb_entry(node, struct btrfs_free_space, offset_index); continue; } cluster->window_start += bytes; } else { ret = entry->offset; entry->offset += bytes; entry->bytes -= bytes; } if (entry->bytes == 0) rb_erase(&entry->offset_index, &cluster->root); break; } out: spin_unlock(&cluster->lock); if (!ret) return 0; spin_lock(&ctl->tree_lock); ctl->free_space -= bytes; if (entry->bytes == 0) { ctl->free_extents--; if (entry->bitmap) { kfree(entry->bitmap); ctl->total_bitmaps--; ctl->op->recalc_thresholds(ctl); } kmem_cache_free(btrfs_free_space_cachep, entry); } spin_unlock(&ctl->tree_lock); return ret; } static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *entry, struct btrfs_free_cluster *cluster, u64 offset, u64 bytes, u64 cont1_bytes, u64 min_bytes) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; unsigned long next_zero; unsigned long i; unsigned long want_bits; unsigned long min_bits; unsigned long found_bits; unsigned long start = 0; unsigned long total_found = 0; int ret; i = offset_to_bit(entry->offset, block_group->sectorsize, max_t(u64, offset, entry->offset)); want_bits = bytes_to_bits(bytes, block_group->sectorsize); min_bits = bytes_to_bits(min_bytes, block_group->sectorsize); again: found_bits = 0; for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i); i < BITS_PER_BITMAP; i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) { next_zero = find_next_zero_bit(entry->bitmap, BITS_PER_BITMAP, i); if (next_zero - i >= min_bits) { found_bits = next_zero - i; break; } i = next_zero; } if (!found_bits) return -ENOSPC; if (!total_found) { start = i; cluster->max_size = 0; } total_found += found_bits; if (cluster->max_size < found_bits * block_group->sectorsize) cluster->max_size = found_bits * block_group->sectorsize; if (total_found < want_bits || cluster->max_size < cont1_bytes) { i = next_zero + 1; goto again; } cluster->window_start = start * block_group->sectorsize + entry->offset; rb_erase(&entry->offset_index, &ctl->free_space_offset); ret = tree_insert_offset(&cluster->root, entry->offset, &entry->offset_index, 1); BUG_ON(ret); /* -EEXIST; Logic error */ trace_btrfs_setup_cluster(block_group, cluster, total_found * block_group->sectorsize, 1); return 0; } /* * This searches the block group for just extents to fill the cluster with. * Try to find a cluster with at least bytes total bytes, at least one * extent of cont1_bytes, and other clusters of at least min_bytes. */ static noinline int setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster, struct list_head *bitmaps, u64 offset, u64 bytes, u64 cont1_bytes, u64 min_bytes) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_space *first = NULL; struct btrfs_free_space *entry = NULL; struct btrfs_free_space *last; struct rb_node *node; u64 window_start; u64 window_free; u64 max_extent; u64 total_size = 0; entry = tree_search_offset(ctl, offset, 0, 1); if (!entry) return -ENOSPC; /* * We don't want bitmaps, so just move along until we find a normal * extent entry. */ while (entry->bitmap || entry->bytes < min_bytes) { if (entry->bitmap && list_empty(&entry->list)) list_add_tail(&entry->list, bitmaps); node = rb_next(&entry->offset_index); if (!node) return -ENOSPC; entry = rb_entry(node, struct btrfs_free_space, offset_index); } window_start = entry->offset; window_free = entry->bytes; max_extent = entry->bytes; first = entry; last = entry; for (node = rb_next(&entry->offset_index); node; node = rb_next(&entry->offset_index)) { entry = rb_entry(node, struct btrfs_free_space, offset_index); if (entry->bitmap) { if (list_empty(&entry->list)) list_add_tail(&entry->list, bitmaps); continue; } if (entry->bytes < min_bytes) continue; last = entry; window_free += entry->bytes; if (entry->bytes > max_extent) max_extent = entry->bytes; } if (window_free < bytes || max_extent < cont1_bytes) return -ENOSPC; cluster->window_start = first->offset; node = &first->offset_index; /* * now we've found our entries, pull them out of the free space * cache and put them into the cluster rbtree */ do { int ret; entry = rb_entry(node, struct btrfs_free_space, offset_index); node = rb_next(&entry->offset_index); if (entry->bitmap || entry->bytes < min_bytes) continue; rb_erase(&entry->offset_index, &ctl->free_space_offset); ret = tree_insert_offset(&cluster->root, entry->offset, &entry->offset_index, 0); total_size += entry->bytes; BUG_ON(ret); /* -EEXIST; Logic error */ } while (node && entry != last); cluster->max_size = max_extent; trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); return 0; } /* * This specifically looks for bitmaps that may work in the cluster, we assume * that we have already failed to find extents that will work. */ static noinline int setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster, struct list_head *bitmaps, u64 offset, u64 bytes, u64 cont1_bytes, u64 min_bytes) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_space *entry; int ret = -ENOSPC; u64 bitmap_offset = offset_to_bitmap(ctl, offset); if (ctl->total_bitmaps == 0) return -ENOSPC; /* * The bitmap that covers offset won't be in the list unless offset * is just its start offset. */ entry = list_first_entry(bitmaps, struct btrfs_free_space, list); if (entry->offset != bitmap_offset) { entry = tree_search_offset(ctl, bitmap_offset, 1, 0); if (entry && list_empty(&entry->list)) list_add(&entry->list, bitmaps); } list_for_each_entry(entry, bitmaps, list) { if (entry->bytes < bytes) continue; ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, bytes, cont1_bytes, min_bytes); if (!ret) return 0; } /* * The bitmaps list has all the bitmaps that record free space * starting after offset, so no more search is required. */ return -ENOSPC; } /* * here we try to find a cluster of blocks in a block group. The goal * is to find at least bytes+empty_size. * We might not find them all in one contiguous area. * * returns zero and sets up cluster if things worked out, otherwise * it returns -enospc */ int btrfs_find_space_cluster(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster, u64 offset, u64 bytes, u64 empty_size) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_space *entry, *tmp; LIST_HEAD(bitmaps); u64 min_bytes; u64 cont1_bytes; int ret; /* * Choose the minimum extent size we'll require for this * cluster. For SSD_SPREAD, don't allow any fragmentation. * For metadata, allow allocates with smaller extents. For * data, keep it dense. */ if (btrfs_test_opt(root, SSD_SPREAD)) { cont1_bytes = min_bytes = bytes + empty_size; } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { cont1_bytes = bytes; min_bytes = block_group->sectorsize; } else { cont1_bytes = max(bytes, (bytes + empty_size) >> 2); min_bytes = block_group->sectorsize; } spin_lock(&ctl->tree_lock); /* * If we know we don't have enough space to make a cluster don't even * bother doing all the work to try and find one. */ if (ctl->free_space < bytes) { spin_unlock(&ctl->tree_lock); return -ENOSPC; } spin_lock(&cluster->lock); /* someone already found a cluster, hooray */ if (cluster->block_group) { ret = 0; goto out; } trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, min_bytes); INIT_LIST_HEAD(&bitmaps); ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, bytes + empty_size, cont1_bytes, min_bytes); if (ret) ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, offset, bytes + empty_size, cont1_bytes, min_bytes); /* Clear our temporary list */ list_for_each_entry_safe(entry, tmp, &bitmaps, list) list_del_init(&entry->list); if (!ret) { atomic_inc(&block_group->count); list_add_tail(&cluster->block_group_list, &block_group->cluster_list); cluster->block_group = block_group; } else { trace_btrfs_failed_cluster_setup(block_group); } out: spin_unlock(&cluster->lock); spin_unlock(&ctl->tree_lock); return ret; } /* * simple code to zero out a cluster */ void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) { spin_lock_init(&cluster->lock); spin_lock_init(&cluster->refill_lock); cluster->root = RB_ROOT; cluster->max_size = 0; INIT_LIST_HEAD(&cluster->block_group_list); cluster->block_group = NULL; } static int do_trimming(struct btrfs_block_group_cache *block_group, u64 *total_trimmed, u64 start, u64 bytes, u64 reserved_start, u64 reserved_bytes) { struct btrfs_space_info *space_info = block_group->space_info; struct btrfs_fs_info *fs_info = block_group->fs_info; int ret; int update = 0; u64 trimmed = 0; spin_lock(&space_info->lock); spin_lock(&block_group->lock); if (!block_group->ro) { block_group->reserved += reserved_bytes; space_info->bytes_reserved += reserved_bytes; update = 1; } spin_unlock(&block_group->lock); spin_unlock(&space_info->lock); ret = btrfs_error_discard_extent(fs_info->extent_root, start, bytes, &trimmed); if (!ret) *total_trimmed += trimmed; btrfs_add_free_space(block_group, reserved_start, reserved_bytes); if (update) { spin_lock(&space_info->lock); spin_lock(&block_group->lock); if (block_group->ro) space_info->bytes_readonly += reserved_bytes; block_group->reserved -= reserved_bytes; space_info->bytes_reserved -= reserved_bytes; spin_unlock(&space_info->lock); spin_unlock(&block_group->lock); } return ret; } static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, u64 *total_trimmed, u64 start, u64 end, u64 minlen) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_space *entry; struct rb_node *node; int ret = 0; u64 extent_start; u64 extent_bytes; u64 bytes; while (start < end) { spin_lock(&ctl->tree_lock); if (ctl->free_space < minlen) { spin_unlock(&ctl->tree_lock); break; } entry = tree_search_offset(ctl, start, 0, 1); if (!entry) { spin_unlock(&ctl->tree_lock); break; } /* skip bitmaps */ while (entry->bitmap) { node = rb_next(&entry->offset_index); if (!node) { spin_unlock(&ctl->tree_lock); goto out; } entry = rb_entry(node, struct btrfs_free_space, offset_index); } if (entry->offset >= end) { spin_unlock(&ctl->tree_lock); break; } extent_start = entry->offset; extent_bytes = entry->bytes; start = max(start, extent_start); bytes = min(extent_start + extent_bytes, end) - start; if (bytes < minlen) { spin_unlock(&ctl->tree_lock); goto next; } unlink_free_space(ctl, entry); kmem_cache_free(btrfs_free_space_cachep, entry); spin_unlock(&ctl->tree_lock); ret = do_trimming(block_group, total_trimmed, start, bytes, extent_start, extent_bytes); if (ret) break; next: start += bytes; if (fatal_signal_pending(current)) { ret = -ERESTARTSYS; break; } cond_resched(); } out: return ret; } static int trim_bitmaps(struct btrfs_block_group_cache *block_group, u64 *total_trimmed, u64 start, u64 end, u64 minlen) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_space *entry; int ret = 0; int ret2; u64 bytes; u64 offset = offset_to_bitmap(ctl, start); while (offset < end) { bool next_bitmap = false; spin_lock(&ctl->tree_lock); if (ctl->free_space < minlen) { spin_unlock(&ctl->tree_lock); break; } entry = tree_search_offset(ctl, offset, 1, 0); if (!entry) { spin_unlock(&ctl->tree_lock); next_bitmap = true; goto next; } bytes = minlen; ret2 = search_bitmap(ctl, entry, &start, &bytes); if (ret2 || start >= end) { spin_unlock(&ctl->tree_lock); next_bitmap = true; goto next; } bytes = min(bytes, end - start); if (bytes < minlen) { spin_unlock(&ctl->tree_lock); goto next; } bitmap_clear_bits(ctl, entry, start, bytes); if (entry->bytes == 0) free_bitmap(ctl, entry); spin_unlock(&ctl->tree_lock); ret = do_trimming(block_group, total_trimmed, start, bytes, start, bytes); if (ret) break; next: if (next_bitmap) { offset += BITS_PER_BITMAP * ctl->unit; } else { start += bytes; if (start >= offset + BITS_PER_BITMAP * ctl->unit) offset += BITS_PER_BITMAP * ctl->unit; } if (fatal_signal_pending(current)) { ret = -ERESTARTSYS; break; } cond_resched(); } return ret; } int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, u64 *trimmed, u64 start, u64 end, u64 minlen) { int ret; *trimmed = 0; ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); if (ret) return ret; ret = trim_bitmaps(block_group, trimmed, start, end, minlen); return ret; } /* * Find the left-most item in the cache tree, and then return the * smallest inode number in the item. * * Note: the returned inode number may not be the smallest one in * the tree, if the left-most item is a bitmap. */ u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) { struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; struct btrfs_free_space *entry = NULL; u64 ino = 0; spin_lock(&ctl->tree_lock); if (RB_EMPTY_ROOT(&ctl->free_space_offset)) goto out; entry = rb_entry(rb_first(&ctl->free_space_offset), struct btrfs_free_space, offset_index); if (!entry->bitmap) { ino = entry->offset; unlink_free_space(ctl, entry); entry->offset++; entry->bytes--; if (!entry->bytes) kmem_cache_free(btrfs_free_space_cachep, entry); else link_free_space(ctl, entry); } else { u64 offset = 0; u64 count = 1; int ret; ret = search_bitmap(ctl, entry, &offset, &count); /* Logic error; Should be empty if it can't find anything */ BUG_ON(ret); ino = offset; bitmap_clear_bits(ctl, entry, offset, 1); if (entry->bytes == 0) free_bitmap(ctl, entry); } out: spin_unlock(&ctl->tree_lock); return ino; } struct inode *lookup_free_ino_inode(struct btrfs_root *root, struct btrfs_path *path) { struct inode *inode = NULL; spin_lock(&root->cache_lock); if (root->cache_inode) inode = igrab(root->cache_inode); spin_unlock(&root->cache_lock); if (inode) return inode; inode = __lookup_free_space_inode(root, path, 0); if (IS_ERR(inode)) return inode; spin_lock(&root->cache_lock); if (!btrfs_fs_closing(root->fs_info)) root->cache_inode = igrab(inode); spin_unlock(&root->cache_lock); return inode; } int create_free_ino_inode(struct btrfs_root *root, struct btrfs_trans_handle *trans, struct btrfs_path *path) { return __create_free_space_inode(root, trans, path, BTRFS_FREE_INO_OBJECTID, 0); } int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) { struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; struct btrfs_path *path; struct inode *inode; int ret = 0; u64 root_gen = btrfs_root_generation(&root->root_item); if (!btrfs_test_opt(root, INODE_MAP_CACHE)) return 0; /* * If we're unmounting then just return, since this does a search on the * normal root and not the commit root and we could deadlock. */ if (btrfs_fs_closing(fs_info)) return 0; path = btrfs_alloc_path(); if (!path) return 0; inode = lookup_free_ino_inode(root, path); if (IS_ERR(inode)) goto out; if (root_gen != BTRFS_I(inode)->generation) goto out_put; ret = __load_free_space_cache(root, inode, ctl, path, 0); if (ret < 0) printk(KERN_ERR "btrfs: failed to load free ino cache for " "root %llu\n", root->root_key.objectid); out_put: iput(inode); out: btrfs_free_path(path); return ret; } int btrfs_write_out_ino_cache(struct btrfs_root *root, struct btrfs_trans_handle *trans, struct btrfs_path *path) { struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; struct inode *inode; int ret; if (!btrfs_test_opt(root, INODE_MAP_CACHE)) return 0; inode = lookup_free_ino_inode(root, path); if (IS_ERR(inode)) return 0; ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0); if (ret) { btrfs_delalloc_release_metadata(inode, inode->i_size); #ifdef DEBUG printk(KERN_ERR "btrfs: failed to write free ino cache " "for root %llu\n", root->root_key.objectid); #endif } iput(inode); return ret; } |