Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 | /* * Branch/Call/Jump (BCJ) filter decoders * * Authors: Lasse Collin <lasse.collin@tukaani.org> * Igor Pavlov <http://7-zip.org/> * * This file has been put into the public domain. * You can do whatever you want with this file. */ #include "xz_private.h" /* * The rest of the file is inside this ifdef. It makes things a little more * convenient when building without support for any BCJ filters. */ #ifdef XZ_DEC_BCJ struct xz_dec_bcj { /* Type of the BCJ filter being used */ enum { BCJ_X86 = 4, /* x86 or x86-64 */ BCJ_POWERPC = 5, /* Big endian only */ BCJ_IA64 = 6, /* Big or little endian */ BCJ_ARM = 7, /* Little endian only */ BCJ_ARMTHUMB = 8, /* Little endian only */ BCJ_SPARC = 9 /* Big or little endian */ } type; /* * Return value of the next filter in the chain. We need to preserve * this information across calls, because we must not call the next * filter anymore once it has returned XZ_STREAM_END. */ enum xz_ret ret; /* True if we are operating in single-call mode. */ bool single_call; /* * Absolute position relative to the beginning of the uncompressed * data (in a single .xz Block). We care only about the lowest 32 * bits so this doesn't need to be uint64_t even with big files. */ uint32_t pos; /* x86 filter state */ uint32_t x86_prev_mask; /* Temporary space to hold the variables from struct xz_buf */ uint8_t *out; size_t out_pos; size_t out_size; struct { /* Amount of already filtered data in the beginning of buf */ size_t filtered; /* Total amount of data currently stored in buf */ size_t size; /* * Buffer to hold a mix of filtered and unfiltered data. This * needs to be big enough to hold Alignment + 2 * Look-ahead: * * Type Alignment Look-ahead * x86 1 4 * PowerPC 4 0 * IA-64 16 0 * ARM 4 0 * ARM-Thumb 2 2 * SPARC 4 0 */ uint8_t buf[16]; } temp; }; #ifdef XZ_DEC_X86 /* * This is used to test the most significant byte of a memory address * in an x86 instruction. */ static inline int bcj_x86_test_msbyte(uint8_t b) { return b == 0x00 || b == 0xFF; } static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { static const bool mask_to_allowed_status[8] = { true, true, true, false, true, false, false, false }; static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 }; size_t i; size_t prev_pos = (size_t)-1; uint32_t prev_mask = s->x86_prev_mask; uint32_t src; uint32_t dest; uint32_t j; uint8_t b; if (size <= 4) return 0; size -= 4; for (i = 0; i < size; ++i) { if ((buf[i] & 0xFE) != 0xE8) continue; prev_pos = i - prev_pos; if (prev_pos > 3) { prev_mask = 0; } else { prev_mask = (prev_mask << (prev_pos - 1)) & 7; if (prev_mask != 0) { b = buf[i + 4 - mask_to_bit_num[prev_mask]]; if (!mask_to_allowed_status[prev_mask] || bcj_x86_test_msbyte(b)) { prev_pos = i; prev_mask = (prev_mask << 1) | 1; continue; } } } prev_pos = i; if (bcj_x86_test_msbyte(buf[i + 4])) { src = get_unaligned_le32(buf + i + 1); while (true) { dest = src - (s->pos + (uint32_t)i + 5); if (prev_mask == 0) break; j = mask_to_bit_num[prev_mask] * 8; b = (uint8_t)(dest >> (24 - j)); if (!bcj_x86_test_msbyte(b)) break; src = dest ^ (((uint32_t)1 << (32 - j)) - 1); } dest &= 0x01FFFFFF; dest |= (uint32_t)0 - (dest & 0x01000000); put_unaligned_le32(dest, buf + i + 1); i += 4; } else { prev_mask = (prev_mask << 1) | 1; } } prev_pos = i - prev_pos; s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1); return i; } #endif #ifdef XZ_DEC_POWERPC static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t instr; for (i = 0; i + 4 <= size; i += 4) { instr = get_unaligned_be32(buf + i); if ((instr & 0xFC000003) == 0x48000001) { instr &= 0x03FFFFFC; instr -= s->pos + (uint32_t)i; instr &= 0x03FFFFFC; instr |= 0x48000001; put_unaligned_be32(instr, buf + i); } } return i; } #endif #ifdef XZ_DEC_IA64 static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { static const uint8_t branch_table[32] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 6, 6, 0, 0, 7, 7, 4, 4, 0, 0, 4, 4, 0, 0 }; /* * The local variables take a little bit stack space, but it's less * than what LZMA2 decoder takes, so it doesn't make sense to reduce * stack usage here without doing that for the LZMA2 decoder too. */ /* Loop counters */ size_t i; size_t j; /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */ uint32_t slot; /* Bitwise offset of the instruction indicated by slot */ uint32_t bit_pos; /* bit_pos split into byte and bit parts */ uint32_t byte_pos; uint32_t bit_res; /* Address part of an instruction */ uint32_t addr; /* Mask used to detect which instructions to convert */ uint32_t mask; /* 41-bit instruction stored somewhere in the lowest 48 bits */ uint64_t instr; /* Instruction normalized with bit_res for easier manipulation */ uint64_t norm; for (i = 0; i + 16 <= size; i += 16) { mask = branch_table[buf[i] & 0x1F]; for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) { if (((mask >> slot) & 1) == 0) continue; byte_pos = bit_pos >> 3; bit_res = bit_pos & 7; instr = 0; for (j = 0; j < 6; ++j) instr |= (uint64_t)(buf[i + j + byte_pos]) << (8 * j); norm = instr >> bit_res; if (((norm >> 37) & 0x0F) == 0x05 && ((norm >> 9) & 0x07) == 0) { addr = (norm >> 13) & 0x0FFFFF; addr |= ((uint32_t)(norm >> 36) & 1) << 20; addr <<= 4; addr -= s->pos + (uint32_t)i; addr >>= 4; norm &= ~((uint64_t)0x8FFFFF << 13); norm |= (uint64_t)(addr & 0x0FFFFF) << 13; norm |= (uint64_t)(addr & 0x100000) << (36 - 20); instr &= (1 << bit_res) - 1; instr |= norm << bit_res; for (j = 0; j < 6; j++) buf[i + j + byte_pos] = (uint8_t)(instr >> (8 * j)); } } } return i; } #endif #ifdef XZ_DEC_ARM static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t addr; for (i = 0; i + 4 <= size; i += 4) { if (buf[i + 3] == 0xEB) { addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8) | ((uint32_t)buf[i + 2] << 16); addr <<= 2; addr -= s->pos + (uint32_t)i + 8; addr >>= 2; buf[i] = (uint8_t)addr; buf[i + 1] = (uint8_t)(addr >> 8); buf[i + 2] = (uint8_t)(addr >> 16); } } return i; } #endif #ifdef XZ_DEC_ARMTHUMB static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t addr; for (i = 0; i + 4 <= size; i += 2) { if ((buf[i + 1] & 0xF8) == 0xF0 && (buf[i + 3] & 0xF8) == 0xF8) { addr = (((uint32_t)buf[i + 1] & 0x07) << 19) | ((uint32_t)buf[i] << 11) | (((uint32_t)buf[i + 3] & 0x07) << 8) | (uint32_t)buf[i + 2]; addr <<= 1; addr -= s->pos + (uint32_t)i + 4; addr >>= 1; buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07)); buf[i] = (uint8_t)(addr >> 11); buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07)); buf[i + 2] = (uint8_t)addr; i += 2; } } return i; } #endif #ifdef XZ_DEC_SPARC static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t instr; for (i = 0; i + 4 <= size; i += 4) { instr = get_unaligned_be32(buf + i); if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) { instr <<= 2; instr -= s->pos + (uint32_t)i; instr >>= 2; instr = ((uint32_t)0x40000000 - (instr & 0x400000)) | 0x40000000 | (instr & 0x3FFFFF); put_unaligned_be32(instr, buf + i); } } return i; } #endif /* * Apply the selected BCJ filter. Update *pos and s->pos to match the amount * of data that got filtered. * * NOTE: This is implemented as a switch statement to avoid using function * pointers, which could be problematic in the kernel boot code, which must * avoid pointers to static data (at least on x86). */ static void bcj_apply(struct xz_dec_bcj *s, uint8_t *buf, size_t *pos, size_t size) { size_t filtered; buf += *pos; size -= *pos; switch (s->type) { #ifdef XZ_DEC_X86 case BCJ_X86: filtered = bcj_x86(s, buf, size); break; #endif #ifdef XZ_DEC_POWERPC case BCJ_POWERPC: filtered = bcj_powerpc(s, buf, size); break; #endif #ifdef XZ_DEC_IA64 case BCJ_IA64: filtered = bcj_ia64(s, buf, size); break; #endif #ifdef XZ_DEC_ARM case BCJ_ARM: filtered = bcj_arm(s, buf, size); break; #endif #ifdef XZ_DEC_ARMTHUMB case BCJ_ARMTHUMB: filtered = bcj_armthumb(s, buf, size); break; #endif #ifdef XZ_DEC_SPARC case BCJ_SPARC: filtered = bcj_sparc(s, buf, size); break; #endif default: /* Never reached but silence compiler warnings. */ filtered = 0; break; } *pos += filtered; s->pos += filtered; } /* * Flush pending filtered data from temp to the output buffer. * Move the remaining mixture of possibly filtered and unfiltered * data to the beginning of temp. */ static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b) { size_t copy_size; copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos); memcpy(b->out + b->out_pos, s->temp.buf, copy_size); b->out_pos += copy_size; s->temp.filtered -= copy_size; s->temp.size -= copy_size; memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size); } /* * The BCJ filter functions are primitive in sense that they process the * data in chunks of 1-16 bytes. To hide this issue, this function does * some buffering. */ XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s, struct xz_dec_lzma2 *lzma2, struct xz_buf *b) { size_t out_start; /* * Flush pending already filtered data to the output buffer. Return * immediatelly if we couldn't flush everything, or if the next * filter in the chain had already returned XZ_STREAM_END. */ if (s->temp.filtered > 0) { bcj_flush(s, b); if (s->temp.filtered > 0) return XZ_OK; if (s->ret == XZ_STREAM_END) return XZ_STREAM_END; } /* * If we have more output space than what is currently pending in * temp, copy the unfiltered data from temp to the output buffer * and try to fill the output buffer by decoding more data from the * next filter in the chain. Apply the BCJ filter on the new data * in the output buffer. If everything cannot be filtered, copy it * to temp and rewind the output buffer position accordingly. * * This needs to be always run when temp.size == 0 to handle a special * case where the output buffer is full and the next filter has no * more output coming but hasn't returned XZ_STREAM_END yet. */ if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) { out_start = b->out_pos; memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size); b->out_pos += s->temp.size; s->ret = xz_dec_lzma2_run(lzma2, b); if (s->ret != XZ_STREAM_END && (s->ret != XZ_OK || s->single_call)) return s->ret; bcj_apply(s, b->out, &out_start, b->out_pos); /* * As an exception, if the next filter returned XZ_STREAM_END, * we can do that too, since the last few bytes that remain * unfiltered are meant to remain unfiltered. */ if (s->ret == XZ_STREAM_END) return XZ_STREAM_END; s->temp.size = b->out_pos - out_start; b->out_pos -= s->temp.size; memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size); /* * If there wasn't enough input to the next filter to fill * the output buffer with unfiltered data, there's no point * to try decoding more data to temp. */ if (b->out_pos + s->temp.size < b->out_size) return XZ_OK; } /* * We have unfiltered data in temp. If the output buffer isn't full * yet, try to fill the temp buffer by decoding more data from the * next filter. Apply the BCJ filter on temp. Then we hopefully can * fill the actual output buffer by copying filtered data from temp. * A mix of filtered and unfiltered data may be left in temp; it will * be taken care on the next call to this function. */ if (b->out_pos < b->out_size) { /* Make b->out{,_pos,_size} temporarily point to s->temp. */ s->out = b->out; s->out_pos = b->out_pos; s->out_size = b->out_size; b->out = s->temp.buf; b->out_pos = s->temp.size; b->out_size = sizeof(s->temp.buf); s->ret = xz_dec_lzma2_run(lzma2, b); s->temp.size = b->out_pos; b->out = s->out; b->out_pos = s->out_pos; b->out_size = s->out_size; if (s->ret != XZ_OK && s->ret != XZ_STREAM_END) return s->ret; bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size); /* * If the next filter returned XZ_STREAM_END, we mark that * everything is filtered, since the last unfiltered bytes * of the stream are meant to be left as is. */ if (s->ret == XZ_STREAM_END) s->temp.filtered = s->temp.size; bcj_flush(s, b); if (s->temp.filtered > 0) return XZ_OK; } return s->ret; } XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call) { struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL); if (s != NULL) s->single_call = single_call; return s; } XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id) { switch (id) { #ifdef XZ_DEC_X86 case BCJ_X86: #endif #ifdef XZ_DEC_POWERPC case BCJ_POWERPC: #endif #ifdef XZ_DEC_IA64 case BCJ_IA64: #endif #ifdef XZ_DEC_ARM case BCJ_ARM: #endif #ifdef XZ_DEC_ARMTHUMB case BCJ_ARMTHUMB: #endif #ifdef XZ_DEC_SPARC case BCJ_SPARC: #endif break; default: /* Unsupported Filter ID */ return XZ_OPTIONS_ERROR; } s->type = id; s->ret = XZ_OK; s->pos = 0; s->x86_prev_mask = 0; s->temp.filtered = 0; s->temp.size = 0; return XZ_OK; } #endif |