Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | #ifndef _ASM_X86_MMU_CONTEXT_H #define _ASM_X86_MMU_CONTEXT_H #include <asm/desc.h> #include <linux/atomic.h> #include <asm/pgalloc.h> #include <asm/tlbflush.h> #include <asm/paravirt.h> #ifndef CONFIG_PARAVIRT #include <asm-generic/mm_hooks.h> static inline void paravirt_activate_mm(struct mm_struct *prev, struct mm_struct *next) { } #endif /* !CONFIG_PARAVIRT */ /* * ldt_structs can be allocated, used, and freed, but they are never * modified while live. */ struct ldt_struct { /* * Xen requires page-aligned LDTs with special permissions. This is * needed to prevent us from installing evil descriptors such as * call gates. On native, we could merge the ldt_struct and LDT * allocations, but it's not worth trying to optimize. */ struct desc_struct *entries; int size; }; static inline void load_mm_ldt(struct mm_struct *mm) { struct ldt_struct *ldt; /* smp_read_barrier_depends synchronizes with barrier in install_ldt */ ldt = ACCESS_ONCE(mm->context.ldt); smp_read_barrier_depends(); /* * Any change to mm->context.ldt is followed by an IPI to all * CPUs with the mm active. The LDT will not be freed until * after the IPI is handled by all such CPUs. This means that, * if the ldt_struct changes before we return, the values we see * will be safe, and the new values will be loaded before we run * any user code. * * NB: don't try to convert this to use RCU without extreme care. * We would still need IRQs off, because we don't want to change * the local LDT after an IPI loaded a newer value than the one * that we can see. */ if (unlikely(ldt)) set_ldt(ldt->entries, ldt->size); else clear_LDT(); DEBUG_LOCKS_WARN_ON(preemptible()); } /* * Used for LDT copy/destruction. */ int init_new_context(struct task_struct *tsk, struct mm_struct *mm); void destroy_context(struct mm_struct *mm); static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) { #ifdef CONFIG_SMP if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) percpu_write(cpu_tlbstate.state, TLBSTATE_LAZY); #endif } static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { unsigned cpu = smp_processor_id(); if (likely(prev != next)) { #ifdef CONFIG_SMP percpu_write(cpu_tlbstate.state, TLBSTATE_OK); percpu_write(cpu_tlbstate.active_mm, next); #endif cpumask_set_cpu(cpu, mm_cpumask(next)); /* * Re-load page tables. * * This logic has an ordering constraint: * * CPU 0: Write to a PTE for 'next' * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI. * CPU 1: set bit 1 in next's mm_cpumask * CPU 1: load from the PTE that CPU 0 writes (implicit) * * We need to prevent an outcome in which CPU 1 observes * the new PTE value and CPU 0 observes bit 1 clear in * mm_cpumask. (If that occurs, then the IPI will never * be sent, and CPU 0's TLB will contain a stale entry.) * * The bad outcome can occur if either CPU's load is * reordered before that CPU's store, so both CPUs must * execute full barriers to prevent this from happening. * * Thus, switch_mm needs a full barrier between the * store to mm_cpumask and any operation that could load * from next->pgd. TLB fills are special and can happen * due to instruction fetches or for no reason at all, * and neither LOCK nor MFENCE orders them. * Fortunately, load_cr3() is serializing and gives the * ordering guarantee we need. * */ load_cr3(next->pgd); /* stop flush ipis for the previous mm */ cpumask_clear_cpu(cpu, mm_cpumask(prev)); /* * load the LDT, if the LDT is different: */ if (unlikely(prev->context.ldt != next->context.ldt)) load_mm_ldt(next); } #ifdef CONFIG_SMP else { percpu_write(cpu_tlbstate.state, TLBSTATE_OK); BUG_ON(percpu_read(cpu_tlbstate.active_mm) != next); if (!cpumask_test_and_set_cpu(cpu, mm_cpumask(next))) { /* We were in lazy tlb mode and leave_mm disabled * tlb flush IPI delivery. We must reload CR3 * to make sure to use no freed page tables. * * As above, load_cr3() is serializing and orders TLB * fills with respect to the mm_cpumask write. */ load_cr3(next->pgd); load_mm_ldt(next); } } #endif } #define activate_mm(prev, next) \ do { \ paravirt_activate_mm((prev), (next)); \ switch_mm((prev), (next), NULL); \ } while (0); #ifdef CONFIG_X86_32 #define deactivate_mm(tsk, mm) \ do { \ lazy_load_gs(0); \ } while (0) #else #define deactivate_mm(tsk, mm) \ do { \ load_gs_index(0); \ loadsegment(fs, 0); \ } while (0) #endif #endif /* _ASM_X86_MMU_CONTEXT_H */ |